Asymmetric truncated Toeplitz operators of rank one

Bartosz Łanucha
Maria Curie-Skłodowska University, Lublin, Poland

IWOTA 2017, August 14-18
Technische Universität Chemnitz

Classical Toeplitz operators

H^{2} - the Hardy space for the unit disc \mathbb{D},
P - the orthogonal projection from $L^{2}(\partial \mathbb{D})$ onto H^{2},
T_{φ} - the classical Toeplitz operator on H^{2} :

$$
T_{\varphi} f=P(\varphi f), \quad f \in H^{\infty} \subset H^{2}
$$

- densely defined for $\varphi \in L^{2}(\partial \mathbb{D})$,
- bounded if and only if $\varphi \in L^{\infty}(\partial \mathbb{D})$.

In particular,
$S=T_{z} \quad$ - the shift operator on H^{2},
$S^{*}=T_{\bar{z}}$ - the backward shift,

$$
S f(z)=z f(z), \quad S^{*} f(z)=\frac{f(z)-f(0)}{z}
$$

An inner function/ADC

We say that α is an inner function if:

- $\alpha \in H^{\infty}$,
- $|\alpha|=1$ a.e. on $\partial \mathbb{D}$.

We say that α has an angular derivative in the sense of Carathéodory (ADC) at $w \in \partial \mathbb{D}$ if there exist complex numbers $\alpha(w)$ and $\alpha^{\prime}(w)$ such that

$$
\alpha(z) \rightarrow \alpha(w) \in \partial \mathbb{D} \quad \text { and } \quad \alpha^{\prime}(z) \rightarrow \alpha^{\prime}(w)
$$

whenever $z \rightarrow w$ nontangentially (with $|z-w| /(1-|z|)$ bounded).

Shift invariant subspaces of H^{2}

All shift-invariant subspaces of H^{2} were described by A. Beurling in 1949. He used the notion of an inner function.

Beurling, 1949

A non-zero closed subspace $M \subset H^{2}$ is S-invariant, $S(M) \subset M$, if and only if $M=\alpha H^{2}$ for some inner function α.

Since $S(M) \subset M$ if and only if $M=\alpha H^{2}$, then $S^{*}(M) \subset M$ if and only if $M=\left(\alpha H^{2}\right)^{\perp}$.

Corollary

All the S^{*}-invariant subspaces of H^{2} are of the form

$$
K_{\alpha}=\left(\alpha H^{2}\right)^{\perp}=H^{2} \ominus \alpha H^{2}, \quad \alpha-\text { inner }
$$

K_{α} is called the model space corresponding to the inner function α.

The model space K_{α}

The model space corresponding to the inner function α :

$$
K_{\alpha}=H^{2} \ominus \alpha H^{2} .
$$

- K_{α} is a closed S^{*}-invariant subspace of H^{2}.
- K_{α} is a reproducing kernel Hilbert space with the reproducing kernel given by:

$$
k_{w}^{\alpha}(z)=\frac{1-\overline{\alpha(w)} \alpha(z)}{1-\bar{w} z}, \quad w \in \mathbb{D},
$$

that is,

$$
f(w)=\left\langle f, k_{w}^{\alpha}\right\rangle \quad \text { for all } f \in K_{\alpha}, w \in \mathbb{D} .
$$

Note that if $\alpha(w)=0$, then $k_{w}^{\alpha}(z)=k_{w}(z)=(1-\bar{w} z)^{-1}$.

- $K_{\alpha} \cap H^{\infty}$ is a dense subset of K_{α}.

The model space K_{α}

- The conjugate kernel

$$
\tilde{k}_{w}^{\alpha}(z)=\frac{\alpha(z)-\alpha(w)}{z-w}
$$

belongs to K_{α} for all $w \in \mathbb{D}$.

- If α has an ADC at $w \in \partial \mathbb{D}$, then k_{w}^{α} and $\widetilde{k}_{w}^{\alpha}$ belong to K_{α}.

