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The aim

The aim of this talk is to speak about a small
history with Furata’s inequality and related classes
of operator, that is, p-hyponormal operator, class
A(s, t) operator, class wA(s, t) and p-wA(s, t)
operator where 0 < p ≤ 1 and 0 < s, t.
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[1] M. Chō, M. Rashid, K. Tanahashi and A.
Uchiyama, Spectrum of class p-wA(s, t) operators,
Acta Sci. Math. (Szeged), 82 (2016), 641–649.
[2] K. Tanahashi, T. Prasad and A. Uchiyama,
Quasinormalty and subscalarity of class p-wA(s, t)
operators, Functional Analysis, Approximation
Computation, 9 (1) (2017), 61-68.
[3] T. Prasad and K. Tanahashi, On class
p-wA(s, t) operators, Functional Analysis,
Approximation Computation, 6 (2) (2014), 39–42.
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Motivation

Let T be a bounded linear operator on a complex
Hilbert space H. If TT ∗ = T ∗T , T is called
normal. Then T admits a spectral decomposition

T =

∫
σ(T )

λdE (λ), and we can caluculate

f (T ) =

∫
σ(T )

f (λ)dE (λ) for a continuous function

f (λ) on σ(T ). Hence normal operator is standard.
However there are many non-normal operators.
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Motivation

1. T ∈ B(H) is called hyponormal, if
TT ∗ ≤ T ∗T . Many mathematicians studied
hyponormal operator (Xia, Putnam, Stampfli,
.. ). Hyponormal operator does not admit
spectral decomposition, but has several
interesting properties.

2. Our motivation is to find new generalization of
hyponormal operator and study its spectral
properties.
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Furuta’s inequality(1987)

1. Let 0 < p, q, r satisfy
p + 2r ≤ (1 + 2r)q and 1 ≤ q. (Furuta’s area)
If O ≤ B ≤ A, then

B
p+2r
q ≤ (B rApB r)

1
q and (ArBpAr)

1
q ≤ A

p+2r
q .

2. Furuta’s area was mysterious to me. So I asked
Furuta, how do you find this area?
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1. If r = 0, then p + 2r ≤ (1 + 2r)q means

p ≤ q or 0 <
p

q
≤ 1

and B
p+2r
q ≤ (B rApB r)

1
q means

B
p
q ≤(B0ApB0)

1
q = A

p
q .

2. Hence Furuta’s inequality is an extension of
Löwner-Heinz’s inequality.

0 ≤ B ≤ A and 0 < p ≤ 1 =⇒ Bp ≤ Ap.
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Red domain is Furuta’s area.

q

p

1
−2r

p + 2r = (1 + 2r)q

0

1

Furuta’s area
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Blue domain is Löwner-Heinz’s area. So Furuta
extends Löwner-Heinz’s inequality.
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Löwner-Heinz’s Area

p = q
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p-hyponormal operator(1990)

1. The first application of Furuta’s inequality is
p-hyponormal operator by Aluthge(1990).

2. T ∈ B(H) is called p-hyponormal if

(TT ∗)p ≤ (T ∗T )p

where 0 < p ≤ 1.

3. If p = 1, then T is hyponormal TT ∗ ≤ T ∗T .
Hence p-hyponormal operator is a
generalization of hyponormal operator.
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p-hyponormal operator(1990)

Proposition. Let Ap be the set of all p-hyponormal
operators. If 0 < q < p, then Ap ⊂ Aq.

proof. Let T ∈ Ap, then (TT ∗)p ≤ (T ∗T )p. Since
0 < q/p < 1, by taking q/p power, we have

(TT ∗)q = ((T ∗T )p)
q
p ≤ ((TT ∗)p)

q
p = (TT ∗)q.

Remark. Hence parameterized operator class Ap is
increasing when 1 ≥ p → +0.
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Spectral properties of hyponormal operator

Hyponormal operator T has good properties.

1. If (T − λ)x = 0, then (T − λ)∗x = 0. normal
eigen value

2. ∥T∥ = r(T ) = max{|λ| : λ ∈ σ(T )}
normaloid.

3. π∥T ∗T − TT ∗∥ ≤
∫
σ(T )

rdrdθ = meas σ(T )

Hence if meas σ(T ) = 0, then T is normal.
Putnam’s inequality.
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Spectral properties of p-hyponormal
operator

By using Aluthge transformation, Aluthge, Cho,
Huruya poved that Ap has good properties.

1. If (T − λ)x = 0, then (T − λ)∗x = 0. normal
eigen value

2. ∥T∥ = r(T ) = max{|λ| : λ ∈ σ(T )}
normaloid.

