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Abstract

This article focuses on general Wiener-Hopf operators given as W =
P2A|P1X where X,Y are Banach spaces, P1 ∈ L(X) , P2 ∈ L(Y ) are
any projectors and A ∈ L(X,Y ) is boundedly invertible. It presents
conditions for W to be equivalently reducible to a Wiener-Hopf op-
erator in a symmetric space setting where X = Y and P1 = P2.
The results and methods are related to the so-called Wiener-Hopf
factorization through an intermediate space and the construction of
generalized inverses of W in terms of factorizations of A.

The talk is based upon joint work with Albrecht Böttcher, in J. Op-
erator Theory 2016.
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General Wiener-Hopf operators

Let X,Y be Banach spaces, A ∈ L(X,Y ), P1 ∈ L(X) , P2 ∈ L(Y )
projectors, Q1 = IX − P1 , Q2 = IY − P2.

Then the operator

W = P2A|P1X = P1X → P2Y (1)

is referred to as a general Wiener-Hopf operator (WHO). We assume
that the so-called underlying operator A is invertible, i.e., that A is a
linear homeomorphism, written as A ∈ GL(X,Y ). In a sense, this is
no limitation of generality; see, e.g., S14.

In a symmetric setting, where X = Y, P1 = P2 = P , the operator W
is commonly written in the form (see Shi64, DevShi69)

W = TP (A) = PA|PX : PX → PX (2)

and also called an abstract Wiener-Hopf operator Ceb67 or a projec-
tion or a truncation or a compression of A GohKru79.
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Questions

Question 1 When is the operator W in (1) equivalent to a WHO W̃
in symmetric setting (2)? I.e. there exists a space Z, an operator
Ã ∈ GL(Z), a projector P ∈ L(Z) and isomorphisms E,F such that

W = P2A|P1X = E W̃ F = E PÃ|PZ F .

The answer depends heavily on all ”parameters” X,Y, P1, P2, A and is
particularly trivial for finite rank operators W or for separable Hilbert
spaces X,Y . Hence we modify the question:

Question 2 When is the operator W of (1) equivalent to a WHO W̃
in symmetric setting (2), for any choice of A ∈ GL(X,Y )?

Remark.

This does not imply that E and F are independent of A, but has to
do with factorizations of A. The answer can be seen as a property of
the space setting X,Y, imP1, kerP2, as we shall see.
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Motivation

A strong motivation to study the operator (1) in an asymmetric space
setting is given by the theory of pseudo-differential operators, which
naturally act between Sobolev-like spaces of different orders; see Es-
kin’s book 1973/81. Their symmetrization (lifting) by generalized
Bessel potential operators is considered in DudSpe93.

Furthermore, Toeplitz operators with singular symbols are another
source of motivation for considering symmetrization. We will briefly
touch these two concrete applications in the examples later on.
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Idea of the paper

In 1985, the second author introduced the notion of a cross factoriza-
tion and proved that the generalized invertibility of W is equivalent
to the existence of a cross factorization of A.

In a recent paper S14, two further kinds of operator factorizations
were studied, the Wiener-Hopf factorization of A through an interme-
diate space and the full range factorization W = LR where L is left
invertible and R is right invertible. The main theorem of S14 states
the equivalence between all three factorizations, partly under the re-
strictive condition that the two projectors P1 and P2 are equivalent.

Unfortunately, one proof in S14 contains a gap. This gap, which was
filled in of the present paper, actually motivated us to look after the
matter again. Our efforts resulted in a symmetrization criterion (The-
orem 1 below) and a new proof of a basic theorem of S14 (Theorem 2
below).
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Symmetrizable space settings

Our first topic here is the symmetrization of asymmetric WHOs.

To be more precise, we call the setting X,Y, P1, P2 symmetrizable if
there exist a Banach space Z, operators M+ ∈ GL(X,Z) and M− ∈
GL(Z, Y ), and a projector P ∈ L(Z) such that

M+(P1X) = PZ, M−(QZ) = Q2Y, (3)

where Q = IZ − P and Q2 = IY − P2.