Moreover, $\widetilde{k_{w}^{\alpha}}=\alpha(w) \bar{w} k_{w}^{\alpha}$.
Examples:
(1) $\alpha(z)=z^{n}, n \geq 1$:

$$
K_{\alpha}=\mathcal{P}_{n-1}=\{\text { polynomials of degree } \leq n-1\}
$$

(2) $\alpha(z)=$ a finite Blaschke product with distinct zeros a_{1}, \ldots, a_{n} :

$$
K_{\alpha}=\operatorname{span}\left\{k_{a_{1}}, \ldots, k_{a_{n}}\right\}
$$

The space K_{α} is finite-dimensional, $\operatorname{dim} K_{\alpha}=n<\infty$, if and only if α is a finite Blaschke product with n zeros (not necessarily distinct).

Asymmetric truncated Toeplitz operators

Let $\varphi \in L^{2}(\partial \mathbb{D})$.
The classical Toeplitz operator T_{φ} :

$$
T_{\varphi} f=P(\varphi f), \quad f \in H^{\infty} \subset H^{2},
$$

P - the orthogonal projection from $L^{2}(\partial \mathbb{D})$ onto H^{2}.
Let α and β be two inner functions. The asymmetric truncated Toeplitz operator (ATTO) $A_{\varphi}^{\alpha, \beta}$ is defined by

$$
A_{\varphi}^{\alpha, \beta} f=P_{\beta}(\varphi f), \quad f \in K_{\alpha} \cap H^{\infty},
$$

P_{β} - the orthogonal projection from $L^{2}(\partial \mathbb{D})$ onto K_{β}.
In particular, $A_{\varphi}^{\alpha}=A_{\varphi}^{\alpha, \alpha}$ is called a truncated Toeplitz operator (TTO). The operator $S_{\alpha}=A_{z}^{\alpha}$ is called the compressed shift.

Asymmetric truncated Toeplitz operators $\mathscr{T}(\alpha, \beta)$

Systematic study of truncated Toeplitz operators was started by D. Sarason in 2007.

Asymmetric truncated Toeplitz operators were recently introduced by C. Câmara, J. Partington (for the half-plane) and C. Câmara, J. Jurasik, K. Kliś-Garlicka, M. Ptak (for the unit disk).

Put

$$
\mathscr{T}(\alpha, \beta)=\left\{A_{\varphi}^{\alpha, \beta}: \varphi \in L^{2}(\partial \mathbb{D}) \text { and } A_{\varphi}^{\alpha, \beta} \text { is bounded }\right\} .
$$

More on $\mathscr{T}(\alpha, \beta)$

Although similar in definition, TTO's and ATTO's differ from the classical Toeplitz operators.

- $T_{\varphi}=0$ if and only if $\varphi=0$,

Câmara-Partington/Câmara-Jurasik-Kliś-Garlicka-Ptak $(\beta \leq \alpha)$, Ł.-Jurasik, 2016
$A_{\varphi}^{\alpha, \beta}=0$ if and only if $\varphi \in \overline{\alpha H^{2}}+\beta H^{2}$.

- T_{φ} is bounded if and only if φ is in $L^{\infty}(\partial \mathbb{D})$,

Baranov-Chalendar-Fricain-Mashreghi-Timotin, 2010

There exist bounded truncated Toeplitz operators without bounded symbols.

- the only compact Toeplitz operator is the zero operator,

Sarason, 2007

There are nonzero compact truncated Toeplitz operators (in particular, rank-one truncated Toeplitz operators).

Rank-one TTO's

Rank-one TTO's were described by D. Sarason.
Recall that

$$
k_{w}^{\alpha}(z)=\frac{1-\overline{\alpha(w)} \alpha(z)}{1-\bar{w} z}, \quad \widetilde{k}_{w}^{\alpha}(z)=\frac{\alpha(z)-\alpha(w)}{z-w}
$$

and $f \otimes g(h)=\langle h, g\rangle f$.

Sarason, 2007

(a) For w in \mathbb{D}, the operators $k_{w}^{\alpha} \otimes \widetilde{k}_{w}^{\alpha}$ and $\widetilde{k}_{w}^{\alpha} \otimes k_{w}^{\alpha}$ belong to $\mathscr{T}(\alpha, \alpha)$.
(b) If α has an ADC at the point w of $\partial \mathbb{D}$, then the operator $k_{w}^{\alpha} \otimes k_{w}^{\alpha}$ belongs to $\mathscr{T}(\alpha, \alpha)$.
(c) The only rank-one operators in $\mathscr{T}(\alpha, \alpha)$ are the nonzero scalar multiples of the operators in (a) and (b).

