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The Hardy-Littlewood maximal function

Let n ∈ N. Consider a function f ∈ L1loc(Rn) and x ∈ Rn. Define

Mf (x) = sup
r>0

1

|B(x , r)|

∫
B(x ,r)

|f (y)|dy ∈ [0,∞].

M is a sublinear operator: |M(cf )| = |c | |Mf |, |M(f + g)| ≤
|Mf |+ |Mg |, |Mf −Mg | ≤ |M(f − g)|.
M is called the Hardy-Littlewood maximal operator.



Boundedness properties of the Hardy-Littlewood maximal
function

Theorem (Hardy-Littlewood 1930):

1. There exists a constant C (n) <∞ such that

|{x : (Mf )(x) > α}| ≤ C (n)

α

∫
Rn

|f (y)|dy (α > 0).

“weak type (1, 1) estimate”.

2. Let 1 < p ≤ ∞. There exists a constant C (n, p) <∞ such
that

‖Mf ‖Lp(Rn) ≤ C (n, p)‖f ‖Lp(Rn).

“strong type (p, p) estimate”.



Proof of Hardy’s and Littlewood’s theorem

Part 1: Fix some α > 0. Let {x : (Mf )(x) > α} =: Eα. Let
E ⊂ Eα be compact. For each x ∈ E , there is B(x , rx) such that

|B(x , rx)| ≤ 1

α

∫
B(x ,rx )

|f (y)|dy .

⋃
x∈E B(x , rx) ⊇ E , so by compactness

⋃K
k=1 B(xk , rxk ) ⊇ E .

Vitali Covering Lemma: Out of {B(x1, rx1), . . . ,B(xK , rxK )} we can
choose a pairwise disjoint subcollection {B1, . . . ,Bm} such that
|E | ≤ C (n)

∑m
k=1 |Bk |.

Thus

|E | ≤ C (n)

α

m∑
k=1

∫
Bk

|f (y)|dy ≤ C (n)

α

∫
Rn

|f (y)|dy .

But E ⊂ Eα was arbitrary.



Proof of Hardy’s and Littlewood’s theorem

Part 2: On the level p =∞, we have
|Mf (x)| = supr>0

1
|B(x ,r)|

∫
B(x ,r) |f (y)|dy ≤

supr>0
1

|B(x ,r)|
∫
B(x ,r) ‖f ‖∞dy = ‖f ‖∞.

But M is sublinear.
Now apply Marcinkiewicz real interpolation between the cases
weak (1, 1) and strong (∞,∞) to deduce Part 2. QED.



Application and related questions

Corollary: Let f ∈ L1loc(Rn). Then 1
|B(x ,r)|

∫
B(x ,r) f (y)dy converges

to f (x) for a.e. x ∈ Rn as r → 0.
Other classical applications of the boundedness of M: boundedness
of singular integral operators.
Related questions: Replace the ball in the definition of M by
(dilates of) cube or another symmetric convex body. Boundedness
of the resulting maximal operator ? Works in the period 1986 -
1990 by Bourgain, Carbery, Müller, ... and in 2010’s by Bourgain.

Question: What are the optimal bounds C (n) and C (n, p) in
Hardy-Littlewood’s theorem?
We have seen: C (n,∞) = 1.

Melas 2003: If n = 1 then C (1) = 11+
√
61

12 .
Other values of best constants: ??? Unknown today.



Dimension free bound of Hardy-Littlewood maximal
operator

Next Question: Can one bound C (n) ≤ C or C (n, p) ≤ C (p) for
any n ∈ N?
Theorem Stein-Strömberg 1983: C (n, p) ≤ C (p) for 1 < p <∞.
Part of Proof: Introduce the spherical maximal operator

MS f (x) = sup
r>0

1

|S(x , r)|

∣∣∣∣∣
∫
S(x ,r)

f (y)dy

∣∣∣∣∣ .
Here, S(x , r) is the sphere of radius r and |S(x , r)| denotes its
(surface) measure. Show that MS is bounded on Lp(Rn) for n ≥ 3
and p > n

n−1 .
The integrals in the def. of M are averages of the integrals in the
def. of MS . Thus, Mf (x) ≤ MS f (x). Still ‖MS‖ = B(n, p), but
we can do better:



The spherical maximal operator

Introduce the auxiliary maximal operator

Mθ
n′f (x) = sup

r>0

∫
|yn′ |≤r

|f (x − θ(yn′ , 0))| |yn′ |n−n
′
dyn′∫

|yn′ |≤r
|yn′ |n−n′dyn′

(x ∈ Rn),

where θ is a rotation matrix over Rn and n′ ≤ n a lower dimension.
Show that ‖Mθ

n′‖Lp(Rn)→Lp(Rn) ≤ A(n′, p) using

MS : Lp(Rn′)→ Lp(Rn′). Moreover, show that
Mf (x) ≤

∫
O(n)M

θ
n′f (x)dµ(θ).

