Furuta's inequality and $p-w A(s, t)$ operator

Chō, Prasad, Rashid, Tanahashi, Uchiyama

2017, August, 15 Chemnitz

The aim

The aim of this talk is to speak about a small history with Furata's inequality and related classes of operator, that is, p-hyponormal operator, class $A(s, t)$ operator, class $w A(s, t)$ and $p-w A(s, t)$ operator where $0<p \leq 1$ and $0<s, t$.

References

[1] M. Chō, M. Rashid, K. Tanahashi and A. Uchiyama, Spectrum of class p-wA(s,t) operators, Acta Sci. Math. (Szeged), 82 (2016), 641-649. [2] K. Tanahashi, T. Prasad and A. Uchiyama, Quasinormalty and subscalarity of class $p-w A(s, t)$ operators, Functional Analysis, Approximation Computation, 9 (1) (2017), 61-68.
[3] T. Prasad and K. Tanahashi, On class $p-w A(s, t)$ operators, Functional Analysis, Approximation Computation, 6 (2) (2014), 39-42. [4] T. Prasad, M. Chō, M.H.M Rashid, K. Tanahashi and A. Uchiyama, Class $p-w A(s, t)$ operators and range kernel orthogonality, SCMJ, to appear.

Motivation

Let T be a bounded linear operator on a complex Hilbert space \mathcal{H}. If $T T^{*}=T^{*} T, T$ is called normal. Then T admits a spectral decomposition $T=\int_{\sigma(T)} \lambda d E(\lambda)$, and we can caluculate $f(T)=\int_{\sigma(T)} f(\lambda) d E(\lambda)$ for a continuous function $f(\lambda)$ on $\sigma(T)$. Hence normal operator is standard. However there are many non-normal operators.

Motivation

1. $T \in B(\mathcal{H})$ is called hyponormal, if $T T^{*} \leq T^{*} T$. Many mathematicians studied hyponormal operator (Xia, Putnam, Stampfli, ..). Hyponormal operator does not admit spectral decomposition, but has several interesting properties.

Motivation

1. $T \in B(\mathcal{H})$ is called hyponormal, if $T T^{*} \leq T^{*} T$. Many mathematicians studied hyponormal operator (Xia, Putnam, Stampfli, ..). Hyponormal operator does not admit spectral decomposition, but has several interesting properties.
2. Our motivation is to find new generalization of hyponormal operator and study its spectral properties.

Furuta's inequality(1987)

1. Let $0<p, q, r$ satisfy
$p+2 r \leq(1+2 r) q$ and $1 \leq q$. (Furuta's area) If $O \leq B \leq A$, then $B^{\frac{p+2 r}{q}} \leq\left(B^{r} A^{p} B^{r}\right)^{\frac{1}{q}}$ and $\left(A^{r} B^{p} A^{r}\right)^{\frac{1}{q}} \leq A^{\frac{p+2 r}{q}}$.

Furuta's inequality(1987)

1. Let $0<p, q, r$ satisfy
$p+2 r \leq(1+2 r) q$ and $1 \leq q$. (Furuta's area) If $O \leq B \leq A$, then $B^{\frac{p+2 r}{q}} \leq\left(B^{r} A^{p} B^{r}\right)^{\frac{1}{q}}$ and $\left(A^{r} B^{p} A^{r}\right)^{\frac{1}{q}} \leq A^{\frac{p+2 r}{q}}$.
2. Furuta's area was mysterious to me. So I asked Furuta, how do you find this area?

1. If $r=0$, then $p+2 r \leq(1+2 r) q$ means

$$
p \leq q \text { or } 0<\frac{p}{q} \leq 1
$$

and $B^{\frac{p+2 r}{q}} \leq\left(B^{r} A^{p} B^{r}\right)^{\frac{1}{q}}$ means

$$
B^{\frac{p}{q}} \leq\left(B^{0} A^{p} B^{0}\right)^{\frac{1}{q}}=A^{\frac{p}{q}}
$$

1. If $r=0$, then $p+2 r \leq(1+2 r) q$ means

$$
p \leq q \text { or } 0<\frac{p}{q} \leq 1
$$

and $B^{\frac{p+2 r}{q}} \leq\left(B^{r} A^{p} B^{r}\right)^{\frac{1}{q}}$ means

$$
B^{\frac{p}{q}} \leq\left(B^{0} A^{p} B^{0}\right)^{\frac{1}{q}}=A^{\frac{p}{q}} .
$$

2. Hence Furuta's inequality is an extension of Löwner-Heinz's inequality.

$$
0 \leq B \leq A \text { and } 0<p \leq 1 \Longrightarrow B^{p} \leq A^{p} .
$$

Red domain is Furuta's area.

