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Theory



General bounds for semiuniform decay
Mainly motivated by the wave equation in the past decade there has
been much activity in semiuniform decay of C0-semigroups (Batkai,
Batty, Borichev, Chill, Duyckaerts, Engel, Liu, Martinez, Prüss, Rao,
Rozendaal, Schnaubelt, D. Seifert, Stahn, Tomilov, Veraar). A famous
result is the following:

Theorem (Batty-Duyckaerts 2008)
Let −A be the generator of a bounded C0-SG T on a Banach space X
with σ(A) ∩ iR = ∅. For s ≥ 0 let

M(s) := sup
|ξ|≤s

∥∥∥(iξ + A)−1
∥∥∥ .

Let Mlog(s) = M(s) log(2 + s + M(s)). Then

∀t > 0 :
c

M−1(c2t)
≤
∥∥∥T (t)A−1

∥∥∥ ≤ C
M−1

log (c1t)

Question: Can one remove the logarithmic loss?
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Can one remove the logarithmic loss?

In general the answer is NO:

(a) ∃A normal: M(s) ∼ log(s) and
∥∥T (t)A−1

∥∥ ∼ 1/M−1
log (4t) = 1/e2

√
t .

(b) Let α > 0. Exists A and X : M(s) ≈ sα and∥∥T (t)A−1
∥∥ ≈ 1/M−1

log (t) ∼ (log(t)/t)1/α. [Borichev-Tomilov, 2010].

But in some cases one can replace Mlog by M:
(c) Trivial case. If M(s) ≈ eαs then M−1

log (t) ≈ M−1(t) ≈ α−1 log(t).
(d) If X Hilbert and M(s) ≈ sα for some α > 0 [Borichev-Tomilov,

2010]. Generalized by [Batty-Chill-Tomilov, 2016] for some regularly
varying resolvent growths.

Our aim: To find all admissible resolvent growth bounds M allowing to
replace Mlog by M in Hilbert spaces.
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Admissible resolvent growth bounds
Definition
We call a non-decreasing function M : [0,∞)→ (0,∞) admissible if for
all bounded C0-SGs T ∼ −A on Hilbert spaces with σ(A) ∩ iR = ∅ and

∀s ≥ 0 : sup
|ξ|≤s

∥∥∥(iξ + A)−1
∥∥∥ ≤ C1M(s)

it holds that

∀t ≥ 0 :
∥∥∥T (t)A−1

∥∥∥ ≤ C2

M−1(t)
.

Any M given by sα or sα/ log(s) is admissible [BoTo10, BaChTo16] if
α > 0. M(s) = log(s) is not admissible. Admissibility of
M(s) = sα log(s) was unknown so far.

Remark
We will see that M admissible implies M−1(ct) ≈ M−1(t) for all c > 0.
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Our main result

Theorem (Rozendaal-Seifert-Stahn 2017)
A non-decreasing function M : [0,∞)→ (0,∞) is admissible if and
only if it has positive increase (M ∈ PI), that is:

∃λ > 1 : lim inf
s→∞

M(λs)

M(s)
> 1

The condition M ∈ PI is equivalent to

∃ρ, s0 > 0,b ∈ (0,1]∀s0 ≤ s ≤ R :
M(R)

M(s)
≥ b

(
R
s

)ρ
.

Plugging in R = M−1(ct) and s = M−1(t) one can deduce that
M−1(ct) ≈ M−1(t) for any c > 1.

Remark
Necessity of M ∈ PI for all normal semigroups.



Our main result

Theorem (Rozendaal-Seifert-Stahn 2017)
A non-decreasing function M : [0,∞)→ (0,∞) is admissible if and
only if it has positive increase (M ∈ PI), that is:

∃λ > 1 : lim inf
s→∞

M(λs)

M(s)
> 1

The condition M ∈ PI is equivalent to

∃ρ, s0 > 0,b ∈ (0,1]∀s0 ≤ s ≤ R :
M(R)

M(s)
≥ b

(
R
s

)ρ
.

Plugging in R = M−1(ct) and s = M−1(t) one can deduce that
M−1(ct) ≈ M−1(t) for any c > 1.

Remark
Necessity of M ∈ PI for all normal semigroups.



Our main result

Theorem (Rozendaal-Seifert-Stahn 2017)
A non-decreasing function M : [0,∞)→ (0,∞) is admissible if and
only if it has positive increase (M ∈ PI), that is:

∃λ > 1 : lim inf
s→∞

M(λs)

M(s)
> 1

The condition M ∈ PI is equivalent to

∃ρ, s0 > 0,b ∈ (0,1]∀s0 ≤ s ≤ R :
M(R)

M(s)
≥ b

(
R
s

)ρ
.