Rank-one ATTO's

Câmara-Partington $(\beta \leq \alpha)$, Ł.-Jurasik, 2016

(a) For w in \mathbb{D}, the operators $k_{w}^{\beta} \otimes \widetilde{k}_{w}^{\alpha}$ and $\widetilde{k}_{w}^{\beta} \otimes k_{w}^{\alpha}$ belong to $\mathscr{T}(\alpha, \beta)$.
(b) If both α and β have an ADC at the point w of $\partial \mathbb{D}$, then the operator $k_{w}^{\beta} \otimes k_{w}^{\alpha}$ belongs to $\mathscr{T}(\alpha, \beta)$.

Are the nonzero scalar multiples of the operators in (a) and (b) the only rank-one operators in $\mathscr{T}(\alpha, \beta)$?

Rank-one ATTO's

Recall that in (b):

$$
\widetilde{k}_{w}^{\alpha}=\alpha(w) \bar{w} k_{w}^{\alpha}
$$

and so

$$
k_{w}^{\beta} \otimes k_{w}^{\alpha}=\alpha(w) \bar{w}\left(k_{w}^{\beta} \otimes \tilde{k}_{w}^{\alpha}\right)=\overline{\beta(w)} w\left(\widetilde{k}_{w}^{\beta} \otimes k_{w}^{\alpha}\right)
$$

Are the nonzero scalar multiples of the operators $k_{w}^{\beta} \otimes \widetilde{k}_{w}^{\alpha}$ and $\widetilde{k}_{w}^{\beta} \otimes k_{w}^{\alpha}, w \in \overline{\mathbb{D}}$, the only rank-one operators in $\mathscr{T}(\alpha, \beta)$?

The trivial case: $\operatorname{dim} K_{\alpha}=\operatorname{dim} K_{\beta}=1$
Let α and β be two inner functions such that

$$
\operatorname{dim} K_{\alpha}=\operatorname{dim} K_{\beta}=1
$$

Then

$$
\begin{aligned}
& f \in K_{\alpha} \Rightarrow f=c_{1} k_{0}^{\alpha}, \\
& g \in K_{\beta} \Rightarrow g=c_{2} k_{0}^{\beta},
\end{aligned}
$$

and

$$
g \otimes f=c\left(k_{0}^{\beta} \otimes \widetilde{k}_{0}^{\alpha}\right) .
$$

So here the answer is yes.
This is not always the case.

A counterexample

Let $a \in \mathbb{D} \backslash\{0\}$ and let

$$
\alpha(z)=z \frac{z-a}{1-\bar{a} z} \frac{z+a}{1+\bar{a} z}, \quad \beta(z)=z .
$$

Then

$$
\begin{aligned}
& K_{\alpha}=\operatorname{span}\left\{1, k_{a}, k_{-a}\right\}, \\
& K_{\beta}=\mathcal{P}_{0}=\{\lambda: \lambda \in \mathbb{C}\}
\end{aligned}
$$

(note that $k_{w}^{\beta}=\widetilde{k}_{w}^{\beta}=1$).
Since $\operatorname{dim} K_{\beta}=1$, every linear operator from K_{α} into K_{β} is of rank one.

Put $\varphi=\overline{1+k_{a}} \in \overline{K_{\alpha}^{\infty}}$. Then

$$
A_{\varphi}^{\alpha, \beta}=1 \otimes\left(1+k_{a}\right)
$$

Indeed, for every $f \in K_{\alpha}, z \in \mathbb{D}$,

$$
\begin{aligned}
A_{\varphi}^{\alpha, \beta} f(z) & =\left\langle P_{\beta}(\varphi f), k_{z}^{\beta}\right\rangle=\left\langle\varphi f, k_{z}^{\beta}\right\rangle \\
& =\left\langle\overline{\left(1+k_{a}\right)} f, 1\right\rangle=\left\langle f, 1+k_{a}\right\rangle=\left(1 \otimes\left(1+k_{a}\right)\right)(f) .
\end{aligned}
$$