Blue domain is Löwner-Heinz's area. So Furuta extends Löwner-Heinz's inequality.

p-hyponormal operator(1990)

1. The first application of Furuta's inequality is p-hyponormal operator by Aluthge(1990).

p-hyponormal operator(1990)

1. The first application of Furuta's inequality is p-hyponormal operator by Aluthge(1990).
2. $T \in B(\mathcal{H})$ is called p-hyponormal if

$$
\left(T T^{*}\right)^{p} \leq\left(T^{*} T\right)^{p}
$$

where $0<p \leq 1$.

p-hyponormal operator(1990)

1. The first application of Furuta's inequality is p-hyponormal operator by Aluthge(1990).
2. $T \in B(\mathcal{H})$ is called p-hyponormal if

$$
\left(T T^{*}\right)^{p} \leq\left(T^{*} T\right)^{p}
$$

where $0<p \leq 1$.
3. If $p=1$, then T is hyponormal $T T^{*} \leq T^{*} T$. Hence p-hyponormal operator is a generalization of hyponormal operator.

p-hyponormal operator(1990)

Proposition. Let A_{p} be the set of all p-hyponormal operators. If $0<q<p$, then $A_{p} \subset A_{q}$.

p-hyponormal operator(1990)

Proposition. Let A_{p} be the set of all p-hyponormal operators. If $0<q<p$, then $A_{p} \subset A_{q}$.
proof. Let $T \in A_{p}$, then $\left(T T^{*}\right)^{p} \leq\left(T^{*} T\right)^{p}$. Since $0<q / p<1$, by taking q / p power, we have

$$
\left(T T^{*}\right)^{q}=\left(\left(T^{*} T\right)^{p}\right)^{\frac{q}{p}} \leq\left(\left(T T^{*}\right)^{p}\right)^{\frac{q}{p}}=\left(T T^{*}\right)^{q}
$$

p-hyponormal operator(1990)

Proposition. Let A_{p} be the set of all p-hyponormal operators. If $0<q<p$, then $A_{p} \subset A_{q}$.
proof. Let $T \in A_{p}$, then $\left(T T^{*}\right)^{p} \leq\left(T^{*} T\right)^{p}$. Since $0<q / p<1$, by taking q / p power, we have

$$
\left(T T^{*}\right)^{q}=\left(\left(T^{*} T\right)^{p}\right)^{\frac{q}{p}} \leq\left(\left(T T^{*}\right)^{p}\right)^{\frac{q}{p}}=\left(T T^{*}\right)^{q}
$$

Remark. Hence parameterized operator class A_{p} is increasing when $1 \geq p \rightarrow+0$.

Spectral properties of hyponormal operator

Hyponormal operator T has good properties.

Spectral properties of hyponormal operator

Hyponormal operator T has good properties.

$$
\begin{aligned}
& \text { 1. If }(T-\lambda) x=0 \text {, then }(T-\lambda)^{*} x=0 \text {. normal } \\
& \text { eigen value }
\end{aligned}
$$

Spectral properties of hyponormal operator

Hyponormal operator T has good properties.

1. If $(T-\lambda) x=0$, then $(T-\lambda)^{*} x=0$. normal eigen value
2. $\|T\|=r(T)=\max \{|\lambda|: \lambda \in \sigma(T)\}$ normaloid.

Spectral properties of hyponormal operator

Hyponormal operator T has good properties.

1. If $(T-\lambda) x=0$, then $(T-\lambda)^{*} x=0$. normal eigen value
2. $\|T\|=r(T)=\max \{|\lambda|: \lambda \in \sigma(T)\}$ normaloid.
3. $\pi\left\|T^{*} T-T T^{*}\right\| \leq \int_{\sigma(T)} r d r d \theta=$ meas $\sigma(T)$

Hence if meas $\sigma(T)=0$, then T is normal. Putnam's inequality.

Spectral properties of p-hyponormal operator

By using Aluthge transformation, Aluthge, Cho, Huruya poved that A_{p} has good properties.

Spectral properties of p-hyponormal operator

By using Aluthge transformation, Aluthge, Cho, Huruya poved that A_{p} has good properties.

1. If $(T-\lambda) x=0$, then $(T-\lambda)^{*} x=0$. normal eigen value

Spectral properties of p-hyponormal operator

By using Aluthge transformation, Aluthge, Cho, Huruya poved that A_{p} has good properties.

1. If $(T-\lambda) x=0$, then $(T-\lambda)^{*} x=0$. normal eigen value
2. $\|T\|=r(T)=\max \{|\lambda|: \lambda \in \sigma(T)\}$ normaloid.

