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Procrustes problems

Let H be a separable Hilbert space, A, B ∈ L(H), we consider the
following family of problems:
Determine the existence of

min
X
‖AX − B‖, for X ∈ F ,

where F is a given subset of L(H).

Typically, X is required to be unitary, or a partial isometry or the
range or null space of X have to satisfy a given inclusion, and the
norm may be any unitarily invariant norm in H.

These problems are known as Procrustes problems.
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Löwdin orthogonalization

Problem: Given a basis {f1, · · · , fn} of Cn, find the closest orthonor-
mal basis {e1, · · · , en}.
For example, we can minimize

n∑
i

‖fi − ei‖2.

for {e1, · · · , en} any o.n.b.
This problem was solved by P.-O Löwdin (1947), in connection to
problems arising in Quantum Chemistry.
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Löwdin orthogonalization

In terms of matrices, the problem becomes:
For a fixed invertible matrix F , minimize

‖F − U‖2, subject to U∗U = I

where ‖ · ‖2 is the Frobenius norm.

If F = UF |F | is the polar decomposition of F , this problem has a
global minimum at U = UF , and

‖|F | − I‖2 = ‖F − UF‖2 ≤ ‖F − U‖2, for every unitary U,

Löwdin (1970), J.G. Aiken, J.A. Erdos, J.A. Goldstein (1980).
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Symmetric approximation of frames

F = {fj}j≥1 ⊂ H is a frame for H if there exist a, b > 0 such that

a‖f ‖2 ≤
∑
j≥1
| 〈 f , fj 〉 |2 ≤ b‖f ‖2, for every f ∈ H.

If we can take a = b = 1, then F is a Parseval frame. In this case
F satisfies the Parseval identity∑

j≥1
| 〈 f , fj 〉 |2 = ‖f ‖2, for every f ∈ H.
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Symmetric approximation of frames

The synthesis operator of the frame F is the operator F : `2(N)→
H, defined as

F ({αj}j≥1) =
∑
j≥1

αj fj ,

and the analysis operator is its adjoint F ∗ : H → `2(N),

F ∗f = {〈 f , fj 〉}j≥1.

The frame operator of F is defined as

SF = FF ∗.

IWOTA 2017



Symmetric approximation of frames

Then
SF f = FF ∗f =

∑
j≥1
〈 f , fj 〉 fj , for every f ∈ H;

and the inequalities in (6) can be expressed as

a · I ≤ SF ≤ b · I .
Therefore, SF ∈ GL(H)+ and, SF = I for Parseval frames.
From the equalities

f = SFS
−1
F f =

∑
j≥1

〈
S−1F f , fj

〉
fj ,

we get the reconstruction formula

f =
∑
j≥1

〈
f , S−1F fj

〉
fj , for every f ∈ H.

In particular, for Parseval frames, we get

f =
∑
j≥1
〈 f , fj 〉 fj , for every f ∈ H.
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Symmetric approximation of frames

Problem: Given a frame F , find the closest Parseval frame V .

F = {fj}j≥1 ⊂ H is a frame for the (closed) subspace K of H if F
is a frame for the Hilbert space K.
The frames {fi}i∈N and {gi}i∈N of the closed subspaces K and
L ⊆ H, are weakly similar if there exists T ∈ GL(K,L) such that
T (fi ) = gi , for every i ∈ N.
Given {fi}i∈N , a frame of K ⊆ H, a Parseval frame {νi}∞i=1 of
L ⊆ H, is a symmetric approximation of {fi}i∈N , if the frames
{fi}i∈N and {νi}i∈N are weakly similar, the sum∑

j≥1
‖νj − fj‖2 <∞

and ∑
j≥1
‖νj − fj‖2 ≤

∑
j≥1
‖µj − fj‖2

for any other finite sum, corresponding to any Parseval frame {µi}∞i=1

of any subspace of H weakly similar to {fi}i∈N .
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Symmetric approximation of frames

If F , V and U are the synthesis operators of {fi}i∈N , {νi}i∈N and
{µi}i∈N , then {νi}i∈N is a symmetric approximation of {fi}i∈N if