A counterexample

If

$$
A_{\varphi}^{\alpha, \beta}=1 \otimes\left(1+k_{a}\right)=c\left(\widetilde{k}_{w}^{\beta} \otimes k_{w}^{\alpha}\right),
$$

for some $w \in \overline{\mathbb{D}}$, then (since $\widetilde{k}_{w}^{\beta}=1$)

$$
1+k_{a}=\bar{c} k_{w}^{\alpha} .
$$

Equivalently,

$$
\left\{\begin{array}{lll}
\left\langle 1+k_{a}, 1\right\rangle & =\left\langle\bar{c} k_{w}^{\alpha}, 1\right\rangle & \Rightarrow c=2 \\
\left\langle 1+k_{a}, k_{a}\right\rangle & =\left\langle\bar{c} k_{w}^{\alpha}, k_{a}\right\rangle & \Rightarrow w=\frac{a}{2-|a|^{2}} \\
\left\langle 1+k_{a}, k_{-a}\right\rangle & =\left\langle\bar{c} k_{w}^{\alpha}, k_{-a}\right\rangle & \Rightarrow w=\frac{a}{2+|a|^{2}}
\end{array}\right.
$$

This means that $1+k_{a}$ is not a scalar multiple of a reproducing kernel and

$$
A_{\varphi}^{\alpha, \beta}=1 \otimes\left(1+k_{a}\right) \neq c\left(\widetilde{k}_{w}^{\beta} \otimes k_{w}^{\alpha}\right)
$$

Similarly, $1+k_{a}$ is not a scalar multiple of a conjugate kernel and

$$
A_{\varphi}^{\alpha, \beta}=1 \otimes\left(1+k_{a}\right) \neq c\left(k_{w}^{\beta} \otimes \widetilde{k}_{w}^{\alpha}\right) .
$$

$\operatorname{dim} K_{\alpha}=1$ or $\operatorname{dim} K_{\beta}=1$

Note that if $\operatorname{dim} K_{\alpha}=1$ or $\operatorname{dim} K_{\beta}=1$, then every bounded linear operator from K_{α} into K_{β}
(a) is of rank one,
(b) is an asymmetric truncated Toeplitz operator.

Proof of (b):

Câmara-Jurasik-Kliś-Garlicka-Ptak $(\beta \leq \alpha)$, Gu-Ł.-Michalska, 2017

Let A be a bounded linear operator from K_{α} into K_{β}. Then $A \in \mathscr{T}(\alpha, \beta)$ if and only if there exist $\psi \in K_{\beta}$ and $\chi \in K_{\alpha}$ such that

$$
A-S_{\beta} A S_{\alpha}^{*}=\psi \otimes k_{0}^{\alpha}+k_{0}^{\beta} \otimes \chi
$$

$$
\begin{array}{ll}
\text { If } \operatorname{dim} K_{\alpha}=1 \text { or } \operatorname{dim} K_{\beta}=1, & \text { then } \quad A-S_{\beta} A S_{\alpha}^{*}=g \otimes f . \\
\text { If } \operatorname{dim} K_{\alpha}=1, & \text { then } \quad f=c k_{0}^{\alpha}(\psi=\bar{c} g, \chi=0) . \\
\text { If } \operatorname{dim} K_{\beta}=1, & \text { then } g=c k_{0}^{\beta}(\psi=0, \chi=\bar{c} f) .
\end{array}
$$

$\operatorname{dim} K_{\alpha}>1$ and $\operatorname{dim} K_{\beta}=1$

Let α and β be two inner functions such that $\operatorname{dim} K_{\alpha}>1$ and $\operatorname{dim} K_{\beta}=1$.
Every rank-one operator from $\mathscr{T}(\alpha, \beta)$ is a nonzero scalar multiple of $k_{w}^{\beta} \otimes \widetilde{k}_{w}^{\alpha}$ or $\widetilde{k}_{w}^{\beta} \otimes k_{w}^{\alpha}$ for some $w \in \widetilde{\mathbb{D}}$.

