Fine scales of decay and an application to decay of waves in a viscoelastic boundary damping model (International Workshop on Operator Theory and its Applications)

> Reinhard Stahn (TU Dresden) (joint with Jan Rozendaal and David Seifert)

> > August 15, 2017

Theory

General bounds for semiuniform decay

Mainly motivated by the wave equation in the past decade there has been much activity in semiuniform decay of C_0 -semigroups (Batkai, Batty, Borichev, Chill, Duyckaerts, Engel, Liu, Martinez, Prüss, Rao, Rozendaal, Schnaubelt, D. Seifert, Stahn, Tomilov, Veraar). A famous result is the following:

General bounds for semiuniform decay

Mainly motivated by the wave equation in the past decade there has been much activity in semiuniform decay of C_0 -semigroups (Batkai, Batty, Borichev, Chill, Duyckaerts, Engel, Liu, Martinez, Prüss, Rao, Rozendaal, Schnaubelt, D. Seifert, Stahn, Tomilov, Veraar). A famous result is the following:

Theorem (Batty-Duyckaerts 2008)

Let -A be the generator of a bounded C_0 -SG T on a Banach space X with $\sigma(A) \cap i\mathbb{R} = \emptyset$. For $s \ge 0$ let

$$M(s) := \sup_{|\xi| \le s} \left\| (i\xi + A)^{-1} \right\|.$$

Let $M_{log}(s) = M(s) \log(2 + s + M(s))$. Then

$$\forall t > 0 : rac{C}{M^{-1}(C_2 t)} \le \left\| T(t) A^{-1} \right\| \le rac{C}{M^{-1}_{log}(C_1 t)}$$

General bounds for semiuniform decay

Mainly motivated by the wave equation in the past decade there has been much activity in semiuniform decay of C_0 -semigroups (Batkai, Batty, Borichev, Chill, Duyckaerts, Engel, Liu, Martinez, Prüss, Rao, Rozendaal, Schnaubelt, D. Seifert, Stahn, Tomilov, Veraar). A famous result is the following:

Theorem (Batty-Duyckaerts 2008)

Let -A be the generator of a bounded C_0 -SG T on a Banach space X with $\sigma(A) \cap i\mathbb{R} = \emptyset$. For $s \ge 0$ let

$$M(s) := \sup_{|\xi| \le s} \left\| (i\xi + A)^{-1} \right\|.$$

Let $M_{log}(s) = M(s) \log(2 + s + M(s))$. Then

$$\forall t > 0: rac{C}{M^{-1}(C_2 t)} \leq \left\| T(t) A^{-1} \right\| \leq rac{C}{M^{-1}_{log}(C_1 t)}$$

Question: Can one remove the logarithmic loss?

In general the answer is NO:

In general the answer is NO: (a) $\exists A \text{ normal: } M(s) \sim \log(s) \text{ and } ||T(t)A^{-1}|| \sim 1/M_{log}^{-1}(4t) = 1/e^{2\sqrt{t}}.$

In general the answer is NO: (a) $\exists A \text{ normal: } M(s) \sim \log(s) \text{ and } ||T(t)A^{-1}|| \sim 1/M_{log}^{-1}(4t) = 1/e^{2\sqrt{t}}.$ (b) Let $\alpha > 0$. Exists A and X: $M(s) \approx s^{\alpha}$ and $||T(t)A^{-1}|| \approx 1/M_{log}^{-1}(t) \sim (\log(t)/t)^{1/\alpha}.$ [Borichev-Tomilov, 2010].

In general the answer is NO: (a) $\exists A \text{ normal: } M(s) \sim \log(s) \text{ and } ||T(t)A^{-1}|| \sim 1/M_{log}^{-1}(4t) = 1/e^{2\sqrt{t}}.$ (b) Let $\alpha > 0$. Exists A and X: $M(s) \approx s^{\alpha}$ and $||T(t)A^{-1}|| \approx 1/M_{log}^{-1}(t) \sim (\log(t)/t)^{1/\alpha}.$ [Borichev-Tomilov, 2010].