Note that the invertibility of M+ and M− in conjunction with (3)
implies that

U+ := M+|P1X : P1X → PZ, V− := M−|QZ : QZ → Q2Y, (4)

are invertible.
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Symmetrization of asymmetric WHOs

If the setting X,Y, P1, P2 is symmetrizable, then asymmetric WHOs
may also be symmetrized: given an operator of the form (1), there is

an operator Ã ∈ L(Z) such that A = M−ÃM+ and W = V+W̃U+ =

V+TP (Ã)U+. Indeed, we have Ã = M−1
− AM−1

+ , and since PM−1
− =

PM−1
− P2 and PM+P1 = M+P1, we get

V+W̃U+ = (PM−1
− |P2Y )

−1 PM−1
− AM−1

+ |PZ (PM+|P1X)

= (PM−1
− |P2Y )

−1 PM−1
− P2AM

−1
+ M+|P1X

= P2A|P1X = W .

As usual, we call two operators T and S equivalent, written T ∼ S, if
there exist linear homeomorphisms E and F such that T = FSE.

Thus, in the case of a symmetrizable setting,

W ∼ TP (Ã).
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Main result

Given two Banach spaces Z1 and Z2, we write Z1
∼= Z2 if the two

spaces are isomorphic, that is, if there exists an operatorA inGL(Z1, Z2).
We also put Q1 = IX − P1, Q2 = IY − P2.

Theorem 1 The following are equivalent:

(i) the setting X,Y, P1, P2 is symmetrizable,
(ii) P1X ∼= P2Y and Q1X ∼= Q2Y ,
(iii) P1 ∼ P2.

The theorem implies in particular that every setting given by two
separable Hilbert spaces X,Y and two infinite-dimensional bounded
projectors P1, P2 with isomorphic kernels is symmetrizable. Many
examples from applications satisfy this condition.
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Related results

Later on we shall recall two types of factorizations of the underlying
operator A, the cross factorization (CFn) and the Wiener-Hopf factor-
ization through an intermediate space (FIS). Note that the existence
of a CFn for A is equivalent to the generalized invertiblity of W in
the sense that there exists an operator W− ∈ L(P2Y, P1X) such that
WW−W = W . Herewith our second main result:

Theorem 2 Given a setting X,Y, P1, P2. The following assertions
are equivalent:

(i) A has a CFn and P1 ∼ P2,
(ii) A has a FIS.

Theorem 2 is already in S14, and it is the theorem whose proof in that
paper contains a gap. We here give another, more straightforward
proof. In addition we repair the gap of the proof in S14, thus saving
also the original proof.
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Remark

From Theorem 1 we see that if P1 ∼ P2, then

P1X ×Q2Y ∼= P1X ×Q1X ∼= P1X ⊕Q1X = X,

P1X ×Q2Y ∼= P2Y ×Q2Y ∼= P2Y ⊕Q2Y = Y,

and hence
X ∼= P1X ×Q2Y ∼= Y. (5)

However, (5) does not imply that P1 ∼ P2. A counterexample is
provided by the setting X = Y = ℓ2(Z),

P1 : (..., x−2, x−1, x0, x1, x2, ...) 7→ (..., 0, 0, 0, x1, x2, ...),

P2 : (..., x−2, x−1, x0, x1, x2, ...) 7→ (..., 0, 0, x0, 0, 0, ...).

