Asymmetric truncated Toeplitz operators of rank one

Bartosz Łanucha

Maria Curie-Skłodowska University, Lublin, Poland

IWOTA 2017, August 14–18 Technische Universität Chemnitz

伺 ト イヨト イ

Classical Toeplitz operators

- H^2 the Hardy space for the unit disc \mathbb{D} ,
- P the orthogonal projection from $L^2(\partial \mathbb{D})$ onto H^2 ,
- T_{φ} the classical Toeplitz operator on H^2 :

$$T_{\varphi}f = P(\varphi f), \quad f \in H^{\infty} \subset H^2,$$

- densely defined for $\varphi \in L^2(\partial \mathbb{D})$,
- bounded if and only if $\varphi \in L^{\infty}(\partial \mathbb{D})$.

In particular,

$$S = T_z$$
 - the shift operator on H^2 ,
 $S^* = T_{\overline{z}}$ - the backward shift,
 $Sf(z) = zf(z), \qquad S^*f(z) = \frac{f(z) - f(0)}{z}$

・ 同 ト ・ ヨ ト ・ ヨ ト

We say that α is an inner function if:

•
$$\alpha \in H^{\infty}$$
,

•
$$|lpha|=1$$
 a.e. on $\partial \mathbb{D}$.

We say that α has an **angular derivative in the sense of Carathéodory (ADC) at** $w \in \partial \mathbb{D}$ if there exist complex numbers $\alpha(w)$ and $\alpha'(w)$ such that

$$\alpha(z) \to \alpha(w) \in \partial \mathbb{D}$$
 and $\alpha'(z) \to \alpha'(w)$

whenever $z \rightarrow w$ nontangentially (with |z - w|/(1 - |z|) bounded).

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

Shift invariant subspaces of H^2

All shift-invariant subspaces of H^2 were described by A. Beurling in 1949. He used the notion of an inner function.

Beurling, 1949

A non-zero closed subspace $M \subset H^2$ is S-invariant, $S(M) \subset M$, if and only if $M = \alpha H^2$ for some inner function α .

Since $S(M) \subset M$ if and only if $M = \alpha H^2$, then $S^*(M) \subset M$ if and only if $M = (\alpha H^2)^{\perp}$.

Corollary

All the S^* -invariant subspaces of H^2 are of the form

$$\mathcal{K}_{\alpha} = (\alpha H^2)^{\perp} = H^2 \ominus \alpha H^2, \quad \alpha - \text{inner.}$$

 K_{α} is called **the model space** corresponding to the inner function α .

The model space K_{α}

The model space corresponding to the inner function α :

$$K_{\alpha} = H^2 \ominus \alpha H^2.$$

- K_{α} is a closed S^* -invariant subspace of H^2 .
- K_α is a reproducing kernel Hilbert space with the reproducing kernel given by:

$$k^{lpha}_w(z)=rac{1-\overline{lpha(w)}lpha(z)}{1-\overline{w}z},\quad w\in\mathbb{D},$$

that is,

 $f(w) = \langle f, k_w^{\alpha} \rangle$ for all $f \in K_{\alpha}, w \in \mathbb{D}$.

Note that if $\alpha(w) = 0$, then $k_w^{\alpha}(z) = k_w(z) = (1 - \overline{w}z)^{-1}$. • $K_{\alpha} \cap H^{\infty}$ is a dense subset of K_{α} .

The model space K_{α}

• The conjugate kernel

$$\widetilde{k}^{lpha}_w(z) = rac{lpha(z) - lpha(w)}{z - w}$$

belongs to K_{α} for all $w \in \mathbb{D}$.

• If α has an ADC at $w \in \partial \mathbb{D}$, then k_w^{α} and k_w^{α} belong to K_{α} . Moreover, $\widetilde{k}_w^{\alpha} = \alpha(w) \overline{w} k_w^{\alpha}$.

Examples: *α*(*z*) = *zⁿ*, *n* ≥ 1: *K*_α = *P*_{n-1} = {polynomials of degree ≤ *n* − 1}, *α*(*z*) = a finite Blaschke product with distinct zeros *a*₁,..., *a_n*: *K*_α = span{*k*_{a1},..., *k_{an}*}.

The space K_{α} is finite-dimensional, dim $K_{\alpha} = n < \infty$, if and only if α is a finite Blaschke product with *n* zeros (not necessarily distinct).

Asymmetric truncated Toeplitz operators

Let $\varphi \in L^2(\partial \mathbb{D})$.