3. π∥(T ∗T )p − (TT ∗)p∥ ≤ p

∫
σ(T )

r 2p−1drdθ

Hence if meas σ(T ) = 0, then T is normal.
Putnam’s inequality.
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Aluthge transformation(1990)

We explain Aluthge’s idea.

1. Let T be p-hyponormal, (TT ∗)p ≤ (T ∗T )p

(0 < p < 1
2).

2. Take the polar decomposition of
T = U |T | = U |T | 12 |T | 12 and define

|T | 12U |T | 12 ≡ T (12 ,
1
2). (Aluthge

transformation) Then

3.
(
T (12 ,

1
2)T (12 ,

1
2)

∗)p+ 1
2 ≤

(
T (12 ,

1
2)

∗T (12 ,
1
2)
)p+ 1

2

Hence T (12 ,
1
2) is (p + 1

2)-hyponormal and

T 2(12 ,
1
2) is hyponormal by Furuta’s inequality
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Generalized Aluthge transformation(1997)

1. Aluthge transformation T (12 ,
1
2) was generalized

by Furuta and Yoshino (1997).

2. If T = U |T | is p-hyponormal (where small p as
0 < p < s, t), then T (s, t) = |T |sU |T |t
satisfies

|T (s, t)|
2(p+t)
s+t ≥ |T |2(p+t), |T |2(p+s) ≥ |T (s, t)∗|

2(p+s)
s+t

3. We can take p = 0 by Löwner-Heinz’s
inequality. Then
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Chō, Prasad, Rashid, Tanahashi, Uchiyama Furuta’s inequality and p-wA(s, t) operator



class A(s, t), wA(s, t) oprator (1998)

1. |T (s, t)|
2t
s+t ≥ |T |2t , |T |2s ≥ |T (s, t)∗|

2s
s+t

2. Ito, Furuta, Yamazaki(1998) defined that T is
class wA(s, t) operator if

|T (s, t)|
2t
s+t ≥ |T |2t , |T |2s ≥ |T (s, t)∗|

2s
s+t

and class A(s, t) operator if

|T (s, t)|
2t
s+t ≥ |T |2t .

Chō, Prasad, Rashid, Tanahashi, Uchiyama Furuta’s inequality and p-wA(s, t) operator



class A(s, t), wA(s, t) oprator (1998)

1. |T (s, t)|
2t
s+t ≥ |T |2t , |T |2s ≥ |T (s, t)∗|

2s
s+t

2. Ito, Furuta, Yamazaki(1998) defined that T is
class wA(s, t) operator if

|T (s, t)|
2t
s+t ≥ |T |2t , |T |2s ≥ |T (s, t)∗|

2s
s+t

and class A(s, t) operator if

|T (s, t)|
2t
s+t ≥ |T |2t .
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Ito Yamazaki’s result (2002)

1. Ito and Yamazaki(2002) proved that

|T (s, t)|
2t
s+t ≥ |T |2t =⇒ |T |2s ≥ |T (s, t)∗|

2s
s+t

2. So class wA(s, t) is class A(s, t), now.

Chō, Prasad, Rashid, Tanahashi, Uchiyama Furuta’s inequality and p-wA(s, t) operator



Ito Yamazaki’s result (2002)

1. Ito and Yamazaki(2002) proved that

|T (s, t)|
2t
s+t ≥ |T |2t =⇒ |T |2s ≥ |T (s, t)∗|

2s
s+t

2. So class wA(s, t) is class A(s, t), now.
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class p-wA(s, t) oprator (2014)

1. We define that T is class p-wA(s, t) operator if

|T (s, t)|
2pt
s+t ≥ |T |2pt , |T |2ps ≥ |T (s, t)∗|

2ps
s+t

for 0 < p ≤ 1 and 0 < s, t ≤ 1.

2. Hence p-w(s, t) is a generalization of wA(s, t).
We assert (hope) p-wA(s, t) is good
generalization.
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Properties of p-wA(s, t) operator

1. If 0 < p1 < p2 ≤ 1, 0 < s2 < s1, 0 < t2 < t1,
then class p2-wA(s2, t2) operator is class
p1-wA(s1, t1).

2. If (T − λ)x = 0 and λ ̸= 0,
then (T − λ)∗x = 0. normal eigen value

3. ∥T∥ = r(T ) = max{|λ| : λ ∈ σ(T )}
normaloid
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4. Putnam (type) inequality∥∥∥|T (s, t)|
2min{sp,tp}

s+t − |(T (s, t))∗|
2min{sp,tp}

s+t

∥∥∥
≤ min{sp, tp}

π

∫∫
σ(T )

r 2min{sp,tp}−1 drdθ.

Moreover, if meas (σ(T )) = 0, then T is normal.
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Problem

Question. If T is class p-wA(s, t) and M is
T -invariant, then T |M is p-wA(s, t)?
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photo of Furuta (2004)
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Thank you.
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