‖F − V ‖2 ≤ ‖F − U‖2,

for all partial isometries U, with N(U) = N(F ), (this condition is
equivalent to saying that the frames {fi}i∈N and {µi}i∈N are weakly
similar).
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Symmetric approximation of frames

If F = UF |F | is the canonical polar decomposition, a symmetric ap-
proximation exists and it is unique if and only if (P−|F |) is a Hilbert-
Schmidt operator, where P = PR(F∗F ), (M. Frank, V. Paulsen and
R. Tiballi, 2002).
In this case

‖|F | − P‖2 = ‖F − UF‖2 ≤ ‖F − U‖2,

for every partial isometry U, weakly similar to F .
The frame corresponding to the frame operator UF is called the
canonical Parseval frame associated to {fi}i∈N .

If we drop the weakly similarity condition, the canonical Parseval
frame can fail to be the closest Parseval frame. Results in this
direction were given by J. Antezana and E. Chiumento (2016).
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Consistent Sampling

Consider S, (the sampling space), andR, (the reconstruction space),
two closed subspaces of H.

Given a frame {vn}n∈N of S, with synthesis operator B : `2(N)→ H,
the samples of a signal f ∈ H are given by

{fn}n∈N = {〈 f , vn 〉}n∈N = B∗f .

On the other hand, given samples {fn}n∈N ∈ `2(N), the recon-
structed signal f̂ is given by

f̂ =
∑
n∈N

fnwn = A({fn}n∈N),

where {wn}n∈N, is a frame ofR, with synthesis operator A : `2(N)→
H.
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Consistent Sampling

SIGNAL −→ SAMPLES −→ RECOVERED SIGNAL

f −→ {〈 f , vn 〉}n∈N −→ f̂ =
∑

n∈N 〈 f , vn 〉wn

f −→ B∗f −→ f̂ = AB∗f
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Consistent Sampling

Sometimes, by applying a filter X ∈ L(`2(N)), we can obtain a
better reconstruction f̂ = AXB∗f :
Classical sampling scheme (S = R): It is possible to find X such
that AXB∗ = PS , where PS is the orthogonal projection onto S.
Then

f̂ = PS f .

Consistent sampling scheme (S and R may not coincide): We ask
for

B∗f̂ = B∗f .

(The samples of the reconstructed signal and the samples of the
original signal are equal). In this case Q = AXB∗ turns out to be
an oblique projection, (Y.C. Eldar, T. Werther, 2005).
But

‖f − f̂ ‖ = ‖f − AXB∗f ‖

is not necessarily minimized.
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Consistent Sampling

Problem: Find a good approximation of f in R.
For instance, find a filter X0 ∈ L(`2(N)) such that

‖(AX0B
∗ − I )f ‖ ≤ ‖(AXB∗ − I )f ‖,

for every X ∈ L(H) and every f ∈ H.
Or equivalently, study the existence of

min
X∈L(`2(N))

(AXB∗ − I )∗(AXB∗ − I ),

with the usual order in L(H).
Alternatively, we can approximate in some convenient operator norm.
In the finite dimensional setting, it is usual to consider the Frobenius
norm ‖ · ‖2 ; the associated problem becomes studying the existence
of

min
X∈L(`2(N))

‖AXB∗ − I‖2.
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Background

G.R. Goldstein and J.A. Goldstein (2000) analyzed the existence of

min
X∈L(H)

‖AX − I‖,

for unitarily invariant norms in finite dimensional spaces; H.W. Engle
and M.Z. Nashed, (1981), studied a similar problem for the Schatten
norms, in Hilbert spaces.
G. Corach, P. Massey and M. Ruiz, (2014), studied the existence of

min
X∈L(H)

‖AX ∗ − I‖, subject to XX ∗ = 1,

for the operator norm, in the context of frames and Parseval duals.
There are also some inconclusive results on the existence of

min
X∈L(H)

‖AXB − C‖p,

in Hilbert spaces, under certain conditions.
IWOTA 2017



Procrustes type problem

Sometimes, it is necessary to stress some of the sampling coordinates
differently. To this end, a positive weight W , i.e. a positive operator,
is introduced that gives rise to a semi-norm:
Let W ∈ L(H) be a positive operator such that W 1/2 ∈ Sp, the
p-Schatten class, for some p with 1 ≤ p <∞.
Given A, B ∈ L(H), A with closed range, analyze the existence of

min
X∈L(H)