But in some cases one can replace M_{log} by M:

In general the answer is NO: (a) $\exists A \text{ normal: } M(s) \sim \log(s) \text{ and } ||T(t)A^{-1}|| \sim 1/M_{log}^{-1}(4t) = 1/e^{2\sqrt{t}}.$ (b) Let $\alpha > 0$. Exists A and X: $M(s) \approx s^{\alpha}$ and $||T(t)A^{-1}|| \approx 1/M_{log}^{-1}(t) \sim (\log(t)/t)^{1/\alpha}.$ [Borichev-Tomilov, 2010].

But in some cases one can replace M_{log} by M: (c) Trivial case. If $M(s) \approx e^{\alpha s}$ then $M_{log}^{-1}(t) \approx M^{-1}(t) \approx \alpha^{-1} \log(t)$.

In general the answer is NO: (a) $\exists A \text{ normal: } M(s) \sim \log(s) \text{ and } ||T(t)A^{-1}|| \sim 1/M_{log}^{-1}(4t) = 1/e^{2\sqrt{t}}.$ (b) Let $\alpha > 0$. Exists A and X: $M(s) \approx s^{\alpha}$ and $||T(t)A^{-1}|| \approx 1/M_{log}^{-1}(t) \sim (\log(t)/t)^{1/\alpha}.$ [Borichev-Tomilov, 2010].

But in some cases one can replace *M*_{log} by *M*:

(c) Trivial case. If M(s) ≈ e^{αs} then M⁻¹_{log}(t) ≈ M⁻¹(t) ≈ α⁻¹ log(t).
(d) If X Hilbert and M(s) ≈ s^α for some α > 0 [Borichev-Tomilov, 2010]. Generalized by [Batty-Chill-Tomilov, 2016] for some regularly varying resolvent growths.

In general the answer is NO: (a) $\exists A \text{ normal: } M(s) \sim \log(s) \text{ and } ||T(t)A^{-1}|| \sim 1/M_{log}^{-1}(4t) = 1/e^{2\sqrt{t}}.$ (b) Let $\alpha > 0$. Exists A and X: $M(s) \approx s^{\alpha}$ and $||T(t)A^{-1}|| \approx 1/M_{log}^{-1}(t) \sim (\log(t)/t)^{1/\alpha}.$ [Borichev-Tomilov, 2010].

But in some cases one can replace M_{log} by M: (c) Trivial case. If $M(s) \approx e^{\alpha s}$ then $M_{log}^{-1}(t) \approx M^{-1}(t) \approx \alpha^{-1} \log(t)$. (d) If X Hilbert and $M(s) \approx s^{\alpha}$ for some $\alpha > 0$ [Borichev-Tomilov, 2010]. Generalized by [Batty-Chill-Tomilov, 2016] for some regularly varying resolvent growths.

Our aim: To find all admissible resolvent growth bounds M allowing to replace M_{log} by M in Hilbert spaces.

Definition

We call a non-decreasing function $M : [0, \infty) \to (0, \infty)$ admissible if for all bounded C_0 -SGs $T \sim -A$ on Hilbert spaces with $\sigma(A) \cap i\mathbb{R} = \emptyset$ and

$$\forall s \geq 0 : \sup_{|\xi| \leq s} \left\| (i\xi + A)^{-1} \right\| \leq C_1 M(s)$$

it holds that

$$\forall t \geq 0: \left\| T(t)A^{-1} \right\| \leq \frac{C_2}{M^{-1}(t)}.$$

Definition

We call a non-decreasing function $M : [0, \infty) \to (0, \infty)$ admissible if for all bounded C_0 -SGs $T \sim -A$ on Hilbert spaces with $\sigma(A) \cap i\mathbb{R} = \emptyset$ and

$$\forall s \geq 0 : \sup_{|\xi| \leq s} \left\| (i\xi + A)^{-1} \right\| \leq C_1 M(s)$$

it holds that

$$\forall t \geq 0: \left\| T(t)A^{-1} \right\| \leq \frac{C_2}{M^{-1}(t)}.$$

Any *M* given by s^{α} or $s^{\alpha} / \log(s)$ is admissible [BoTo10, BaChTo16] if $\alpha > 0$.

