Spectral Asymptotics for Helson Matrices

Nazar Miheisi
(Joint work with A Pushnitski)

Department of Mathematics
King's College London

August 2017

Hankel and Helson matrices

Hankel and Helson matrices

Hankel matrices: for a sequence of complex numbers $\{b(j)\}_{j \geq 0}$,

$$
H(b)=\{b(j+k)\}_{j, k \geq 0}, \quad \ell^{2}\left(\mathbb{Z}_{+}\right) \rightarrow \ell^{2}\left(\mathbb{Z}_{+}\right)
$$

Important realisation as operators on H^{2}
(H^{2} is the usual Hardy space on the unit disk).

Hankel and Helson matrices

Hankel matrices: for a sequence of complex numbers $\{b(j)\}_{j \geq 0}$,

$$
H(b)=\{b(j+k)\}_{j, k \geq 0}, \quad \ell^{2}\left(\mathbb{Z}_{+}\right) \rightarrow \ell^{2}\left(\mathbb{Z}_{+}\right)
$$

Important realisation as operators on H^{2}
(H^{2} is the usual Hardy space on the unit disk).

Helson matrices: for a sequence of complex numbers $\{a(j)\}_{j \geq 1}$,

$$
M(a)=\{a(j k)\}_{j, k \geq 1}, \quad \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})
$$

Important realisation as operators on \mathcal{H}^{2} $\left(\mathcal{H}^{2}\right.$ is the Hardy space of Dirichlet series on half plane $\left.\{\operatorname{Re} s>1 / 2\}\right)$.

The Hilbert matrix

The Hilbert matrix

Classical Hilbert matrix: $b(j)=1 /(1+j), j \geq 0$,

$$
H(b)=\left\{\frac{1}{j+k+1}\right\}_{j, k \geq 0} .
$$

The Hilbert matrix

Classical Hilbert matrix: $b(j)=1 /(1+j), j \geq 0$,

$$
H(b)=\left\{\frac{1}{j+k+1}\right\}_{j, k \geq 0}
$$

Multiplicative Hilbert matrix: $a(j)=1 / \sqrt{j}(1+\log j), j \geq 1$,

$$
M(a)=\left\{\frac{1}{\sqrt{j k}(1+\log j k)}\right\}_{j, k \geq 1}
$$

The Hilbert matrix

Classical Hilbert matrix: $b(j)=1 /(1+j), j \geq 0$,

$$
H(b)=\left\{\frac{1}{j+k+1}\right\}_{j, k \geq 0} .
$$

Multiplicative Hilbert matrix: $a(j)=1 / \sqrt{j}(1+\log j), j \geq 1$,

$$
M(a)=\left\{\frac{1}{\sqrt{j k}(1+\log j k)}\right\}_{j, k \geq 1}
$$

- Spectral properties of $M(a)$ and $H(b)$ coincide (Brevig, Perfekt, Seip, Siskakis, Vukotić, Perfekt, Pushnitski).

Compact modifications: Hankel

Compact modifications: Hankel

Theorem (Widom 1966)
For $\gamma>1$, let $b(j)=1 /(1+j)^{\gamma}, j \geq 0$. Then $H(b) \geq 0$ and

$$
\lambda_{n}^{+}(H(b))=\exp (-\pi \sqrt{2 \gamma n}+o(\sqrt{n})), \quad n \rightarrow \infty .
$$

Compact modifications: Hankel

Theorem (Widom 1966)
For $y>1$, let $b(j)=1 /(1+j)^{\nu}, j \geq 0$. Then $H(b) \geq 0$ and

$$
\lambda_{n}^{+}(H(b))=\exp (-\pi \sqrt{2 \gamma n}+o(\sqrt{n})), \quad n \rightarrow \infty .
$$

Theorem (Pushnitski - Yafaev 2015)