The classical Toeplitz operator T_{φ} :

$$T_{\varphi}f = P(\varphi f), \quad f \in H^{\infty} \subset H^2,$$

P - the orthogonal projection from $L^2(\partial \mathbb{D})$ onto H^2 .

Let α and β be two inner functions. The **asymmetric** truncated Toeplitz operator (ATTO) $A_{\omega}^{\alpha,\beta}$ is defined by

$$A^{lpha,eta}_arphi f = P_eta(arphi f), \quad f\in {\mathcal K}_lpha\cap {\mathcal H}^\infty,$$

 P_{β} - the orthogonal projection from $L^{2}(\partial \mathbb{D})$ onto K_{β} .

In particular, $A^{\alpha}_{\varphi} = A^{\alpha,\alpha}_{\varphi}$ is called a truncated Toeplitz operator (TTO). The operator $S_{\alpha} = A^{\alpha}_{z}$ is called the **compressed** shift.

Systematic study of truncated Toeplitz operators was started by D. Sarason in 2007.

Asymmetric truncated Toeplitz operators were recently introduced by C. Câmara, J. Partington (for the half-plane) and C. Câmara, J. Jurasik, K. Kliś-Garlicka, M. Ptak (for the unit disk).

Put

 $\mathscr{T}(\alpha,\beta) = \{A^{\alpha,\beta}_{\varphi} \colon \varphi \in L^2(\partial \mathbb{D}) \text{ and } A^{\alpha,\beta}_{\varphi} \text{ is bounded} \}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

More on $\mathscr{T}(\alpha,\beta)$

Although similar in definition, TTO's and ATTO's differ from the classical Toeplitz operators.

• $T_{\varphi} = 0$ if and only if $\varphi = 0$,

Câmara-Partington/Câmara-Jurasik-Kliś–Garlicka-Ptak ($\beta \leq \alpha$), Ł.-Jurasik, 2016

 $A^{\alpha,\beta}_{\varphi} = 0$ if and only if $\varphi \in \overline{\alpha H^2} + \beta H^2$.

• T_{φ} is bounded if and only if φ is in $L^{\infty}(\partial \mathbb{D})$,

Baranov-Chalendar-Fricain-Mashreghi-Timotin, 2010

There exist bounded truncated Toeplitz operators without bounded symbols.

• the only compact Toeplitz operator is the zero operator,

Sarason, 2007

There are nonzero compact truncated Toeplitz operators (in particular, rank-one truncated Toeplitz operators).

Rank-one TTO's

Rank-one TTO's were described by D. Sarason. Recall that

$$k_w^{lpha}(z) = rac{1-\overline{lpha(w)}lpha(z)}{1-\overline{w}z}, \quad \widetilde{k}_w^{lpha}(z) = rac{lpha(z)-lpha(w)}{z-w}$$

and $f \otimes g(h) = \langle h, g \rangle f$.

Sarason, 2007

- (a) For w in \mathbb{D} , the operators $k_w^{\alpha} \otimes \tilde{k}_w^{\alpha}$ and $\tilde{k}_w^{\alpha} \otimes k_w^{\alpha}$ belong to $\mathscr{T}(\alpha, \alpha)$.
- (b) If α has an ADC at the point w of $\partial \mathbb{D}$, then the operator $k^{\alpha}_{w} \otimes k^{\alpha}_{w}$ belongs to $\mathscr{T}(\alpha, \alpha)$.
- (c) The only rank-one operators in $\mathscr{T}(\alpha, \alpha)$ are the nonzero scalar multiples of the operators in (a) and (b).

Câmara-Partington ($\beta \leq \alpha$), Ł.-Jurasik, 2016

- (a) For w in \mathbb{D} , the operators $k_w^\beta \otimes \tilde{k}_w^\alpha$ and $\tilde{k}_w^\beta \otimes k_w^\alpha$ belong to $\mathscr{T}(\alpha, \beta)$.
- (b) If both α and β have an ADC at the point w of $\partial \mathbb{D}$, then the operator $k_w^\beta \otimes k_w^\alpha$ belongs to $\mathscr{T}(\alpha, \beta)$.

Are the nonzero scalar multiples of the operators in (a) and (b) the only rank-one operators in $\mathscr{T}(\alpha,\beta)$?