Definition

We call a non-decreasing function $M : [0, \infty) \to (0, \infty)$ admissible if for all bounded C_0 -SGs $T \sim -A$ on Hilbert spaces with $\sigma(A) \cap i\mathbb{R} = \emptyset$ and

$$\forall s \geq 0 : \sup_{|\xi| \leq s} \left\| (i\xi + A)^{-1} \right\| \leq C_1 M(s)$$

it holds that

$$\forall t \geq 0: \left\| T(t)A^{-1} \right\| \leq \frac{C_2}{M^{-1}(t)}.$$

Any *M* given by s^{α} or $s^{\alpha} / \log(s)$ is admissible [BoTo10, BaChTo16] if $\alpha > 0$. $M(s) = \log(s)$ is not admissible.

Definition

We call a non-decreasing function $M : [0, \infty) \to (0, \infty)$ admissible if for all bounded C_0 -SGs $T \sim -A$ on Hilbert spaces with $\sigma(A) \cap i\mathbb{R} = \emptyset$ and

$$\forall s \geq 0 : \sup_{|\xi| \leq s} \left\| (i\xi + A)^{-1} \right\| \leq C_1 M(s)$$

it holds that

$$\forall t \geq 0: \left\| T(t)A^{-1} \right\| \leq \frac{C_2}{M^{-1}(t)}.$$

Any *M* given by s^{α} or $s^{\alpha}/\log(s)$ is admissible [BoTo10, BaChTo16] if $\alpha > 0$. $M(s) = \log(s)$ is not admissible. Admissibility of $M(s) = s^{\alpha} \log(s)$ was unknown so far.

Definition

We call a non-decreasing function $M : [0, \infty) \to (0, \infty)$ admissible if for all bounded C_0 -SGs $T \sim -A$ on Hilbert spaces with $\sigma(A) \cap i\mathbb{R} = \emptyset$ and

$$\forall s \geq 0: \sup_{|\xi| \leq s} \left\| (i\xi + A)^{-1} \right\| \leq C_1 M(s)$$

it holds that

$$\forall t \geq 0: \left\| T(t)A^{-1} \right\| \leq \frac{C_2}{M^{-1}(t)}.$$

Any *M* given by s^{α} or $s^{\alpha}/\log(s)$ is admissible [BoTo10, BaChTo16] if $\alpha > 0$. $M(s) = \log(s)$ is not admissible. Admissibility of $M(s) = s^{\alpha} \log(s)$ was unknown so far.

Remark

We will see that *M* admissible implies $M^{-1}(ct) \approx M^{-1}(t)$ for all c > 0.

Theorem (Rozendaal-Seifert-Stahn 2017)

A non-decreasing function $M : [0, \infty) \to (0, \infty)$ is admissible if and only if it has positive increase ($M \in PI$), that is:

$$\exists \lambda > 1 : \liminf_{s \to \infty} \frac{M(\lambda s)}{M(s)} > 1$$

Theorem (Rozendaal-Seifert-Stahn 2017)

A non-decreasing function $M : [0, \infty) \to (0, \infty)$ is admissible if and only if it has positive increase ($M \in PI$), that is:

$$\exists \lambda > 1 : \liminf_{s \to \infty} \frac{M(\lambda s)}{M(s)} > 1$$

The condition $M \in \mathbf{PI}$ is equivalent to

$$\exists \rho, s_0 > 0, b \in (0, 1] \forall s_0 \le s \le R : \frac{M(R)}{M(s)} \ge b \left(\frac{R}{s}\right)^{\rho}$$

Theorem (Rozendaal-Seifert-Stahn 2017)

A non-decreasing function $M : [0, \infty) \to (0, \infty)$ is admissible if and only if it has positive increase ($M \in PI$), that is:

$$\exists \lambda > 1 : \liminf_{s o \infty} rac{M(\lambda s)}{M(s)} > 1$$

The condition $M \in \mathbf{PI}$ is equivalent to

$$\exists
ho, s_0 > 0, b \in (0, 1] orall s_0 \leq s \leq R : rac{M(R)}{M(s)} \geq b \left(rac{R}{s}
ight)^{
ho}$$

Plugging in $R = M^{-1}(ct)$ and $s = M^{-1}(t)$ one can deduce that $M^{-1}(ct) \approx M^{-1}(t)$ for any c > 1.