Every function from K_{α} is a scalar multiple of a reproducing kernel or a conjugate kernel.

Proof: Let $f \in K_{\alpha}$ and $g \in K_{\beta}$.

$$
\begin{array}{cc}
k_{0}^{\beta} \otimes f \in \mathscr{T}(\alpha, \beta) & g \otimes f=c\left(k_{w}^{\beta} \otimes \widetilde{k}_{w}^{\alpha}\right) \\
\Downarrow & \text { or } g \otimes f=c\left(\widetilde{k}_{w}^{\beta} \otimes k_{w}^{\alpha}\right) \\
k_{0}^{\beta} \otimes f=c\left(k_{w}^{\beta} \otimes \widetilde{k}_{w}^{\alpha}\right) & \Uparrow \Uparrow \\
\text { or } k_{0}^{\beta} \otimes f=c\left(\widetilde{k}_{w}^{\beta} \otimes k_{w}^{\alpha}\right) & f=c \widetilde{k}_{w}^{\alpha} \text { or } f=c k_{w}^{\alpha} \\
\Downarrow \begin{array}{c}
\text { § }
\end{array} \\
f=c \widetilde{k}_{w}^{\alpha} \text { or } f=c k_{w}^{\alpha} & g \otimes f \in \mathscr{T}(\alpha, \beta)
\end{array}
$$

$\operatorname{dim} K_{\alpha}>1$ and $\operatorname{dim} K_{\beta}=1$

When is every function in the model space a scalar multiple of a reproducing kernel or a conjugate kernel?

Proposition

Every $f \in K_{\alpha}$ is a scalar multiple of a reproducing kernel or a conjugate kernel if and only if $\operatorname{dim} K_{\alpha} \leq 2$.

$\operatorname{dim} K_{\alpha}=1$ or $\operatorname{dim} K_{\beta}=1$

Corollary ($\operatorname{dim} K_{\alpha}>1$ and $\operatorname{dim} K_{\beta}=1$)

(a) If $\operatorname{dim} K_{\alpha} \leq 2$ and $\operatorname{dim} K_{\beta}=1$, then every (rank-one) operator from $\mathscr{T}(\alpha, \beta)$ is a scalar multiple of $k_{w}^{\beta} \otimes \widetilde{k}_{w}^{\alpha}$ or $\widetilde{k}_{w}^{\beta} \otimes k_{w}^{\alpha}$ for some $w \in \overline{\mathbb{D}}$.
(b) If $\operatorname{dim} K_{\alpha}>2$ and $\operatorname{dim} K_{\beta}=1$, then there exists a rank-one operator from $\mathscr{T}(\alpha, \beta)$ that is neither a scalar multiple of $k_{w}^{\beta} \otimes \widetilde{k}_{w}^{\alpha}$ nor a scalar multiple of $\widetilde{k}_{w}^{\beta} \otimes k_{w}^{\alpha}$.

Corollary $\left(\operatorname{dim} K_{\alpha}=1\right.$ and $\left.\operatorname{dim} K_{\beta}>1\right)$

(a) If $\operatorname{dim} K_{\alpha}=1$ and $\operatorname{dim} K_{\beta} \leq 2$, then every (rank-one) operator from $\mathscr{T}(\alpha, \beta)$ is a scalar multiple of $k_{w}^{\beta} \otimes \widetilde{k}_{w}^{\alpha}$ or $\widetilde{k}_{w}^{\beta} \otimes k_{w}^{\alpha}$ for some $w \in \overline{\mathbb{D}}$.
(b) If $\operatorname{dim} K_{\alpha}=1$ and $\operatorname{dim} K_{\beta}>2$, then there exists a rank-one operator from $\mathscr{T}(\alpha, \beta)$ that is neither a scalar multiple of $k_{w}^{\beta} \otimes \widetilde{k}_{w}^{\alpha}$ nor a scalar multiple of $\widetilde{k}_{w}^{\beta} \otimes k_{w}^{\alpha}$.