ヘロト 人間ト くほと くほん

Rank-one ATTO's

Recall that in (b):

$$\widetilde{k}^{lpha}_{w} = lpha(w) \overline{w} k^{lpha}_{w}$$

and so

$$k_w^\beta \otimes k_w^\alpha = \alpha(w) \overline{w}(k_w^\beta \otimes \widetilde{k}_w^\alpha) = \overline{\beta(w)} w(\widetilde{k}_w^\beta \otimes k_w^\alpha).$$

Are the nonzero scalar multiples of the operators $k_w^\beta \otimes \tilde{k}_w^\alpha$ and $\tilde{k}_w^\beta \otimes k_w^\alpha$, $w \in \overline{\mathbb{D}}$, the only rank-one operators in $\mathscr{T}(\alpha, \beta)$?

The trivial case: dim $K_{\alpha} = \dim K_{\beta} = 1$

Let α and β be two inner functions such that

$$\dim K_{\alpha} = \dim K_{\beta} = 1.$$

Then

$$egin{array}{rcl} f\in {\mathcal K}_lpha &\Rightarrow f=c_1k_0^lpha,\ g\in {\mathcal K}_eta &\Rightarrow g=c_2\widetilde k_0^eta, \end{array}$$

and

$$g\otimes f=c(k_{0}^{\beta}\otimes\widetilde{k}_{0}^{lpha}).$$

So here the answer is yes. This is not always the case.

< 同 > < 三 > <

A counterexample

Let $a \in \mathbb{D} \setminus \{0\}$ and let

$$\alpha(z) = z \frac{z-a}{1-\overline{a}z} \frac{z+a}{1+\overline{a}z}, \qquad \beta(z) = z.$$

Then

$$\begin{array}{rcl} \mathcal{K}_{\alpha} & = & \operatorname{span}\{1, k_{a}, k_{-a}\}, \\ \mathcal{K}_{\beta} & = & \mathcal{P}_{0} = \{\lambda \colon \lambda \in \mathbb{C}\} \end{array}$$

(note that $k_w^eta = \widetilde{k}_w^eta = 1$).

Since dim $K_{\beta} = 1$, every linear operator from K_{α} into K_{β} is of rank one.

Put
$$\varphi = \overline{1 + k_a} \in \overline{K_{\alpha}^{\infty}}$$
. Then $A_{\varphi}^{\alpha, \beta} = 1 \otimes (1 + k_a).$

Indeed, for every $f \in K_{lpha}$, $z \in \mathbb{D}$,

$$\begin{array}{ll} \mathcal{A}_{\varphi}^{\alpha,\beta}f(z) &= \langle \underline{P_{\beta}(\varphi f)}, k_{z}^{\beta} \rangle = \langle \varphi f, k_{z}^{\beta} \rangle \\ &= \langle \overline{(1+k_{a})}f, 1 \rangle = \langle f, 1+k_{a} \rangle = (1 \otimes (1+k_{a}))(f). \end{array}$$

A counterexample

lf

$$\mathcal{A}^{lpha,eta}_arphi=1\otimes(1+k_{m{a}})=c(\widetilde{k}^eta_w\otimes k^lpha_w),$$

for some $w \in \overline{\mathbb{D}}$, then (since $\widetilde{k}_w^\beta = 1$)

$$1+k_a=\overline{c}k_w^{\alpha}.$$

Equivalently,

$$\left\{ \begin{array}{rcl} \langle 1+k_a,1\rangle &=& \langle \overline{c}k_w^\alpha,1\rangle &\Rightarrow& c=2\\ \langle 1+k_a,k_a\rangle &=& \langle \overline{c}k_w^\alpha,k_a\rangle &\Rightarrow& w=\frac{a}{2-|a|^2}\\ \langle 1+k_a,k_{-a}\rangle &=& \langle \overline{c}k_w^\alpha,k_{-a}\rangle &\Rightarrow& w=\frac{a}{2+|a|^2} \end{array} \right.$$

This means that $1 + k_a$ is not a scalar multiple of a reproducing kernel and

$$\mathcal{A}^{lpha,eta}_arphi=1\otimes (1+k_{\mathsf{a}})
eq \mathsf{c}(\widetilde{k}^eta_w\otimes k^lpha_w).$$

Similarly, $1 + k_a$ is not a scalar multiple of a conjugate kernel and

$$A^{lpha,eta}_arphi=1\otimes(1+k_{a})
eq c(k^{eta}_w\otimes\widetilde{k}^{lpha}_w).$$

$\dim K_{\alpha} = 1 \text{ or } \dim K_{\beta} = 1$

Note that if dim $K_{\alpha} = 1$ or dim $K_{\beta} = 1$, then every bounded linear operator from K_{α} into K_{β}

(a) is of rank one,

(b) is an asymmetric truncated Toeplitz operator.