Plugging in R = M−1(ct) and s = M−1(t) one can deduce that
M−1(ct) ≈ M−1(t) for any c > 1.

Remark
Necessity of M ∈ PI for all normal semigroups.



Our main result

Theorem (Rozendaal-Seifert-Stahn 2017)
A non-decreasing function M : [0,∞)→ (0,∞) is admissible if and
only if it has positive increase (M ∈ PI), that is:

∃λ > 1 : lim inf
s→∞

M(λs)

M(s)
> 1

The condition M ∈ PI is equivalent to

∃ρ, s0 > 0,b ∈ (0,1]∀s0 ≤ s ≤ R :
M(R)

M(s)
≥ b

(
R
s

)ρ
.

Plugging in R = M−1(ct) and s = M−1(t) one can deduce that
M−1(ct) ≈ M−1(t) for any c > 1.

Remark
Necessity of M ∈ PI for all normal semigroups.



Sufficiency of M ∈ PI

(a) Fix x ∈ D(A) and t > 0, let g(τ) = 1[0,t](τ)T (τ)x and write

g(t) =
n + 1
tn+1

∫ t

0
snT (t − s)T (s)ds =

(n + 1)!

tn+1

∫ t

0
T (t − s)T ∗n ∗ g(s)ds.

(b) A truncation (δ − φR) ∗ T ∗n ∗+φR ∗ T ∗n∗ allows to treat the second
term as a Fourier multiplier on L2(R; L(D(A),X )). The First term can
be estimated by C/R.
(c) Crucial in the estimation of the second term is the inequality (for
large n)

R sup
|ξ|≤R

∥∥(iξ − A)−n∥∥
L(D(A),X)

≤ R sup
1≤s≤R

s−1M(s)n ≤ b−nM(R)n.

Only here we use M ∈ PI.
(d) Optimization of the two estimates with respect to R finally yields the
optimal decay rate.
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Application



A model for sound reflection

Let Ω ⊂ Rd be a bounded domain. The “velocity potential” U satisfies{
Utt (t , x)−∆U(t , x) = 0 (t ∈ R, x ∈ Ω),

∂nU(t , x) + k ∗ Ut (t , x) = 0 (t ∈ R, x ∈ ∂Ω).

Pressure p = Ut , fluid velocity v = −∇U. Here k ∈ L1(0,∞) is
completely monotonic, i.e. there exists a Radon measure ν ≥ 0 s.t.
k(t) =

∫∞
0 e−τ tdν(τ).

It is possible to rewrite the model as an abstract
Cauchy problem ẋ +Ax = 0,x(0) = x0.

Theorem (Desch-Fasangova-Milota-Probst 2010, Stahn 2017)
(i) The operator −A generates a C0-semigroup of contractions.
Moreover A is injective and σ(−A) ∩ iR ⊆ {0}.
(ii) ∃s0 > 0∀ |s| ≤ s0 :

∥∥(is +A)−1
∥∥ ≤ C |s|−1.

(iii) A is invertible iff ∃ε > 0 : ν([0, ε)) = 0.
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Bound on resolvent in terms of acoustic impedance

The 1D setting allows to explicitly calculate the resolvent of A.

Theorem (Stahn 2017)
Let Ω = (0,1). Then for all s ≥ 1

c
<k̂(is)

≤ sup
1≤|ξ|≤s

∥∥∥(iξ +A)−1
∥∥∥ ≤ C
<k̂(is)

.

Moreover the spectrum determines the resolvent growth.

Under mild additional assumptions on Ω and k̂ one can prove the
upper bound also in higher dimensions. The proof is now based on
recently proved trace properties of Laplace-Neumann eigenfunctions
of Ω (see [Barnett-Hassel-Tacy 2016]).
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Decay rates in terms of acoustic impedance
Corollary
Let Ω = (0,1) assume ∃ε > 0 : ν([0, ε)) = 0 and define
M(s) = (<k̂(is))−1. Then

∀t ≥ 1 :
∥∥∥T (t)A−1

∥∥∥ ≤ C
M−1(ct)

holds for some c,C > 0 if (and only if) 1/<k̂(i ·) ∈ PI.

We note that the freedom in k̂ allows for a large class of decay rates:

Proposition
Let α ∈ (0,2) and l : R+ → (0,∞) be a slowly varying function. Then
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