Spectral properties of p-hyponormal operator

By using Aluthge transformation, Aluthge, Cho, Huruya poved that A_{p} has good properties.

1. If $(T-\lambda) x=0$, then $(T-\lambda)^{*} x=0$. normal eigen value
2. $\|T\|=r(T)=\max \{|\lambda|: \lambda \in \sigma(T)\}$ normaloid.
3. $\pi\left\|\left(T^{*} T\right)^{p}-\left(T T^{*}\right)^{p}\right\| \leq p \int_{\sigma(T)} r^{2 p-1} d r d \theta$

Hence if meas $\sigma(T)=0$, then T is normal.
Putnam's inequality.

Aluthge transformation(1990)

We explain Aluthge's idea.

1. Let T be p-hyponormal, $\left(T T^{*}\right)^{p} \leq\left(T^{*} T\right)^{p}$ $\left(0<p<\frac{1}{2}\right)$.

Aluthge transformation(1990)

We explain Aluthge's idea.

1. Let T be p-hyponormal, $\left(T T^{*}\right)^{p} \leq\left(T^{*} T\right)^{p}$ $\left(0<p<\frac{1}{2}\right)$.
2. Take the polar decomposition of $T=U|T|=U|T|^{\frac{1}{2}}|T|^{\frac{1}{2}}$ and define $|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}} \equiv T\left(\frac{1}{2}, \frac{1}{2}\right)$. (Aluthge transformation) Then

Aluthge transformation(1990)

We explain Aluthge's idea.

1. Let T be p-hyponormal, $\left(T T^{*}\right)^{p} \leq\left(T^{*} T\right)^{p}$ $\left(0<p<\frac{1}{2}\right)$.
2. Take the polar decomposition of $T=U|T|=U|T|^{\frac{1}{2}}|T|^{\frac{1}{2}}$ and define $|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}} \equiv T\left(\frac{1}{2}, \frac{1}{2}\right)$. (Aluthge transformation) Then
3. $\left(T\left(\frac{1}{2}, \frac{1}{2}\right) T\left(\frac{1}{2}, \frac{1}{2}\right)^{*}\right)^{p+\frac{1}{2}} \leq\left(T\left(\frac{1}{2}, \frac{1}{2}\right)^{*} T\left(\frac{1}{2}, \frac{1}{2}\right)\right)^{p+\frac{1}{2}}$

Hence $T\left(\frac{1}{2}, \frac{1}{2}\right)$ is $\left(p+\frac{1}{2}\right)$-hyponormal and $T^{2}\left(\frac{1}{2}, \frac{1}{2}\right)$ is hyponormal by Furuta's inequality

Generalized Aluthge transformation(1997)

1. Aluthge transformation $T\left(\frac{1}{2}, \frac{1}{2}\right)$ was generalized by Furuta and Yoshino (1997).

Generalized Aluthge transformation(1997)

1. Aluthge transformation $T\left(\frac{1}{2}, \frac{1}{2}\right)$ was generalized by Furuta and Yoshino (1997).
2. If $T=U|T|$ is p-hyponormal (where small p as $0<p<s, t)$, then $T(s, t)=|T|^{s} U|T|^{t}$ satisfies

$$
|T(s, t)|^{\frac{2(p+t)}{s+t}} \geq|T|^{2(p+t)},|T|^{2(p+s)} \geq\left|T(s, t)^{*}\right|^{\frac{2(p+s)}{s+t}}
$$

Generalized Aluthge transformation(1997)

1. Aluthge transformation $T\left(\frac{1}{2}, \frac{1}{2}\right)$ was generalized by Furuta and Yoshino (1997).
2. If $T=U|T|$ is p-hyponormal (where small p as $0<p<s, t$), then $T(s, t)=|T|^{s} U|T|^{t}$ satisfies

$$
|T(s, t)|^{\frac{2(p+t)}{s+t}} \geq|T|^{2(p+t)},|T|^{2(p+s)} \geq\left|T(s, t)^{*}\right|^{\frac{2(p+s)}{s+t}}
$$

3. We can take $p=0$ by Löwner-Heinz's inequality. Then

class $A(s, t), w A(s, t)$ oprator (1998)

$$
\text { 1. }|T(s, t)|^{\frac{2 t}{s+t}} \geq|T|^{2 t},|T|^{2 s} \geq\left|T(s, t)^{*}\right|^{\frac{2 s}{s t}}
$$

class $A(s, t), w A(s, t)$ oprator (1998)

