Furuta's inequality and p-wA(s, t)operator

Chō, Prasad, Rashid, Tanahashi, Uchiyama

2017, August, 15 Chemnitz

The aim of this talk is to speak about a small history with Furata's inequality and related classes of operator, that is, *p*-hyponormal operator, class A(s, t) operator, class wA(s, t) and p-wA(s, t) operator where 0 and <math>0 < s, t.

References

[1] M. Chō, M. Rashid, K. Tanahashi and A. Uchiyama, Spectrum of class p-wA(s, t) operators, Acta Sci. Math. (Szeged), 82 (2016), 641-649. [2] K. Tanahashi, T. Prasad and A. Uchiyama, Quasinormalty and subscalarity of class p-wA(s, t) operators, Functional Analysis, Approximation Computation, 9 (1) (2017), 61-68. [3] T. Prasad and K. Tanahashi, On class p-wA(s, t) operators, Functional Analysis, Approximation Computation, 6 (2) (2014), 39–42. [4] T. Prasad, M. Chō, M.H.M Rashid, K. Tanahashi and A. Uchiyama, Class p-wA(s, t) operators and range kernel orthogonality, SCMJ, to appear.

Let T be a bounded linear operator on a complex Hilbert space \mathcal{H} . If $TT^* = T^*T$, T is called normal. Then T admits a spectral decomposition $T = \int_{\sigma(T)} \lambda dE(\lambda), \text{ and we can caluculate}$ $f(T) = \int_{\sigma(T)} f(\lambda) dE(\lambda) \text{ for a continuous function}$ $f(\lambda) \text{ on } \sigma(T). \text{ Hence normal operator is standard.}$ However there are many non-normal operators.

Motivation

 T ∈ B(H) is called hyponormal, if TT* ≤ T*T. Many mathematicians studied hyponormal operator (Xia, Putnam, Stampfli, ...). Hyponormal operator does not admit spectral decomposition, but has several interesting properties.

- T ∈ B(H) is called hyponormal, if TT* ≤ T*T. Many mathematicians studied hyponormal operator (Xia, Putnam, Stampfli, ...). Hyponormal operator does not admit spectral decomposition, but has several interesting properties.
- 2. Our motivation is to find new generalization of hyponormal operator and study its spectral properties.

1. Let
$$0 < p, q, r$$
 satisfy
 $p + 2r \le (1 + 2r)q$ and $1 \le q$. (Furuta's area)
If $0 \le B \le A$, then
 $B^{\frac{p+2r}{q}} \le (B^r A^p B^r)^{\frac{1}{q}}$ and $(A^r B^p A^r)^{\frac{1}{q}} \le A^{\frac{p+2r}{q}}$.

1. Let
$$0 < p, q, r$$
 satisfy
 $p + 2r \le (1 + 2r)q$ and $1 \le q$. (Furuta's area)
If $0 \le B \le A$, then
 $B^{\frac{p+2r}{q}} \le (B^r A^p B^r)^{\frac{1}{q}}$ and $(A^r B^p A^r)^{\frac{1}{q}} \le A^{\frac{p+2r}{q}}$.

2. Furuta's area was mysterious to me. So I asked Furuta, how do you find this area?

1. If r = 0, then $p + 2r \le (1 + 2r)q$ means $p \le q \text{ or } 0 < \frac{p}{q} \le 1$ and $B^{\frac{p+2r}{q}} \le (B^r A^p B^r)^{\frac{1}{q}}$ means $B^{\frac{p}{q}} \le (B^0 A^p B^0)^{\frac{1}{q}} = A^{\frac{p}{q}}.$

1. If r = 0, then $p + 2r \le (1 + 2r)q$ means $p \le q \text{ or } 0 < \frac{p}{q} \le 1$ and $B^{\frac{p+2r}{q}} \le (B^r A^p B^r)^{\frac{1}{q}}$ means $B^{\frac{p}{q}} \le (B^0 A^p B^0)^{\frac{1}{q}} = A^{\frac{p}{q}}.$

2. Hence Furuta's inequality is an extension of Löwner-Heinz's inequality.

 $0 \leq B \leq A$ and 0 .