‖AXB − I‖p,W , (0.1)

where ‖ · ‖p,W = ‖W 1/2 · ‖p.
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Procrustes type problem

Taking S = N(B), problem (0.1) can be restated as a Procrustes
problem type:
Given A ∈ L(H) with closed range and S a closed subspace of H,
analyze the existence of

min
X∈L(H)

‖AX − I‖p,W , subject to S ⊆ N(X ).
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Oblique projections

When a positive weight W is introduced in H, it can be useful to
consider W -orthogonal projections, with a suitable prescribed range
S:
A positive operator W ∈ L(H) and a closed subspace S are com-
patible if there exists an oblique projection Q ∈ L(H) onto S, such
that

WQ = Q∗W ,

or equivalently, Q is W -selfadjoint (i.e. selfadjoint with respect to
the semi-inner product associated to W : 〈x , y〉W = 〈Wx , y〉).
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Oblique projections

A projection Q onto S is W -selfadjoint if and only if N(Q) ⊆
W (S)⊥. Therefore:
W and S are compatible if and only if

H = S + (WS)⊥.

This sum is not necessarily direct, so there might be infinite W -
selfadjoint projections onto S.
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Oblique projections

Let W ∈ L(H)+, S ⊆ H a closed subspace. Then TFAE:

i) W and S are compatible.

ii) sup{|〈x , y〉| : x ∈ S⊥, y ∈W (S), ‖x‖ = ‖y‖ = 1} < 1,
(an angle condition).

iii) The equation
PSW = PSWPSX ,

admits a solution, where PS is the orthogonal projection onto
S, (a range inclusion condition).

iv) R(W + PS⊥) = R(W ) + S⊥, ( a range additivity condition).

G. Corach, A. M., D. Stojanof, (2001); L. Arias, G. Corach, A. M.,(2015).
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Shorted operator

Let W ∈ L(H)+ and S ⊆ H a closed subspace. The shorted
operator W/S is the biggest positive operator acting on S⊥, that
can be subtracted to W , such that the difference remains positive.
More precisely:
The shorted operator W/S is given by

W/S = max {X ∈ L(H) : 0 ≤ X ≤W and R(X ) ⊆ S⊥},

(M.G. Krĕın, 1947).
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Shorted operator

Let W ∈ L(H)+ and S ⊆ H a closed subspace. Then

i)
W/S = inf {E ∗WE : E 2 = E , N(E ) = S};

in general, this infimum is not attained, (W.N. Anderson and
G.E. Trapp, 1975).

ii) R(W ) ∩ S⊥ ⊆ R(W/S) ⊆ R(W 1/2) ∩ S⊥ and

N(W/S) = W−1/2(W 1/2(S)).
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Shorted operator and compatibility

Theorem

Let W ∈ L(H)+ and S ⊆ H be a closed subspace. TFAE:

i) W and S are compatible,

ii) W/S = min {E ∗WE : E 2 = E , N(E ) = S},
iii) R(W/S) = R(W ) ∩ S⊥ and N(W/S) = N(W ) + S.

In this case,
W/S = W (I − Q),

for any W -selfadjoint projection Q onto S.

Corach, M., Stojanof, (2002).
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Operator order minimization problem

To study Problem (0.1) we return to the associated problem:
Given A, B and W ∈ L(H), where A is a closed range operator and
W a positive operator, analyze the existence of

min
X∈L(H)

(AXB − I )∗W (AXB − I ),

with the usual order in L(H).
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Operator order minimization problem

The following results are in a joint paper with M. Contino and J. Giri-
bet.
Under certain hypothesis, the infimum of the set considered above
always exists:

Proposition

Let A,B ∈ CR(H) and W ∈ L(H)+. If N(B) ⊆ N(A∗W ) then the
infimum of the set {(AXB − I )∗W (AXB − I ) : X ∈ L(H)} exists
and

inf
X∈L(H)

(AXB − I )∗W (AXB − I ) = W/R(A). (0.2)
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Operator order minimization problem

Existence of minimum:

Theorem

Let A,B ∈ CR(H) and W ∈ L(H)+. Then TFAE:

i) min
X∈L(H)