For $\alpha>0$, let $b(j)=1 / j(\log j)^{\alpha}$ for all sufficiently large j. Then $H(b)$ is compact and

$$
\lambda_{n}^{+}(H(b))=C(\alpha) n^{-\alpha}+o\left(n^{-\alpha}\right), \quad \lambda_{n}^{-}(H(b))=O\left(n^{-\alpha-1}\right), \quad n \rightarrow \infty
$$

where

$$
C(\alpha)=2^{-\alpha} \pi^{1-2 \alpha} B\left(\frac{1}{2 \alpha}, \frac{1}{2}\right)^{\alpha} .
$$

Compact modifications: Helson

Compact modifications: Helson

Multiplicative analogue: $1 / j(\log j)^{\alpha} \longleftrightarrow 1 /\left(\sqrt{j} \log j(\log \log j)^{\alpha}\right)$

Compact modifications: Helson

Multiplicative analogue: $1 / j(\log j)^{\alpha} \longleftrightarrow 1 /\left(\sqrt{j} \log j(\log \log j)^{\alpha}\right)$

Theorem (M - Pushnitski 2017)

For $\alpha>0$, let $a(j)=1 /\left(\sqrt{j} \log j(\log \log j)^{\alpha}\right)$ for all sufficiently large j. $M(a)$ is compact and

$$
\lambda_{n}^{+}(M(a))=C(\alpha) n^{-\alpha}+o\left(n^{-\alpha}\right), \quad \lambda_{n}^{-}(M(a))=O\left(n^{-\alpha-1}\right), \quad n \rightarrow \infty
$$

with the same coefficient $C(\alpha)$.

Compact modifications: Helson

Multiplicative analogue: $1 / j(\log j)^{\alpha} \longleftrightarrow 1 /\left(\sqrt{j} \log j(\log \log j)^{\alpha}\right)$

Theorem (M - Pushnitski 2017)

For $\alpha>0$, let $a(j)=1 /\left(\sqrt{j} \log j(\log \log j)^{\alpha}\right)$ for all sufficiently large j. $M(a)$ is compact and

$$
\lambda_{n}^{+}(M(a))=C(\alpha) n^{-\alpha}+o\left(n^{-\alpha}\right), \quad \lambda_{n}^{-}(M(a))=O\left(n^{-\alpha-1}\right), \quad n \rightarrow \infty
$$

with the same coefficient $C(\alpha)$.

- Not known whether an analogue of Widom's Theorem holds for Helson matrices.

Idea of the proof

Idea of the proof

Decompose kernel $a(j)$ as

$$
a(j)=\underbrace{\int_{0}^{c}|\log j|^{-\alpha} j^{-\frac{1}{2}-\lambda} d \lambda}_{\widetilde{a}(j)}+\text { error }
$$

where $0<c<1$ and

$$
\text { error }=O\left(j^{-1 / 2}(\log j)^{-1}(\log \log j)^{-\alpha-1}\right), \quad j \rightarrow \infty
$$

Idea of the proof

Decompose kernel $a(j)$ as

$$
a(j)=\underbrace{\int_{0}^{c}|\log j|^{-\alpha} j^{-\frac{1}{2}-\lambda} d \lambda}_{\widetilde{a}(j)}+\text { error }
$$

where $0<c<1$ and

$$
\text { error }=O\left(j^{-1 / 2}(\log j)^{-1}(\log \log j)^{-\alpha-1}\right), \quad j \rightarrow \infty
$$

We show that

- $M(\widetilde{a}) \geq 0$ and $\lambda_{n}^{+}(M(\widetilde{a}))=C(\alpha) n^{-\alpha}+o\left(n^{-\alpha}\right) ;$

Idea of the proof

Decompose kernel $a(j)$ as

$$
a(j)=\underbrace{\int_{0}^{c}|\log j|^{-\alpha} j^{-\frac{1}{2}-\lambda} d \lambda}_{\widetilde{a}(j)}+\text { error }
$$

where $0<c<1$ and

$$
\text { error }=O\left(j^{-1 / 2}(\log j)^{-1}(\log \log j)^{-\alpha-1}\right), \quad j \rightarrow \infty
$$

We show that

- $M(\tilde{a}) \geq 0$ and $\lambda_{n}^{+}(M(\widetilde{a}))=C(\alpha) n^{-\alpha}+o\left(n^{-\alpha}\right) ;$
- $\lambda_{n}^{ \pm}(M($ error $))=O\left(n^{-\alpha-1}\right) \Leftarrow M($ error $) \in \mathrm{S}_{p, \infty}, p=1 /(1+\alpha)$.