Red domain is Furuta's area.

Chō, Prasad, Rashid, Tanahashi, Uchiyama

Furuta's inequality and p-wA(s, t) operator

Blue domain is Löwner-Heinz's area. So Furuta extends Löwner-Heinz's inequality.

p-hyponormal operator(1990)

1. The first application of Furuta's inequality is *p*-hyponormal operator by Aluthge(1990).

p-hyponormal operator(1990)

 The first application of Furuta's inequality is *p*-hyponormal operator by Aluthge(1990).
 T ∈ B(H) is called *p*-hyponormal if

 $(TT^*)^p \leq (T^*T)^p$

where 0 .

p-hyponormal operator(1990)

- The first application of Furuta's inequality is *p*-hyponormal operator by Aluthge(1990).
 T = D(21) is all the last statements of the statement of the
- 2. $T \in B(\mathcal{H})$ is called *p*-hyponormal if

 $(TT^*)^p \leq (T^*T)^p$

where 0 .

3. If p = 1, then T is hyponormal $TT^* \leq T^*T$. Hence p-hyponormal operator is a generalization of hyponormal operator. **Proposition.** Let A_p be the set of all *p*-hyponormal operators. If 0 < q < p, then $A_p \subset A_q$.

Proposition. Let A_p be the set of all *p*-hyponormal operators. If 0 < q < p, then $A_p \subset A_q$.

proof. Let $T \in A_p$, then $(TT^*)^p \leq (T^*T)^p$. Since 0 < q/p < 1, by taking q/p power, we have

$$(TT^*)^q = ((T^*T)^p)^{\frac{q}{p}} \le ((TT^*)^p)^{\frac{q}{p}} = (TT^*)^q.$$

Proposition. Let A_p be the set of all *p*-hyponormal operators. If 0 < q < p, then $A_p \subset A_q$.

proof. Let $T \in A_p$, then $(TT^*)^p \leq (T^*T)^p$. Since 0 < q/p < 1, by taking q/p power, we have

$$(TT^*)^q = ((T^*T)^p)^{\frac{q}{p}} \le ((TT^*)^p)^{\frac{q}{p}} = (TT^*)^q.$$

Remark. Hence parameterized operator class A_p is increasing when $1 \ge p \rightarrow +0$.

1. If
$$(T - \lambda)x = 0$$
, then $(T - \lambda)^*x = 0$. normal eigen value

- 1. If $(T \lambda)x = 0$, then $(T \lambda)^*x = 0$. normal eigen value
- 2. $||T|| = r(T) = \max\{|\lambda| : \lambda \in \sigma(T)\}$ normaloid.

- 1. If $(T \lambda)x = 0$, then $(T \lambda)^*x = 0$. normal eigen value
- 2. $||T|| = r(T) = \max\{|\lambda| : \lambda \in \sigma(T)\}$ normaloid.
- 3. $\pi \|T^*T TT^*\| \leq \int_{\sigma(T)} r dr d\theta = \text{meas } \sigma(T)$ Hence if meas $\sigma(T) = 0$, then T is normal. Putnam's inequality.

By using Aluthge transformation, Aluthge, Cho, Huruya poved that A_p has good properties.

By using Aluthge transformation, Aluthge, Cho, Huruya poved that A_p has good properties.

1. If $(T - \lambda)x = 0$, then $(T - \lambda)^*x = 0$. normal eigen value

By using Aluthge transformation, Aluthge, Cho, Huruya poved that A_p has good properties.

1. If $(T - \lambda)x = 0$, then $(T - \lambda)^*x = 0$. normal eigen value

2.
$$||T|| = r(T) = \max\{|\lambda| : \lambda \in \sigma(T)\}$$

normaloid.

By using Aluthge transformation, Aluthge, Cho, Huruya poved that A_p has good properties.