Proof of (b):

Câmara-Jurasik-Kliś–Garlicka-Ptak ($\beta \leq \alpha$), Gu-Ł.-Michalska, 2017

Let A be a bounded linear operator from K_{α} into K_{β} . Then $A \in \mathscr{T}(\alpha, \beta)$ if and only if there exist $\psi \in K_{\beta}$ and $\chi \in K_{\alpha}$ such that

$$A - S_{\beta}AS_{\alpha}^* = \psi \otimes k_0^{\alpha} + k_0^{\beta} \otimes \chi$$

 $\begin{array}{ll} \text{If } \dim {\mathcal K}_{\alpha} = 1 \text{ or } \dim {\mathcal K}_{\beta} = 1, & \text{then} & A - S_{\beta}AS_{\alpha}^* = g \otimes f. \\ \text{If } \dim {\mathcal K}_{\alpha} = 1, & \text{then} & f = ck_0^{\alpha} \ (\psi = \overline{c}g, \ \chi = 0). \\ \text{If } \dim {\mathcal K}_{\beta} = 1, & \text{then} & g = ck_0^{\beta} \ (\psi = 0, \ \chi = \overline{c}f). \end{array}$

イロト イポト イヨト イヨト 二日

dim $K_{lpha} > 1$ and dim $K_{eta} = 1$

Let α and β be two inner functions such that dim $K_{\alpha} > 1$ and dim $K_{\beta} = 1$.

Proof: Let $f \in K_{\alpha}$ and $g \in K_{\beta}$.

$$k_{0}^{\beta} \otimes f \in \mathscr{T}(\alpha, \beta) \qquad g \otimes f = c(k_{w}^{\beta} \otimes \tilde{k}_{w}^{\alpha}) \\ \downarrow \qquad \text{or } g \otimes f = c(\tilde{k}_{w}^{\beta} \otimes k_{w}^{\alpha}) \\ k_{0}^{\beta} \otimes f = c(k_{w}^{\beta} \otimes \tilde{k}_{w}^{\alpha}) \qquad \uparrow \\ \text{or } k_{0}^{\beta} \otimes f = c(\tilde{k}_{w}^{\beta} \otimes k_{w}^{\alpha}) \qquad \uparrow \\ f = c\tilde{k}_{w}^{\alpha} \text{ or } f = ck_{w}^{\alpha} \qquad g \otimes f \in \mathscr{T}(\alpha, \beta) \qquad \Box$$

When is every function in the model space a scalar multiple of a reproducing kernel or a conjugate kernel?

Proposition

Every $f \in K_{\alpha}$ is a scalar multiple of a reproducing kernel or a conjugate kernel if and only if dim $K_{\alpha} \leq 2$.

・ 同 ト ・ ヨ ト ・ ヨ ト

dim $K_{lpha} = 1$ or dim $K_{eta} = 1$

Corollary (dim $K_{\alpha} > 1$ and dim $K_{\beta} = 1$)

(a) If dim $K_{\alpha} \leq 2$ and dim $K_{\beta} = 1$, then every (rank-one) operator from $\mathscr{T}(\alpha, \beta)$ is a scalar multiple of $k_{w}^{\beta} \otimes \tilde{k}_{w}^{\alpha}$ or $\tilde{k}_{w}^{\beta} \otimes k_{w}^{\alpha}$ for some $w \in \overline{\mathbb{D}}$.

(b) If dim K_α > 2 and dim K_β = 1, then there exists a rank-one operator from 𝔅(α, β) that is neither a scalar multiple of k^β_w ⊗ k^α_w nor a scalar multiple of k^β_w ⊗ k^α_w.

Corollary (dim $K_{\alpha} = 1$ and dim $K_{\beta} > 1$)

- (a) If dim $K_{\alpha} = 1$ and dim $K_{\beta} \leq 2$, then every (rank-one) operator from $\mathscr{T}(\alpha, \beta)$ is a scalar multiple of $k_{w}^{\beta} \otimes \tilde{k}_{w}^{\alpha}$ or $\tilde{k}_{w}^{\beta} \otimes k_{w}^{\alpha}$ for some $w \in \overline{\mathbb{D}}$.
- (b) If dim $K_{\alpha} = 1$ and dim $K_{\beta} > 2$, then there exists a rank-one operator from $\mathscr{T}(\alpha, \beta)$ that is neither a scalar multiple of $k_{w}^{\beta} \otimes \widetilde{k}_{w}^{\alpha}$ nor a scalar multiple of $\widetilde{k}_{w}^{\beta} \otimes k_{w}^{\alpha}$.