Now fix some small n′. ‖M‖p→p ≤
∫
O(n) ‖M

θ
n′‖p→p ≤ A(n′, p) as

soon as spherical maximal operator MS is available, i.e. n′ ≥ 3 and
p > n′

n′−1 . This is the case for p > 1 fixed from some fixed initial
dimension n′ on. For n ≥ n′ we deduce the dimension free bound
of ‖M‖Lp(Rn)→Lp(Rn) and for the remaining small n, we have the
classical Hardy-Littlewood theorem. QED.



Vector valued Hardy-Littlewood maximal operator

Remark: Stein-Strömberg: C (n, p) ≤ C (p). But in the weak-(1, 1)
estimate, C (n) ≤ C : ??? Unkown today, probably false.
Now consider a second Lebesgue exponent q ∈ [1,∞].
Can ask the question

∥∥∥∥∥∥
( ∞∑

k=1

|Mfk |q
) 1

q

∥∥∥∥∥∥
Lp(Rn)

≤ C (n, p, q)

∥∥∥∥∥∥
( ∞∑

k=1

|fk |q
) 1

q

∥∥∥∥∥∥
Lp(Rn)

?

These are the Fefferman-Stein inequalities.
Theorem Fefferman-Stein (1971): Yes for 1 < p, q <∞.
Theorem Grafakos-Liu-Yang (2009): Yes for
1 < p <∞, 1 < q ≤ ∞ if one replaces Rn by a metric measure
space of homogeneous type.



Dimensionless Fefferman-Stein inequalities ?

Again question: Can one bound C (n, p, q) ≤ C (p, q) for all n ∈ N?
Proof of Fefferman-Stein: Uses Calderon-Zygmund decomposition
related to the proof of Hardy-Littlewood theorem. Vitali covering
lemma: C (n, p, q) ≤ 3nC (p, q).
Other proofs of Fefferman-Stein inequalities by Garcia-Cuerva,
Rubio de Francia and Grafakos also do not yield dimension free
bounds.



Dimensionless Fefferman-Stein inequalities

Theorem (Deléaval-K. 2016): We have a dimension-free bound∥∥∥∥∥∥
( ∞∑

k=1

|Mfk |q
) 1

q

∥∥∥∥∥∥
Lp(Rn)

≤ C (p, q)

∥∥∥∥∥∥
( ∞∑

k=1

|fk |q
) 1

q

∥∥∥∥∥∥
Lp(Rn)

for 1 < p, q <∞.
Ideas of the proof: Use Stein-Strömberg’s approach of spherical
maximal operator.
Thus question: Is MS bounded Lp(Rn; `q)→ Lp(Rn; `q) ?
We have MS f (x) = supr>0 |Ar f (x)| with
Ar f (x) = 1

|S(0,r)|
∫
S(0,r) f (x − y)dy . Ar is a convolution operator,

therefore a Fourier multiplier operator. One can compute its
symbol! Ar f (x) = (m(r ·)f̂ )̌ (x) with m(x) = 2π

|x |
d−2
2

J d−2
2

(2π|x |),

where J d−2
2

is a Bessel function.



Proof of dimensionless Fefferman-Stein

So MS is a maximal operator associated to a (radial) Fourier
multiplier. When are Fourier multipliers bounded on Lp(Rn) ?
Sufficient criterion: When its Hörmander norm is finite:
‖m‖2H = maxαk=0 supr>0

∫ 2r
r |t

km(k)(t)|2 dtt <∞ for α > n/2.
We need more than Fourier multiplier: maximal Fourier multiplier,
and on vector-valued Lp(Rn; `q).

Theorem (Deléaval-K. 2016): The maximal radial Fourier

multiplier f 7→ supr>0

∣∣∣(m(r ·)f̂ )̌
∣∣∣ is bounded on Lp(Rn; `q)

provided that ‖m‖2Hmax = maxαk=0

∑
j∈Z
∫ 2j+1

2j |tkm(k)(t)|2 dtt <∞
for α > n(12 − εp,q) + 2.
Now calculate with the Bessel function: ‖m‖Hmax <∞ if
α ≤ n

2 −
3
2 .

Conclusion: MS is bounded on Lp(Rn; `q) provided that
n > 1

εp,q
(2 + 3

2).



Conclusion of the proof

For big dimensions n > 1
εp,q

(2 + 3
2), we can use the rotated

maximal operator of lower dimension and conclude as in the proof
of Stein’s and Strömberg’s result. For small dimensions, we can
invoke the classical Fefferman-Stein inequalities. QED.



Extensions of the dimensionless theorem

In the dimensionless Fefferman-Stein theorem, one can replace `q

by any UMD lattice:
Indeed, the maximal Fourier multiplier theorem still holds. For
small dimensions, there is now a different argument from [Xu 2015
IRMN].

One can also ask to replace Rn by .... e.g. other Lie groups of
polynomial growth,
or the Laplacian underlying the Fourier multiplier symbol by
another operator.
We have some results for the so-called Grushin operator on
Rn × R, and a maximal multiplier theorem for the sub-Laplacian
on the Heisenberg group (in fact, abstract max. mult. theorem).
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