Condition (5) holds because X,Y, P1X,Q2Y are infinite-dimensional
separable Hilbert spaces, but P1 and P2 are clearly not equivalent.
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Example 1: Toeplitz operators with FH symbols

A concrete case where symmetrization was used (without calling it
symmetrization) occurs in the proof of the Fisher-Hartwig conjecture
in BS85. A Fisher-Hartwig symbol is a function of the form

a(t) = b(t)
N∏
j=1

|t− tj |2αj , t ∈ T,

where b is a piecewise continuous function on T that is invertible
in L∞, t1, . . . , tN are distinct points on T, and α1, . . . , αN are com-
plex numbers whose real parts lie in the interval (−1/2, 1/2). The
Toeplitz operator generated by a is an operator of the form T (a) =
P2M(a)| imP1 , where M(a) acts on certain Lebesgue spaces over T by
the rule f 7→ af and P1, P2 are the Riesz projectors of the Lebesgue
spaces onto their Hardy spaces. The operators M(a) and T (a) are
in general neither bounded nor invertible on Lp and the correspond-
ing Hardy spaces Hp. However, things can be saved by passing to
weighted spaces. Put ϱ(t) =

∏N
j=1 |t− tj |Reαj .
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For 1 < p <∞, let

Lp(ϱ±1) =

{
f ∈ L1 : ∥f∥p :=

∫
T
|f(t)|pϱ(t)±p|dt| <∞

}
.

The Riesz projector P , which may be defined as P = (I + S)/2 with
the Cauchy singular integral operator S given by

(Sf)(t) = lim
ε→0

1

πi

∫
|τ−t|>ε

f(τ)

τ − t
dτ, t ∈ T,

is bounded on the spaces Lp(ϱ±1) if Reαj ∈ (−1/r, 1/r) where r =
max(p, q) with 1/p + 1/q = 1. Thus, assume the real parts Reαj are
all in (−1/r, 1/r).
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Finally, consider the setting

X = Lp(ϱ), P1 = P, Y = Lp(ϱ−1), P2 = P.

It turns out thatM(a) ∈ GL(X,Y ) and hence we are in the setting (1)
with the invertible operator A = M(a). The Toeplitz operator T (a)
acts from PLp(ϱ) to PLp(ϱ−1). Thus, it is a WHO in an asymmetric
setting. It can be shown that the setting X,Y, P1, P2 is symmetrized
by Z = Lp, P = Riesz projector, M+ := M(η), M− := M(ξ), where

η(t) =
N∏
j=1

(1− t/tj)
αj , ξ(t) =

N∏
j=1

(1− tj/t)
αj .

We have T (a) = V+T (b)U+ with T (b) ∈ L(Lp, Lp), which reduces the
study of T (a) to the investigation of the much simpler operator T (b).
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Example 2: Lifting of WHOs in Sobolev-like spaces

Another useful application of symmetrization is the reduction of WHOs
and pseudo-differential operators in scales of Sobolev spaces to oper-
ators acting in Lp spaces by Bessel potential operators for a half-line,
half-space, quarter plane, or Lipschitz domain DS93, Esk81, MoST98.

The same idea works for Wiener-Hopf plus/minus Hankel operators,
convolution type operators with symmetry, and convolutionally equiv-
alent operators CS15, and it also works for other scales of spaces such
as the Sobolev-Slobodetski spaces W s,p and the Zygmund spaces Zs,
as well as for matrix operators, cf. CDS06. To illustrate the strategy,
we here confine us to the basic variant of classical WHOs in Bessel
potential spaces (one-dimensional, scalar, p = 2).
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Let F be the Fourier transformation, (Ff)(ξ) =
∫
R f(x)eiξxdx, and

let Hs denote the Sobolev space of all distributions f on R such that
λsFf ∈ L2, where λ(ξ) = (ξ2+1)1/2. The well-known Bessel potential
operators are given by

Λs := Aλs := F−1λs · F : Hr → Hr−s,

Λs
± := Aλs

±
:= F−1λs

± · F : Hr → Hr−s,

where λ±(ξ) = ξ ± i; see, for example, Dud79, Esk81, MoST98. Here
r and s are real numbers.