Theorem

Let α and β be two inner functions such that dim $K_{\alpha} > 1$ and dim $K_{\beta} > 1$. Then the only rank-one operators in $\mathscr{T}(\alpha, \beta)$ are the nonzero scalar multiples of the operators $k_w^{\beta} \otimes \tilde{k}_w^{\alpha}$ and $\tilde{k}_w^{\beta} \otimes k_w^{\alpha}$ where $w \in \mathbb{D}$ or $w \in \partial \mathbb{D}$ and α and β have an ADC at w.

The proof uses the following lemma.

Lemma

Let α and β be two inner functions such that dim $K_{\alpha} > 1$ and dim $K_{\beta} > 1$. Let $f \in K_{\alpha}$, $g \in K_{\beta}$ be two nonzero functions such that $g \otimes f$ belongs to $\mathscr{T}(\alpha, \beta)$ and let $w \in \overline{\mathbb{D}}$. Then

- (a) g is a scalar multiple of k_w^β if and only if f is a scalar multiple of \widetilde{k}_w^α ,
- (b) g is a scalar multiple of \widetilde{k}_w^β if and only if f is a scalar multiple of k_w^α .

Are the nonzero scalar multiples of the operators $k_w^\beta \otimes \tilde{k}_w^\alpha$ and $\tilde{k}_w^\beta \otimes k_w^\alpha$, $w \in \overline{\mathbb{D}}$, the only rank-one operators in $\mathscr{T}(\alpha, \beta)$?

Theorem

Let α and β be two inner functions such that dim $K_{\alpha} = m$ and dim $K_{\beta} = n$ (with m or n possibly infinite). The only rank-one operators in $\mathscr{T}(\alpha, \beta)$ are the nonzero scalar multiples of the operators $k_w^{\beta} \otimes \widetilde{k}_w^{\alpha}$ and $\widetilde{k}_w^{\beta} \otimes k_w^{\alpha}$, $w \in \overline{\mathbb{D}}$, if and only if either $mn \leq 2$, or m > 1 and n > 1.

イロト イポト イヨト イヨト

References

A. Baranov, I. Chalendar, E. Fricain, J. E. Mashreghi and D. Timotin, *Bounded symbols and reproducing kernel thesis for truncated Topelitz operators*, J. Funct. Anal. 259 (2010), no. 10, 2673-2701.

- C. Câmara, J. Jurasik, K. Kliś-Garlicka, M. Ptak, *Characterizations of asymmetric truncated Toeplitz operators*, Banach J. Math. Anal. (to appear), arXiv:1607.03342.

M. C. Câmara, J. R. Partington, Asymmetric truncated Toeplitz operators and Toeplitz operators with matrix symbol, J. Operator Theory **77** (2017), no. 2, 455–479.

M. C. Câmara, J. R. Partington, *Spectral properties of truncated Toeplitz operators by equivalence after extension*, J. Math. Anal. Appl. **433** (2016), no. 2, 762–784.

C. Gu, B. Łanucha, M. Michalska, *Characterizations of asymmetric truncated Toeplitz and Hankel operators*, preprint.

イロト 不得下 イヨト イヨト

- J. Jurasik, B. Łanucha, *Asymmetric truncated Toeplitz operators equal to the zero operator*, Ann. Univ. Mariae Curie-Skłodowska, Sect. A **70** (2016), no. 2, 51–62.
- J. Jurasik, B. Łanucha, Asymmetric truncated Toeplitz operators on finite-dimensional spaces, Operators and Matrices **11** (2017), no. 1, 245–262.
- B. Łanucha, On rank-one asymmetric truncated Toeplitz operators on finite-dimensional model spaces, J. Math. Anal. Appl. 454 (2017), no. 2, 961–980.
- B. Łanucha, *Asymmetric truncated Toeplitz operators of rank one*, Comput. Methods Funct. Theory (to appear).
- D. Sarason, Algebraic properties of truncated Toeplitz operators, Operators and Matrices 1 (2007), no. 4, 491-526.

Thank you for your attention!

• • = • •