1. $|T(s, t)|^{\frac{2 t}{s+t}} \geq|T|^{2 t},|T|^{2 s} \geq\left|T(s, t)^{*}\right|^{\frac{2 s}{+t}}$
2. Ito, Furuta, Yamazaki(1998) defined that T is class $w A(s, t)$ operator if

$$
|T(s, t)|^{\frac{2 t}{s+t}} \geq|T|^{2 t},|T|^{2 s} \geq\left|T(s, t)^{*}\right|^{\frac{2 s}{s+t}}
$$

and class $A(s, t)$ operator if

$$
|T(s, t)|^{\frac{2 t}{5 t+}} \geq|T|^{2 t} .
$$

Ito Yamazaki's result (2002)

1. Ito and Yamazaki(2002) proved that

$$
|T(s, t)|^{\frac{2 t}{s+t}} \geq|T|^{2 t} \Longrightarrow|T|^{2 s} \geq\left|T(s, t)^{*}\right|^{\frac{2 s}{s+t}}
$$

Ito Yamazaki's result (2002)

1. Ito and Yamazaki(2002) proved that

$$
|T(s, t)|^{\frac{2 t}{s+t}} \geq|T|^{2 t} \Longrightarrow|T|^{2 s} \geq\left|T(s, t)^{*}\right|^{\frac{2 s}{s+t}}
$$

2. So class $w A(s, t)$ is class $A(s, t)$, now.

class $p-w A(s, t)$ oprator (2014)

1. We define that T is class $p-w A(s, t)$ operator if

$$
\begin{aligned}
& \quad|T(s, t)|^{\frac{2 p t}{s+t}} \geq|T|^{2 p t},|T|^{2 p s} \geq\left|T(s, t)^{*}\right|^{\frac{2 p s}{s+t}} \\
& \text { for } 0<p \leq 1 \text { and } 0<s, t \leq 1 \text {. }
\end{aligned}
$$

class $p-w A(s, t)$ oprator (2014)

1. We define that T is class $p-w A(s, t)$ operator if

$$
|T(s, t)|^{\frac{2 p t}{s+t}} \geq|T|^{2 p t},|T|^{2 p s} \geq\left|T(s, t)^{*}\right|^{\frac{2 p s}{s+t}}
$$

for $0<p \leq 1$ and $0<s, t \leq 1$.
2. Hence $p-w(s, t)$ is a generalization of $w A(s, t)$. We assert (hope) $p-w A(s, t)$ is good generalization.

Properties of $p-w A(s, t)$ operator

1. If $0<p_{1}<p_{2} \leq 1,0<s_{2}<s_{1}, 0<t_{2}<t_{1}$, then class $p_{2}-w A\left(s_{2}, t_{2}\right)$ operator is class $p_{1}-w A\left(s_{1}, t_{1}\right)$.

Properties of $p-w A(s, t)$ operator

1. If $0<p_{1}<p_{2} \leq 1,0<s_{2}<s_{1}, 0<t_{2}<t_{1}$, then class $p_{2}-w A\left(s_{2}, t_{2}\right)$ operator is class $p_{1}-w A\left(s_{1}, t_{1}\right)$.
2. If $(T-\lambda) x=0$ and $\lambda \neq 0$, then $(T-\lambda)^{*} x=0$. normal eigen value

Properties of $p-w A(s, t)$ operator

1. If $0<p_{1}<p_{2} \leq 1,0<s_{2}<s_{1}, 0<t_{2}<t_{1}$, then class $p_{2}-w A\left(s_{2}, t_{2}\right)$ operator is class $p_{1}-w A\left(s_{1}, t_{1}\right)$.
2. If $(T-\lambda) x=0$ and $\lambda \neq 0$,
then $(T-\lambda)^{*} x=0$. normal eigen value
3. $\|T\|=r(T)=\max \{|\lambda|: \lambda \in \sigma(T)\}$
normaloid

4. Putnam (type) inequality

$$
\begin{aligned}
& \left\||T(s, t)|^{\frac{2 \min \{s p, t p\}}{s+t}}-\left|(T(s, t))^{*}\right|^{\frac{2 \min \{s p, t p\}}{s+t}}\right\| \\
& \leq \frac{\min \{s p, t p\}}{\pi} \iint_{\sigma(T)} r^{2 \min \{s p, t p\}-1} d r d \theta .
\end{aligned}
$$

Moreover, if meas $(\sigma(T))=0$, then T is normal.

Problem

Question. If T is class $p-w A(s, t)$ and \mathcal{M} is T-invariant, then $\left.T\right|_{\mathcal{M}}$ is $p-w A(s, t)$?

photo of Furuta (2004)

Thank you.