Idea of the proof

Decompose kernel $a(j)$ as

$$
a(j)=\underbrace{\int_{0}^{c}|\log j|^{-\alpha} j^{-\frac{1}{2}-\lambda} d \lambda}_{\widetilde{a}(j)}+\text { error }
$$

where $0<c<1$ and

$$
\text { error }=O\left(j^{-1 / 2}(\log j)^{-1}(\log \log j)^{-\alpha-1}\right), \quad j \rightarrow \infty
$$

We show that

- $M(\widetilde{a}) \geq 0$ and $\lambda_{n}^{+}(M(\widetilde{a}))=C(\alpha) n^{-\alpha}+o\left(n^{-\alpha}\right) ;$
- $\lambda_{n}^{ \pm}(M($ error $))=O\left(n^{-\alpha-1}\right) \Leftarrow M($ error $) \in \mathrm{S}_{p, \infty}, p=1 /(1+\alpha)$.

The result follows by application of standard spectral perturbation theory.

Integral Hankel and Helson operators

Integral Hankel and Helson operators

Hankel integral operator: for a complex valued function \mathbf{b} on \mathbb{R}_{+}, $\mathbf{H}(\mathbf{b}): L^{2}\left(\mathbb{R}_{+}\right) \rightarrow L^{2}\left(\mathbb{R}_{+}\right)$,

$$
\mathbf{H}(\mathbf{b}) f: x \mapsto \int_{0}^{\infty} \mathbf{b}(x+y) f(y) d y, \quad x>0
$$

Integral Hankel and Helson operators

Hankel integral operator: for a complex valued function \mathbf{b} on \mathbb{R}_{+}, $\mathbf{H}(\mathbf{b}): L^{2}\left(\mathbb{R}_{+}\right) \rightarrow L^{2}\left(\mathbb{R}_{+}\right)$,

$$
\mathbf{H}(\mathbf{b}) f: x \mapsto \int_{0}^{\infty} \mathbf{b}(x+y) f(y) d y, \quad x>0
$$

Helson integral operator: for a complex valued function a on $(1, \infty)$, $M(a): L^{2}(1, \infty) \rightarrow L^{2}(1, \infty)$,

$$
\mathbf{M}(\mathbf{a}) f: t \mapsto \int_{1}^{\infty} \mathbf{a}(t s) f(s) d s, \quad t \geq 1
$$

Integral analogue

Integral analogue

Theorem (Pushnitski - Yafaev 2015)
(i) If $\mathrm{a}(t)=\int_{0}^{c}|\log t|^{-\alpha} t^{-\frac{1}{2}-\lambda} d \lambda$, then $\mathrm{M}(\mathrm{a}) \geq 0$ and

$$
\lambda_{n}^{+}(\mathrm{M}(\mathrm{a}))=C(\alpha) n^{-\alpha}+o\left(n^{-\alpha}\right), \quad n \rightarrow \infty
$$

Integral analogue

Theorem (Pushnitski - Yafaev 2015)
(i) If $\mathrm{a}(t)=\int_{0}^{c}|\log t|^{-\alpha} t^{-\frac{1}{2}-\lambda} d \lambda$, then $\mathrm{M}(\mathrm{a}) \geq 0$ and

$$
\lambda_{n}^{+}(\mathrm{M}(\mathbf{a}))=C(\alpha) n^{-\alpha}+o\left(n^{-\alpha}\right), \quad n \rightarrow \infty .
$$

(ii) If $\mathbf{a}(t)=O\left(t^{-1 / 2}(\log t)^{-1}(\log \log t)^{-\alpha-1}\right), \quad t \rightarrow \infty$, then

- $\mathrm{M}(\mathrm{a}) \in \mathrm{S}_{p}$ for any $p>1 /(\alpha+1)$;
- and $\mathrm{M}(\mathbf{a}) \in \mathrm{S}_{p, \infty}$ with $p=1 /(\alpha+1)$.