Let Hs
+ and Hs

− stand for the subspace of all distributions in Hs that
are supported on [0,∞) and (−∞, 0], respectively. We then have

Λs
+(H

r
+) = Hr−s

+ , Λs
−(H

r
−) = Hr−s

− .
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In terms of operator identities, this may be rephrased as follows. If

P
(s)
1 and P

(s)
2 are any bounded projectors on Hs such that imP

(s)
1 =

Hs
+ and kerP

(s)
2 = Hs

−, then

Λs
+P

(r)
1 = P

(r−s)
1 Λs

+P
(r)
1 , P

(r−s)
2 Λs

− = P
(r−s)
2 Λs

−P
(r)
2 .

In accordance with Esk81, a classical Wiener-Hopf operator is given
by

T = r+ AΦ|Hr
+
: Hr

+ → Hs(R+)

where Hs(R+) is the common Hilbert space of all restrictions of dis-
tributions in Hs to R+ = (0,∞), r+ : f 7→ f |R+ is the restriction
operator, and AΦ is a convolution (or translation invariant) operator
of order r − s, that is, AΦ is of the form

AΦ = F−1Φ · F : Hr → Hs with λs−rΦ ∈ L∞(R).
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Obviously, T is equivalent to the general Wiener-Hopf operator W
given by

W = P
(s)
2 AΦ|Hr

+
: P

(r)
1 Hr → P

(s)
2 Hs,

where P
(s)
2 := ℓ(s)r+ ∈ L(Hs) and ℓ(s) : Hs(R+) → Hs is any

bounded extension operator that is left invertible by r+. The projector

P
(r)
1 may be an arbitrary projector in L(Hr) such that imP

(r)
1 = Hr

+.

The equivalence between T and W is simply given by W = ℓ(s)T
and T = r+W . Thus, in the case at hand the setting X,Y, P1, P2 is

Hr,Hs, P
(r)
1 , P

(s)
2 . As an interpretation of results in MoST98, a sym-

metrization of W is achieved by the so-called lifting to L2: choosing

Z := H0 = L2(R), M+ := Λr
+, M− := Λ−s

− , P := ℓ0r+,

where ℓ0 : L2(R+)→ L2(R) denotes the extension by zero, we get,

with Φ0 := λs
−Φλ

−r
+ , P

(0)
1 := ℓ0r+, P

(0)
2 := ℓ0r+,
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W = P
(s)
2 AΦ|Hr

+
= P

(s)
2 Λ−s

− AΦ0Λ
r
+|Hr

+

= P
(s)
2 Λ−s

− |P (0)
2 H0 P

(0)
2 AΦ0 |H0

+
P

(0)
1 Λr

+|Hr
+

= P
(s)
2 Λ−s

− |L2
+

PAΦ0 |L2
+

PΛr
+|Hr

+
=: E W0 F.
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Related topics: General WH-Factorization

Let X,Y be Banach spaces, let P1 ∈ L(X), P2 ∈ L(Y ) be projectors,
and let A be an operator in GL(X,Y ). A factorization

A = A− C A+

: Y ← Y ← X ← X .

is referred to as a cross factorization of A (with respect toX,Y, P1, P2)
S83, in brief CFn, if the factors A± and C possess the properties

A+ ∈ GL(X), A− ∈ GL(Y ), (6)

A+(P1X) = P1X, A−(Q2Y ) = Q2Y,

and C ∈ GL(X,Y ) splits the spaces X,Y both into four comple-
mented subspaces such that
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X =

P1X︷ ︸︸ ︷
X1 ⊕ X0 ⊕

Q1X︷ ︸︸ ︷
X2 ⊕ X3

↓ C ↙↘ ↓ (7)

Y = Y1 ⊕ Y2︸ ︷︷ ︸
P2Y

⊕ Y0 ⊕ Y3︸ ︷︷ ︸
Q2Y

.

The operators A± are called strong WH factors and C is said to
be a cross factor, since it maps a part of P1X onto a part of Q2Y
(X0 → Y0) and a part of Q1X onto a part of P2Y (X2 → Y2), which
are all complemented subspaces.
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The cross factorization theorem S83

Suppose X,Y are Banach spaces, P1 ∈ L(X), P2 ∈ L(Y ) are projec-
tors, and A is an operator in GL(X,Y ).