Theorem (Rozendaal-Seifert-Stahn 2017)

A non-decreasing function $M : [0, \infty) \to (0, \infty)$ is admissible if and only if it has positive increase ($M \in PI$), that is:

$$\exists \lambda > 1 : \liminf_{s o \infty} rac{M(\lambda s)}{M(s)} > 1$$

The condition $M \in \mathbf{PI}$ is equivalent to

$$\exists
ho, s_0 > 0, b \in (0, 1] orall s_0 \leq s \leq R : rac{M(R)}{M(s)} \geq b \left(rac{R}{s}
ight)^{
ho}$$
 .

Plugging in $R = M^{-1}(ct)$ and $s = M^{-1}(t)$ one can deduce that $M^{-1}(ct) \approx M^{-1}(t)$ for any c > 1.

Remark

Necessity of $M \in \mathbf{PI}$ for all normal semigroups.

(a) Fix $x \in D(A)$ and t > 0, let $g(\tau) = \mathbf{1}_{[0,t]}(\tau)T(\tau)x$ and write

$$g(t) = rac{n+1}{t^{n+1}} \int_0^t s^n T(t-s) T(s) ds = rac{(n+1)!}{t^{n+1}} \int_0^t T(t-s) T^{*n} * g(s) ds.$$

(a) Fix $x \in D(A)$ and t > 0, let $g(\tau) = \mathbf{1}_{[0,t]}(\tau)T(\tau)x$ and write

$$g(t) = rac{n+1}{t^{n+1}} \int_0^t s^n T(t-s) T(s) ds = rac{(n+1)!}{t^{n+1}} \int_0^t T(t-s) T^{*n} * g(s) ds.$$

(b) A truncation $(\delta - \phi_R) * T^{*n} * + \phi_R * T^{*n} *$ allows to treat the second term as a Fourier multiplier on $L^2(\mathbb{R}; L(D(A), X))$. The First term can be estimated by C/R.

(a) Fix $x \in D(A)$ and t > 0, let $g(\tau) = \mathbf{1}_{[0,t]}(\tau)T(\tau)x$ and write

$$g(t) = rac{n+1}{t^{n+1}} \int_0^t s^n T(t-s) T(s) ds = rac{(n+1)!}{t^{n+1}} \int_0^t T(t-s) T^{*n} * g(s) ds.$$

(b) A truncation $(\delta - \phi_R) * T^{*n} * + \phi_R * T^{*n} *$ allows to treat the second term as a Fourier multiplier on $L^2(\mathbb{R}; L(D(A), X))$. The First term can be estimated by C/R.

(c) Crucial in the estimation of the second term is the inequality (for large *n*)

$$R \sup_{|\xi| \le R} \left\| (i\xi - A)^{-n} \right\|_{L(D(A),X)} \le R \sup_{1 \le s \le R} s^{-1} M(s)^n \le b^{-n} M(R)^n.$$

Only here we use $M \in \mathbf{PI}$.

(a) Fix $x \in D(A)$ and t > 0, let $g(\tau) = \mathbf{1}_{[0,t]}(\tau)T(\tau)x$ and write

$$g(t) = rac{n+1}{t^{n+1}} \int_0^t s^n T(t-s) T(s) ds = rac{(n+1)!}{t^{n+1}} \int_0^t T(t-s) T^{*n} * g(s) ds.$$

(b) A truncation $(\delta - \phi_R) * T^{*n} * + \phi_R * T^{*n} *$ allows to treat the second term as a Fourier multiplier on $L^2(\mathbb{R}; L(D(A), X))$. The First term can be estimated by C/R.

(c) Crucial in the estimation of the second term is the inequality (for large *n*)

$$R \sup_{|\xi| \le R} \left\| (i\xi - A)^{-n} \right\|_{L(D(A),X)} \le R \sup_{1 \le s \le R} s^{-1} M(s)^n \le b^{-n} M(R)^n.$$

Only here we use $M \in \mathbf{PI}$.