Integral representation

Integral representation

Notation: $A \approx B \Longleftrightarrow A_{\text {ker } A^{\perp}}$ is unit. equiv. to $B_{\text {ker } B^{\perp}}$

Integral representation

Notation: $A \approx B \Longleftrightarrow A_{\text {ker } A^{\perp}}$ is unit. equiv. to $B_{\text {ker } B^{\perp}}$

Theorem (M - Pushnitski 2017)
Let $w \geq 0$ be a bounded function on \mathbb{R}_{+}with bounded support. Let

$$
\mathbf{a}(t)=\int_{0}^{\infty} t^{-\frac{1}{2}-\lambda} w(\lambda) d \lambda, \quad t>1, \quad a:=\left.\mathbf{a}\right|_{\mathbb{N}}
$$

Then $M(a) \approx M(a)+A$ with $A \in \cap_{p>0} S_{p}$.

Integral representation

Notation: $A \approx B \Longleftrightarrow A_{\text {ker } A^{\perp}}$ is unit. equiv. to $B_{\text {ker } B^{\perp}}$

Theorem (M - Pushnitski 2017)
Let $w \geq 0$ be a bounded function on \mathbb{R}_{+}with bounded support. Let

$$
\mathbf{a}(t)=\int_{0}^{\infty} t^{-\frac{1}{2}-\lambda} w(\lambda) d \lambda, \quad t>1, \quad a:=\left.\mathbf{a}\right|_{\mathbb{N}}
$$

Then $M(a) \approx M(a)+A$ with $A \in \cap_{p>0} S_{p}$.

- In particular, $M(a)$ and $M(a)$ obey the same spectral asymptotics.

Integral representation: sketch proof

Integral representation: sketch proof

Step 1: $M(a) \approx w^{1 / 2} \mathrm{H}(\zeta(x+1)) w^{1 / 2}$.

Integral representation: sketch proof

Step 1: $M(a) \approx w^{1 / 2} \mathrm{H}(\zeta(x+1)) w^{1 / 2}$.
Define

$$
\mathcal{N}: L^{2}\left(\mathbb{R}_{+}\right) \rightarrow \ell^{2}(\mathbb{N}), \quad f \mapsto\left\{\int_{0}^{\infty} j^{-x-\frac{1}{2}} w(x)^{1 / 2} f(x) d x\right\}_{j=1}^{\infty}
$$

Integral representation: sketch proof

Step 1: $M(a) \approx w^{1 / 2} \mathbf{H}(\zeta(x+1)) w^{1 / 2}$.
Define

$$
\mathcal{N}: L^{2}\left(\mathbb{R}_{+}\right) \rightarrow \ell^{2}(\mathbb{N}), \quad f \mapsto\left\{\int_{0}^{\infty} j^{-x-\frac{1}{2}} w(x)^{1 / 2} f(x) d x\right\}_{j=1}^{\infty}
$$

Then $\mathcal{N N}^{*}=M(a)$ and $\mathcal{N}^{*} \mathcal{N}=w^{1 / 2} \mathbf{H}(\zeta(x+1)) w^{1 / 2}$.