$\operatorname{dim} K_{\alpha}>1$ and $\operatorname{dim} K_{\beta}>1$

Theorem

Let α and β be two inner functions such that $\operatorname{dim} K_{\alpha}>1$ and $\operatorname{dim} K_{\beta}>1$. Then the only rank-one operators in $\mathscr{T}(\alpha, \beta)$ are the nonzero scalar multiples of the operators $k_{w}^{\beta} \otimes \widetilde{k}_{w}^{\alpha}$ and $\widetilde{k}_{w}^{\beta} \otimes k_{w}^{\alpha}$ where $w \in \mathbb{D}$ or $w \in \partial \mathbb{D}$ and α and β have an $A D C$ at w.

The proof uses the following lemma.

Lemma

Let α and β be two inner functions such that $\operatorname{dim} K_{\alpha}>1$ and $\operatorname{dim} K_{\beta}>1$. Let $f \in K_{\alpha}, g \in K_{\beta}$ be two nonzero functions such that $g \otimes f$ belongs to $\mathscr{T}(\alpha, \beta)$ and let $w \in \overline{\mathbb{D}}$. Then
(a) g is a scalar multiple of k_{w}^{β} if and only if f is a scalar multiple of $\widetilde{k}_{w}^{\alpha}$,
(b) g is a scalar multiple of $\widetilde{k}_{w}^{\beta}$ if and only if f is a scalar multiple of k_{w}^{α}.

Are the nonzero scalar multiples of the operators $k_{w}^{\beta} \otimes \widetilde{k}_{w}^{\alpha}$ and $\widetilde{k}_{w}^{\beta} \otimes k_{w}^{\alpha}, w \in \overline{\mathbb{D}}$, the only rank-one operators in $\mathscr{T}(\alpha, \beta)$?

Theorem

Let α and β be two inner functions such that $\operatorname{dim} K_{\alpha}=m$ and $\operatorname{dim} K_{\beta}=n$ (with m or n possibly infinite). The only rank-one operators in $\mathscr{T}(\alpha, \beta)$ are the nonzero scalar multiples of the operators $k_{w}^{\beta} \otimes \widetilde{k}_{w}^{\alpha}$ and $\widetilde{k}_{w}^{\beta} \otimes k_{w}^{\alpha}, w \in \overline{\mathbb{D}}$, if and only if either $m n \leq 2$, or $m>1$ and $n>1$.
A. Baranov, I. Chalendar, E. Fricain, J. E. Mashreghi and D. Timotin, Bounded symbols and reproducing kernel thesis for truncated Topelitz operators, J. Funct. Anal. 259 (2010), no. 10, 2673-2701.
R. V. Bessonov, Truncated Toeplitz operators of finite rank, Proc. Amer. Math. Soc. 142 (2014), no. 4, 1301-1313.
C. Câmara, J. Jurasik, K. Kliś-Garlicka, M. Ptak, Characterizations of asymmetric truncated Toeplitz operators, Banach J. Math. Anal. (to appear), arXiv:1607.03342.

M. C. Câmara, J. R. Partington, Asymmetric truncated Toeplitz operators and Toeplitz operators with matrix symbol, J. Operator Theory 77 (2017), no. 2, 455-479.
M. C. Câmara, J. R. Partington, Spectral properties of truncated Toeplitz operators by equivalence after extension, J. Math. Anal. Appl. 433 (2016), no. 2, 762-784.

C. Gu, B. Łanucha, M. Michalska, Characterizations of asymmetric truncated Toeplitz and Hankel operators, preprint.

J. Jurasik, B. Łanucha, Asymmetric truncated Toeplitz operators equal to the zero operator, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 70 (2016), no. 2, 51-62.
J. Jurasik, B. Łanucha, Asymmetric truncated Toeplitz operators on finite-dimensional spaces, Operators and Matrices 11 (2017), no. 1, 245-262.B. Łanucha, On rank-one asymmetric truncated Toeplitz operators on finite-dimensional model spaces, J. Math. Anal. Appl. 454 (2017), no. 2, 961-980.
B. Łanucha, Asymmetric truncated Toeplitz operators of rank one, Comput. Methods Funct. Theory (to appear).
D. Sarason, Algebraic properties of truncated Toeplitz operators, Operators and Matrices 1 (2007), no. 4, 491-526.

Thank you for your attention!