(d) Optimization of the two estimates with respect to *R* finally yields the optimal decay rate.

Application

A model for sound reflection

Let $\Omega \subset \mathbb{R}^d$ be a bounded domain. The "velocity potential" *U* satisfies

$$\begin{cases} U_{tt}(t,x) - \Delta U(t,x) = 0 & (t \in \mathbb{R}, x \in \Omega), \\ \partial_n U(t,x) + k * U_t(t,x) = 0 & (t \in \mathbb{R}, x \in \partial \Omega). \end{cases}$$

Pressure $p = U_t$, fluid velocity $v = -\nabla U$. Here $k \in L^1(0, \infty)$ is completely monotonic, i.e. there exists a Radon measure $\nu \ge 0$ s.t. $k(t) = \int_0^\infty e^{-\tau t} d\nu(\tau)$.

A model for sound reflection

Let $\Omega \subset \mathbb{R}^d$ be a bounded domain. The "velocity potential" *U* satisfies

$$\begin{cases} U_{tt}(t,x) - \Delta U(t,x) &= 0 \quad (t \in \mathbb{R}, x \in \Omega), \\ \partial_n U(t,x) + k * U_t(t,x) &= 0 \quad (t \in \mathbb{R}, x \in \partial \Omega). \end{cases}$$

Pressure $p = U_t$, fluid velocity $v = -\nabla U$. Here $k \in L^1(0, \infty)$ is completely monotonic, i.e. there exists a Radon measure $\nu \ge 0$ s.t. $k(t) = \int_0^\infty e^{-\tau t} d\nu(\tau)$. It is possible to rewrite the model as an abstract Cauchy problem $\dot{\mathbf{x}} + A\mathbf{x} = 0$, $\mathbf{x}(0) = \mathbf{x}_0$.

A model for sound reflection

Let $\Omega \subset \mathbb{R}^d$ be a bounded domain. The "velocity potential" *U* satisfies

$$\begin{cases} U_{tt}(t,x) - \Delta U(t,x) &= 0 \quad (t \in \mathbb{R}, x \in \Omega), \\ \partial_n U(t,x) + k * U_t(t,x) &= 0 \quad (t \in \mathbb{R}, x \in \partial \Omega). \end{cases}$$

Pressure $p = U_t$, fluid velocity $v = -\nabla U$. Here $k \in L^1(0, \infty)$ is completely monotonic, i.e. there exists a Radon measure $\nu \ge 0$ s.t. $k(t) = \int_0^\infty e^{-\tau t} d\nu(\tau)$. It is possible to rewrite the model as an abstract Cauchy problem $\dot{\mathbf{x}} + A\mathbf{x} = 0$, $\mathbf{x}(0) = \mathbf{x}_0$.

Theorem (Desch-Fasangova-Milota-Probst 2010, Stahn 2017)

(i) The operator $-\mathcal{A}$ generates a C_0 -semigroup of contractions. Moreover A is injective and $\sigma(-\mathcal{A}) \cap i\mathbb{R} \subseteq \{0\}$. (ii) $\exists s_0 > 0 \forall |s| \leq s_0 : ||(is + \mathcal{A})^{-1}|| \leq C |s|^{-1}$. (iii) \mathcal{A} is invertible iff $\exists \varepsilon > 0 : \nu([0, \varepsilon)) = 0$.

Bound on resolvent in terms of acoustic impedance

The 1D setting allows to explicitly calculate the resolvent of A.

Theorem (Stahn 2017) Let $\Omega = (0, 1)$. Then for all $s \ge 1$ $\frac{C}{\Re \hat{k}(is)} \le \sup_{1 \le |\xi| \le s} \left\| (i\xi + \mathcal{A})^{-1} \right\| \le \frac{C}{\Re \hat{k}(is)}.$

Moreover the spectrum determines the resolvent growth.

Bound on resolvent in terms of acoustic impedance

The 1D setting allows to explicitly calculate the resolvent of A.