Integral representation: sketch proof

Step 1: $M(a) \approx w^{1 / 2} \mathbf{H}(\zeta(x+1)) w^{1 / 2}$.
Define

$$
\mathcal{N}: L^{2}\left(\mathbb{R}_{+}\right) \rightarrow \ell^{2}(\mathbb{N}), \quad f \mapsto\left\{\int_{0}^{\infty} j^{-x-\frac{1}{2}} w(x)^{1 / 2} f(x) d x\right\}_{j=1}^{\infty}
$$

Then $\mathcal{N N}^{*}=M(a)$ and $\mathcal{N}^{*} \mathcal{N}=w^{1 / 2} \mathbf{H}(\zeta(x+1)) w^{1 / 2}$.
Step 2: $\mathbf{M}(\mathbf{a}) \approx w^{1 / 2} \mathbf{H}(1 / x) w^{1 / 2}$.

Integral representation: sketch proof

Step 1: $M(a) \approx w^{1 / 2} \mathbf{H}(\zeta(x+1)) w^{1 / 2}$.
Define

$$
\mathcal{N}: L^{2}\left(\mathbb{R}_{+}\right) \rightarrow \ell^{2}(\mathbb{N}), \quad f \mapsto\left\{\int_{0}^{\infty} j^{-x-\frac{1}{2}} w(x)^{1 / 2} f(x) d x\right\}_{j=1}^{\infty}
$$

Then $\mathcal{N}^{*}{ }^{*}=M(a)$ and $\mathcal{N}^{*} \mathcal{N}=w^{1 / 2} \mathbf{H}(\zeta(x+1)) w^{1 / 2}$.
Step 2: $\mathbf{M}(\mathbf{a}) \approx w^{1 / 2} \mathbf{H}(1 / x) w^{1 / 2}$.
Write $\mathbf{H}(1 / x)=\mathcal{L}^{2}$, where \mathcal{L} is the Laplace transform, then calculate.

Integral representation: sketch proof

Step 1: $M(a) \approx w^{1 / 2} \mathbf{H}(\zeta(x+1)) w^{1 / 2}$.
Define

$$
\mathcal{N}: L^{2}\left(\mathbb{R}_{+}\right) \rightarrow \ell^{2}(\mathbb{N}), \quad f \mapsto\left\{\int_{0}^{\infty} j^{-x-\frac{1}{2}} w(x)^{1 / 2} f(x) d x\right\}_{j=1}^{\infty}
$$

Then $\mathcal{N N}^{*}=M(a)$ and $\mathcal{N}^{*} \mathcal{N}=w^{1 / 2} \mathbf{H}(\zeta(x+1)) w^{1 / 2}$.
Step 2: $\mathbf{M}(\mathbf{a}) \approx w^{1 / 2} \mathbf{H}(1 / x) w^{1 / 2}$.
Write $\mathrm{H}(1 / x)=\mathcal{L}^{2}$, where \mathcal{L} is the Laplace transform, then calculate.
Step 3: $w^{1 / 2}\{H(\zeta(x+1))-H(1 / x)\} w^{1 / 2} \in \cap_{p>0} S_{p}$.

Integral representation: sketch proof

Step 1: $M(a) \approx w^{1 / 2} \mathbf{H}(\zeta(x+1)) w^{1 / 2}$.
Define

$$
\mathcal{N}: L^{2}\left(\mathbb{R}_{+}\right) \rightarrow \ell^{2}(\mathbb{N}), \quad f \mapsto\left\{\int_{0}^{\infty} j^{-x-\frac{1}{2}} w(x)^{1 / 2} f(x) d x\right\}_{j=1}^{\infty}
$$

Then $\mathcal{N N}^{*}=M(a)$ and $\mathcal{N}^{*} \mathcal{N}=w^{1 / 2} \mathbf{H}(\zeta(x+1)) w^{1 / 2}$.
Step 2: $\mathbf{M}(\mathbf{a}) \approx w^{1 / 2} \mathbf{H}(1 / x) w^{1 / 2}$.
Write $\mathrm{H}(1 / x)=\mathcal{L}^{2}$, where \mathcal{L} is the Laplace transform, then calculate.
Step 3: $w^{1 / 2}\{\mathrm{H}(\zeta(x+1))-\mathrm{H}(1 / x)\} w^{1 / 2} \in \cap_{p>0} \mathrm{~S}_{p}$.
Use aymptotics of ζ-function and properties of the Laplace transform to write