1. If $(T - \lambda)x = 0$, then $(T - \lambda)^*x = 0$. normal eigen value

2.
$$||T|| = r(T) = \max\{|\lambda| : \lambda \in \sigma(T)\}$$

normaloid.

3. $\pi \| (T^*T)^p - (TT^*)^p \| \le p \int_{\sigma(T)} r^{2p-1} dr d\theta$ Hence if meas $\sigma(T) = 0$, then T is normal. Putnam's inequality.

Aluthge transformation(1990)

We explain Aluthge's idea.

1. Let *T* be *p*-hyponormal, $(TT^*)^p \le (T^*T)^p$ (0

Aluthge transformation(1990)

We explain Aluthge's idea.

- 1. Let *T* be *p*-hyponormal, $(TT^*)^p \le (T^*T)^p$ (0
- 2. Take the polar decomposition of $T = U|T| = U|T|^{\frac{1}{2}}|T|^{\frac{1}{2}}$ and define $|T|^{\frac{1}{2}}U|T|^{\frac{1}{2}} \equiv T(\frac{1}{2}, \frac{1}{2})$. (Aluthge transformation) Then

Aluthge transformation(1990)

We explain Aluthge's idea.

- 1. Let *T* be *p*-hyponormal, $(TT^*)^p \le (T^*T)^p$ (0
- 2. Take the polar decomposition of $T = U|T| = U|T|^{\frac{1}{2}}|T|^{\frac{1}{2}}$ and define $|T|^{\frac{1}{2}}U|T|^{\frac{1}{2}} \equiv T(\frac{1}{2}, \frac{1}{2})$. (Aluthge transformation) Then
- 3. $\left(T(\frac{1}{2},\frac{1}{2})T(\frac{1}{2},\frac{1}{2})^*\right)^{p+\frac{1}{2}} \le \left(T(\frac{1}{2},\frac{1}{2})^*T(\frac{1}{2},\frac{1}{2})\right)^{p+\frac{1}{2}}$ Hence $T(\frac{1}{2},\frac{1}{2})$ is $(p+\frac{1}{2})$ -hyponormal and $T^2(\frac{1}{2},\frac{1}{2})$ is hyponormal by Furuta's inequality

Generalized Aluthge transformation(1997)

1. Aluthge transformation $T(\frac{1}{2}, \frac{1}{2})$ was generalized by Furuta and Yoshino (1997).

Generalized Aluthge transformation(1997)

- 1. Aluthge transformation $T(\frac{1}{2}, \frac{1}{2})$ was generalized by Furuta and Yoshino (1997).
- 2. If T = U|T| is *p*-hyponormal (where small *p* as $0), then <math>T(s, t) = |T|^{s}U|T|^{t}$ satisfies

 $|T(s,t)|^{\frac{2(p+t)}{s+t}} \ge |T|^{2(p+t)}, |T|^{2(p+s)} \ge |T(s,t)^*|^{\frac{2(p+s)}{s+t}}$

Generalized Aluthge transformation(1997)

- 1. Aluthge transformation $T(\frac{1}{2}, \frac{1}{2})$ was generalized by Furuta and Yoshino (1997).
- 2. If T = U|T| is *p*-hyponormal (where small *p* as $0), then <math>T(s, t) = |T|^{s}U|T|^{t}$ satisfies

$$|T(s,t)|^{\frac{2(p+t)}{s+t}} \ge |T|^{2(p+t)}, |T|^{2(p+s)} \ge |T(s,t)^*|^{\frac{2(p+s)}{s+t}}$$

3. We can take p = 0 by Löwner-Heinz's inequality. Then

class A(s, t), wA(s, t) oprator (1998)

1.
$$|T(s,t)|^{\frac{2t}{s+t}} \ge |T|^{2t}, |T|^{2s} \ge |T(s,t)^*|^{\frac{2s}{s+t}}$$

class A(s, t), wA(s, t) oprator (1998)

1.
$$|T(s,t)|^{\frac{2t}{s+t}} \ge |T|^{2t}, |T|^{2s} \ge |T(s,t)^*|^{\frac{2s}{s+t}}$$