Then W is generalized invertible (i.e. WW−W = W for some W− ∈
L(Y,X)) if and only if a cross factorization of A exists.

In that case a formula for a generalized inverse of W is given by

W− = A−1
+ P1C

−1P2A
−1
− |P2Y : P2Y → P1X.

A crucial consequence is the equivalence of W and P2C|P1X , that is,
W ∼ P2C|P1X :

W = P2A−|P2Y P2C|P1X P1A+|P1X = E P2C|P1X F

where E,F are linear homeomorphisms. We refer to S85 for more
details.

Remark: The proof (of the necessity part) is much simpler for sym-
metric settings. Hence: Symmetrization counts!
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WH factorization through an intermediate space
CS95, S14

Under the same assumptions as before, a factorization

A = A− C A+

: Y ← Z ← Z ← X .

is called a Wiener-Hopf factorization through an intermediate space
Z (with respect to the setting X,Y, P1, P2), in brief FIS, if Z, A±,
and C possess the following properties:
(a) Z is a Banach space,
(b) A+ ∈ GL(X,Z), C ∈ GL(Z), A− ∈ GL(Z, Y ),
(c) there exists a projector P ∈ L(Z) such that, with Q := IZ − P ,

A+(P1X) = PZ, A−(QZ) = Q2Y, (8)

(d) C splits the space Z twice into four complemented subspaces such
that
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Z =

PZ︷ ︸︸ ︷
X1 ⊕ X0 ⊕

QZ︷ ︸︸ ︷
X2 ⊕ X3

↓ C ↙↘ ↓ (9)

Z = Y1 ⊕ Y2︸ ︷︷ ︸
PZ

⊕ Y0 ⊕ Y3︸ ︷︷ ︸
QZ

.

Again A± are called strong WH factors and C is said to be a cross
factor, now acting from a space Z onto the same space Z. If the factor
C in a FIS is the identity, we speak of a canonical FIS.
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Immediate consequences

Remark 3 A FIS of A implies the equivalence relation

W = P2A−|PZ PC|PZ PA+|P1X ∼ PC|PZ ,

which represents a symmetrization of the WHO W defined in (1).

As in the case of a CFn it implies the representation of a generalized
inverse of W :

W− = A−1
+ P C−1 P A−1

− |P2Y : P2Y → P1X.
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Sketch of the proof of Theorem 1

Theorem 1 (recalled) The following are equivalent:

(i) the setting X,Y, P1, P2 is symmetrizable,
(ii) P1X ∼= P2Y and Q1X ∼= Q2Y ,
(iii) P1 ∼ P2.

(i) ⇒ (ii) results from the mapping properties of M± (via Z),

(ii) ⇒ (iii) an elementary conclusion,

(iii)⇒ (i) is also elementary, but needs a little effort, various possible
proofs exist.
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Sketch of the proof of Theorem 2

Theorem 2 Given a setting X,Y, P1, P2. The following assertions
are equivalent:

(i) A has a CFn and P1 ∼ P2,
(ii) A has a FIS.

(i) ⇒ (ii)
1. W is symmetrizable, W ∼ W̃ = PÃ|PZ ;
2. W is generalized invertible (by the cross factorization theo-

rem), W̃ is generalized invertible (by equivalence), Ã has a CFn in
symmetric setting, which represents a FIS.

(ii) ⇒ (i)
1. W is generalized invertible (W− results from a FIS), hence A

has a CFn (by the cross factorization theorem);
2. A FIS of A = A−CA+ through Z implies that the setting

X,Y, P1, P2 is symmetrized by putting M+ = A+ and M− = A−;
3. Theorem 1 implies that P1 ∼ P2.
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dade de Lisboa

and
by a voluntary agreement with the Instituto Superior Técnico.

Many thanks for your attention !

Contents First Last J I Back Close Full Screen



29

References
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