Theorem (Stahn 2017) Let $\Omega = (0, 1)$. Then for all $s \ge 1$ $\frac{c}{\Re \hat{k}(is)} \le \sup_{1 \le |\xi| \le s} \left\| (i\xi + \mathcal{A})^{-1} \right\| \le \frac{C}{\Re \hat{k}(is)}.$

Moreover the spectrum determines the resolvent growth.

Under mild additional assumptions on Ω and \hat{k} one can prove the upper bound also in higher dimensions. The proof is now based on recently proved trace properties of Laplace-Neumann eigenfunctions of Ω (see [Barnett-Hassel-Tacy 2016]).

Decay rates in terms of acoustic impedance

Corollary

Let $\Omega = (0, 1)$ assume $\exists \varepsilon > 0 : \nu([0, \varepsilon)) = 0$ and define $M(s) = (\Re \hat{k}(is))^{-1}$. Then

$$\forall t \geq 1 : \left\| T(t) \mathcal{A}^{-1} \right\| \leq \frac{C}{M^{-1}(ct)}$$

holds for some c, C > 0 if (and only if) $1/\Re \hat{k}(i \cdot) \in \mathbf{PI}$.

Decay rates in terms of acoustic impedance

Corollary

Let $\Omega = (0, 1)$ assume $\exists \varepsilon > 0 : \nu([0, \varepsilon)) = 0$ and define $M(s) = (\Re \hat{k}(is))^{-1}$. Then

$$\forall t \geq 1 : \left\| T(t) \mathcal{A}^{-1} \right\| \leq \frac{C}{M^{-1}(ct)}$$

holds for some c, C > 0 if (and only if) $1/\Re \hat{k}(i \cdot) \in \mathbf{PI}$.

We note that the freedom in \hat{k} allows for a large class of decay rates:

Decay rates in terms of acoustic impedance

Corollary

Let $\Omega = (0, 1)$ assume $\exists \varepsilon > 0 : \nu([0, \varepsilon)) = 0$ and define $M(s) = (\Re \hat{k}(is))^{-1}$. Then

$$\forall t \geq 1 : \left\| T(t) \mathcal{A}^{-1} \right\| \leq \frac{C}{M^{-1}(ct)}$$

holds for some c, C > 0 if (and only if) $1/\Re \hat{k}(i \cdot) \in \mathbf{PI}$.

We note that the freedom in \hat{k} allows for a large class of decay rates:

Proposition

Let $\alpha \in (0, 2)$ and $I : \mathbb{R}_+ \to (0, \infty)$ be a slowly varying function. Then one can choose ν in such a way that $\nu|_{[0,1)} = 0$ and

 $\Re \hat{k}(is)^{-1} \sim s^{lpha} l(s)$

as $s
ightarrow\infty$.

Literature

Fine scales of decay:

[1] Batty, Chill, Tomilov. *Fine scales of decay of operator semigroups*. JEMS 2016.

[2] Rozendaal, Seifert, Stahn. *tba*. On arXiv in September/October 2017.

Literature

Fine scales of decay:

[1] Batty, Chill, Tomilov. *Fine scales of decay of operator semigroups*. JEMS 2016.

[2] Rozendaal, Seifert, Stahn. *tba*. On arXiv in September/October 2017.

Regular Variation:

[3] Bingham, Goldie, Teugels. *Regular Variation*. Cambridge Univ. Press 1987.

Literature

Fine scales of decay:

 Batty, Chill, Tomilov. *Fine scales of decay of operator semigroups*. JEMS 2016.
 Rozendaal, Seifert, Stahn. *tba*. On arXiv in September/October

2017.

Regular Variation:

[3] Bingham, Goldie, Teugels. *Regular Variation*. Cambridge Univ. Press 1987.

Viscoelastic boundary damping:

[4] Desch, Fasangova, Milota, Probst. Stabilization through viscoelastic boundary damping: a semigroup approach. Semigroup Forum 2010.
[5] Stahn. On the decay rate for the wave equation with viscoelastic boundary damping. arXiv 2017.

See also: A. Benaissa et. al.; B. Mbodje; J. Prüss.

Thank you for your attention!