$$
w^{1 / 2}\{\mathbf{H}(\zeta(x+1))-\mathbf{H}(1 / x)\} w^{1 / 2}=\mathbf{H}\left(\mathbf{b}_{1}\right)+U^{*} \mathbf{H}\left(\mathbf{b}_{2}\right) U+\text { rank one }
$$

where \mathbf{b}_{1} and \mathbf{b}_{2} are in the Schwartz class and U is unitary.

Schatten class estimates

Schatten class estimates

Theorem (M - Pushnitski 2017)

Assume that $\mathrm{M}(\mathrm{a})$ is bounded and belongs to the Schatten class S_{p} with $0<p \leq 1$. Set $a(j)=\mathbf{a}(j), j \geq 2$, and $a(1)=0$. Then we have the norm bounds

Schatten class estimates

Theorem (M - Pushnitski 2017)
Assume that $\mathrm{M}(\mathrm{a})$ is bounded and belongs to the Schatten class S_{p} with $0<p \leq 1$. Set $a(j)=\mathbf{a}(j), j \geq 2$, and $a(1)=0$. Then we have the norm bounds
(i) $\|M(\mathbf{a})\| \mathbf{s}_{p} \leq C_{p}\|\mathbf{M}(\mathbf{a})\| \mathbf{s}_{p}$

Schatten class estimates

Theorem (M - Pushnitski 2017)

Assume that $\mathrm{M}(\mathrm{a})$ is bounded and belongs to the Schatten class S_{p} with $0<p \leq 1$. Set $a(j)=a(j), j \geq 2$, and $a(1)=0$. Then we have the norm bounds
(i) $\|M(a)\| \mathbf{s}_{p} \leq C_{p}\|\mathrm{M}(\mathbf{a})\| \mathrm{s}_{p}$
(ii) $\| M(a))\left\|\left\|_{\mathbf{s}_{p, \infty}} \leq C_{p}\right\| \mathbf{M}(\mathbf{a})\right\| \|_{p, \infty}$.

Schatten class estimates

Theorem (M - Pushnitski 2017)

Assume that $\mathrm{M}(\mathrm{a})$ is bounded and belongs to the Schatten class S_{p} with $0<p \leq 1$. Set $a(j)=a(j), j \geq 2$, and $a(1)=0$. Then we have the norm bounds
(i) $\|M(a)\| \mathbf{s}_{p} \leq C_{p}\|\mathbf{M}(\mathbf{a})\| \mathbf{s}_{p}$
(ii) $\| M(a))\left\|\left.\right|_{p, \infty} \leq C_{p}\right\| \mathrm{M}(\mathrm{a}) \| \mathrm{s}_{p, \infty}$.

- Note that $\mathbf{M}(\mathbf{a}) \in \mathbf{S}_{1} \Longrightarrow \mathbf{a}(t)$ is continuous in $t>1$.

Schatten class estimates: sketch proof

Schatten class estimates: sketch proof

Take a "dyadic" decomposition of a:

$$
\mathbf{a}=\sum_{n \in \mathbb{Z}} \mathbf{a}_{n}, \quad \operatorname{supp}\left(\mathbf{a}_{n}\right) \subseteq\left[\exp \left(2^{n-1}\right), \exp \left(2^{n+1}\right)\right]
$$

Schatten class estimates: sketch proof

Take a "dyadic" decomposition of a:

$$
\mathbf{a}=\sum_{n \in \mathbb{Z}} \mathbf{a}_{n}, \quad \operatorname{supp}\left(\mathbf{a}_{n}\right) \subseteq\left[\exp \left(2^{n-1}\right), \exp \left(2^{n+1}\right)\right]
$$

Set $a_{n}(j)=\mathbf{a}_{n}(j), j \geq 2$. Then $M\left(a_{n}\right)$ is a sum of rank one operators.