2. Ito, Furuta, Yamazaki(1998) defined that T is class wA(s, t) operator if

$$|T(s,t)|^{\frac{2t}{s+t}} \ge |T|^{2t}, |T|^{2s} \ge |T(s,t)^*|^{\frac{2s}{s+t}}$$

and class A(s, t) operator if

$$|T(s,t)|^{\frac{2t}{s+t}}\geq |T|^{2t}.$$

Ito Yamazaki's result (2002)

1. Ito and Yamazaki(2002) proved that

$$|T(s,t)|^{\frac{2t}{s+t}} \ge |T|^{2t} \Longrightarrow |T|^{2s} \ge |T(s,t)^*|^{\frac{2s}{s+t}}$$

1. Ito and Yamazaki(2002) proved that

$$|T(s,t)|^{\frac{2t}{s+t}} \ge |T|^{2t} \Longrightarrow |T|^{2s} \ge |T(s,t)^*|^{\frac{2s}{s+t}}$$

2. So class wA(s, t) is class A(s, t), now.

class p-wA(s, t) oprator (2014)

1. We define that T is class p-wA(s,t) operator if $|T(s,t)|^{\frac{2pt}{s+t}} \ge |T|^{2pt}, |T|^{2ps} \ge |T(s,t)^*|^{\frac{2ps}{s+t}}$

for $0 and <math>0 < s, t \leq 1$.

class p-wA(s, t) oprator (2014)

1. We define that T is class p-wA(s, t) operator if

$$|T(s,t)|^{\frac{2pt}{s+t}} \ge |T|^{2pt}, |T|^{2ps} \ge |T(s,t)^*|^{\frac{2ps}{s+t}}$$

for $0 and <math>0 < s, t \leq 1$.

 Hence p-w(s, t) is a generalization of wA(s, t).
 We assert (hope) p-wA(s, t) is good generalization.

Properties of p-wA(s, t) **operator**

1. If $0 < p_1 < p_2 \le 1, 0 < s_2 < s_1, 0 < t_2 < t_1$, then class p_2 - $wA(s_2, t_2)$ operator is class p_1 - $wA(s_1, t_1)$.

Properties of p-wA(s, t) **operator**

- 1. If $0 < p_1 < p_2 \le 1, 0 < s_2 < s_1, 0 < t_2 < t_1$, then class p_2 - $wA(s_2, t_2)$ operator is class p_1 - $wA(s_1, t_1)$.
- 2. If $(T \lambda)x = 0$ and $\lambda \neq 0$, then $(T - \lambda)^*x = 0$. normal eigen value

Properties of p-wA(s, t) **operator**

- 1. If $0 < p_1 < p_2 \le 1, 0 < s_2 < s_1, 0 < t_2 < t_1$, then class p_2 - $wA(s_2, t_2)$ operator is class p_1 - $wA(s_1, t_1)$.
- 2. If $(T \lambda)x = 0$ and $\lambda \neq 0$, then $(T - \lambda)^*x = 0$. normal eigen value
- 3. $||T|| = r(T) = \max\{|\lambda| : \lambda \in \sigma(T)\}$ normaloid

4. Putnam (type) inequality

$$\left\| \left| \left| T(s,t) \right|^{\frac{2\min\{sp,tp\}}{s+t}} - \left| (T(s,t))^* \right|^{\frac{2\min\{sp,tp\}}{s+t}} \right\| \right| \\ \leq \frac{\min\{sp,tp\}}{\pi} \iint_{\sigma(T)} r^{2\min\{sp,tp\}-1} \, dr d\theta.$$

Moreover, if meas $(\sigma(T)) = 0$, then T is normal.

Question. If T is class p-wA(s, t) and \mathcal{M} is T-invariant, then $T|_{\mathcal{M}}$ is p-wA(s, t)?

photo of Furuta (2004)

Chō, Prasad, Rashid, Tanahashi, Uchiyama Furuta's inequality and p-wA(s, t) operator

Thank you.