(AXB − I )∗W (AXB − I ) exists.

ii) W and R(A) are compatible and N(B) ⊆ N(A∗W ).

iii) The normal equation A∗W (AXB − I ) = 0 admits a solution.
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Operator order minimization problem

If any of these conditions holds, then

min
X∈L(H)

(AXB − I )∗W (AXB − I ) = W/R(A)

and the minimum is attained at the solutions of the normal equation

A∗W (AXB − I ) = 0.
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Procrustes type problem

Back to the original problem:
Given A,B ∈ CR(H) and W ∈ L(H)+ such that W 1/2 ∈ Sp for
some p with 1 ≤ p <∞, analyze the existence of

min
X∈L(H)

‖AXB − I‖p,W . (0.3)

Recalling (0.2),

inf
X∈L(H)

(AXB − I )∗W (AXB − I ) = W/R(A),

and the fact that A∗A ≤ B∗B implies ‖A‖p ≤ ‖B‖p for operators
in Sp, we have:

inf
X∈L(H)

‖AXB − I‖p,W ≥ ‖W
1/2
/R(A)‖p.
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Procrustes type problem

Proposition

Let A,B ∈ CR(H) and W ∈ L(H)+, such that W 1/2 ∈ Sp, for
some p with 1 ≤ p <∞.
If W and R(A) are compatible and N(B) ⊆ N(A∗W ) then the
minimum of problem (0.3) exists and

min
X∈L(H)

‖AXB − I‖p,W = ‖W 1/2
/R(A)‖p,W .
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Procrustes type problem

Lemma

Let A,B ∈ CR(H) and W ∈ L(H)+, such that W 1/2 ∈ Sp for
some p with 1 < p <∞ and consider Fp(X ) = ‖AXB − I‖pp,W .
Then, X0 ∈ L(H) is a global minimum of Fp if and only if
X0 ∈ L(H) is a solution of

B|W 1/2(AXB − I )|p−1U∗W 1/2A = 0,

where W 1/2(AXB − I ) = U|W 1/2(AXB − I )| is the polar
decomposition of the operator W 1/2(AXB − I ), with U a partial
isometry with N(U) = N(W 1/2(AXB − I )).
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Procrustes type problem: general case

Theorem

Let A,B ∈ CR(H), C ∈ L(H) and W ∈ L(H)+, such that
W 1/2 ∈ Sp for some p with 1 ≤ p <∞ and N(B) ⊆ N(A∗WC ).
Then TFAE:

i) min
X∈L(H)

‖AXB − C‖p,W exists.

ii) The normal equation A∗W (AXB − C ) = 0 admits a solution.

iii) R(C ) ⊆ R(A) + R(A)⊥W .

iv) min
X∈L(H)

(AXB − C )∗W (AXB − C ) exists.
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Procrustes type problem: general case

In this case,

min
X∈L(H)

‖AXB − C‖p,W = ‖W 1/2
/R(A)C‖p.

Moreover,
‖AX0B − C‖p,W = ‖W 1/2

/R(A)C‖p,

if and only if
A∗W (AX0B − C ) = 0.
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Procrustes type problem: p = 2

When p = 2, it is possible to characterize the existence of minimum
of Problem (0.3), without additional assumptions.

Theorem

Let A,B ∈ CR(H), C ∈ L(H) and W ∈ L(H)+, such that
W 1/2 ∈ S2. Then TFAE:

i) min
X∈L(H)

‖AXB − C‖2,W exists.

ii) The equation A∗W (AXB − C )B∗ = 0 admits a solution.

iii) R(CB∗) ⊆ R(A) + R(A)⊥W .
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Final remarks

The existence of solutions of

min
X∈L(H)

(AXB − C )∗W (AXB − C ),

implies the existence of solutions of

min
X∈L(H)

‖AXB − C‖p,W .

But the converse is not true: in fact it easy to provide an example
for matrices. Notice that if N(B) is not included in N(A∗WC ) the
first problem does not have a solution.
It can also be shown that, for 1 < p < ∞, p 6= 2, a minimum of
the second problem need not satisfy the normal equation

A∗W (AXB − C )B∗ = 0.
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