Schatten class estimates: sketch proof

Take a "dyadic" decomposition of a:

$$
\mathbf{a}=\sum_{n \in \mathbb{Z}} \mathbf{a}_{n}, \quad \operatorname{supp}\left(\mathbf{a}_{n}\right) \subseteq\left[\exp \left(2^{n-1}\right), \exp \left(2^{n+1}\right)\right]
$$

Set $a_{n}(j)=\mathbf{a}_{n}(j), j \geq 2$. Then $M\left(a_{n}\right)$ is a sum of rank one operators.
Use the Plancherel-Polya inequality to estimate

$$
\left\|M\left(a_{n}\right)\right\|_{\mathrm{S}_{p}}^{p} \leq C_{p} 2^{n} \int_{0}^{\infty}\left|\int_{-\infty}^{\infty} \frac{a_{n}(t)}{\sqrt{t}} t^{i s} d t\right|^{p} d s
$$

Schatten class estimates: sketch proof

Take a "dyadic" decomposition of a:

$$
\mathbf{a}=\sum_{n \in \mathbb{Z}} \mathbf{a}_{n}, \quad \operatorname{supp}\left(\mathbf{a}_{n}\right) \subseteq\left[\exp \left(2^{n-1}\right), \exp \left(2^{n+1}\right)\right]
$$

Set $a_{n}(j)=\mathbf{a}_{n}(j), j \geq 2$. Then $M\left(a_{n}\right)$ is a sum of rank one operators.
Use the Plancherel-Polya inequality to estimate

$$
\left\|M\left(a_{n}\right)\right\|_{\mathrm{S}_{p}}^{p} \leq C_{p} 2^{n} \int_{0}^{\infty}\left|\int_{-\infty}^{\infty} \frac{a_{n}(t)}{\sqrt{t}} t^{i s} d t\right|^{p} d s
$$

Then use Peller's characterisation of Hankel operators of class S_{p} to get

$$
\|M(a)\|_{\mathrm{S}_{p}}^{p} \leq C_{p} \sum_{n \in \mathbb{Z}} 2^{n} \int_{0}^{\infty}\left|\int_{-\infty}^{\infty} \frac{a_{n}(t)}{\sqrt{t}} t^{i s} d t\right|^{p} d s \leq C_{p}\|\mathbf{M}(\mathbf{a})\|_{\mathrm{S}_{p}}^{p}
$$

Schatten class estimates: sketch proof

Take a "dyadic" decomposition of a:

$$
\mathbf{a}=\sum_{n \in \mathbb{Z}} \mathbf{a}_{n}, \quad \operatorname{supp}\left(\mathbf{a}_{n}\right) \subseteq\left[\exp \left(2^{n-1}\right), \exp \left(2^{n+1}\right)\right]
$$

Set $a_{n}(j)=\mathbf{a}_{n}(j), j \geq 2$. Then $M\left(a_{n}\right)$ is a sum of rank one operators.
Use the Plancherel-Polya inequality to estimate

$$
\left\|M\left(a_{n}\right)\right\|_{S_{p}}^{p} \leq C_{p} 2^{n} \int_{0}^{\infty}\left|\int_{-\infty}^{\infty} \frac{a_{n}(t)}{\sqrt{t}} t^{i s} d t\right|^{p} d s
$$

Then use Peller's characterisation of Hankel operators of class S_{p} to get

$$
\|M(a)\|_{\mathrm{S}_{p}}^{p} \leq C_{p} \sum_{n \in \mathbb{Z}} 2^{n} \int_{0}^{\infty}\left|\int_{-\infty}^{\infty} \frac{a_{n}(t)}{\sqrt{t}} t^{i s} d t\right|^{p} d s \leq C_{p}\|\mathbf{M}(\mathbf{a})\|_{\mathrm{S}_{p}}^{p}
$$

For part (ii), use (i) and real interpolation between Besov spaces.

Thank you!

