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Problem in the calculus of variations

F : Rn → R of class C∞ and strongly convex, i.e.,
∃ 0 < λ < Λ such that for all p, ξ ∈ Rn we have

λ|ξ|2 6 〈d2F (p)ξ, ξ〉 6 Λ|ξ|2

Ω ⊂ Rn bounded domain, φ ∈ C1(Ω) given.

Variational problem (VP)
Minimize the functional

I(v) :=
∫

Ω
F (∇v) dm

among all v ∈ H1(Ω) with v
∣∣
∂Ω = φ (in the trace sense).

Example: F (p) = |p|2 (Dirichlet energy)

VP has a unique minimizer. This solves Hilbert’s 20th problem.
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Hilbert’s 19th problem

Are the solutions of regular problems in the calculus of
variations always necessarily analytic?

D. Hilbert (ICM Paris 1900)
“Eine der begrifflich merkwürdigsten Tatsachen in den Elementen
der Theorie der analytischen Funktionen erblicke ich darin, daß es
partielle Differentialgleichungen gibt, deren Integrale sämtlich
notwendig analytische Funktionen der unabhängigen Variablen
sind, die also, kurz gesagt, nur analytischer Lösungen fähig sind.”
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Euler-Lagrange equation for minimizers

Suppose u minimizes (VP) and A = HessF (∇u).
Then ũ := ∂xku is in V ⊂⊂ Ω a weak solution of

div (A∇ũ) = 0.

Thus the problem of regularity of solutions to (VP) converts
into an elliptic regularity problem.

Problem:
The “usual” regularity theory for weak solutions of the PDE
Lu = f cannot be applied, since it requires smoothness of L, while
in our case L depends on u, which is precisely the quantity we wish
to establish regularity of!

Remedy:
Regularity theory that relies only on the ellipticity of the matrix.
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De Giorgi - Nash - Moser theorem

A = [aij ] : Ω→ Cn,n is said to be a complex uniformly strictly
accretive (or elliptic) n × n matrix function on Ω with L∞
coefficients if aij ∈ L∞(Ω) and ∃ λ > 0 such that for a.e. x ∈ Ω,

<〈A(x)ξ, ξ〉 > λ|ξ|2 , ∀ξ ∈ Cn

Here |ξ|2 = 〈ξ, ξ〉Cn . Let Λ = ‖A‖∞ and LAu := −div (A∇u).
Denote the set of all such matrix functions by Aλ,Λ(Ω).

Theorem (E. De Giorgi 1957, J. Nash 1958, J. Moser 1960)
Suppose Ω ⊂ Rn is a bounded domain and A ∈ Aλ,Λ(Ω) is real
symmetric. Then every weak solution v ∈ H1(Ω) of the equation

div (A∇v) = 0

belongs to the Hölder space C0,α
loc (Ω) for some 0 < α(n, λ,Λ) 6 1.
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Solution of the Hilbert’s 19th problem - (J. Moser)

Sobolev embedding
Caccioppoli inequality
reverse Hölder inequality
iteration of r.H.i.
John–Nirenberg inequality
Moser-Harnack inequality
Hölder continuity of weak solutions (De Giorgi - Nash - Moser)
analiticity of solutions (Schauder theory)

Reverse Hölder inequality

〈v2n/(n−2)〉(n−2)/n
Br′

. 〈v2〉Br , r ′ < r < 2r ′.

Complex case fails: Maz’ya–Nazarov–Plamenevskij (1982)
Existence of weak solutions to an elliptic equation which are not
locally Hölder continuous, n > 5.
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Dindoš-Pipher theorems (December 2016)

“Substitute for the De Giorgi-Nash-Moser regularity theory for real
divergence form elliptic equations”

Theorem 1 (Reverse Hölder inequality)
Suppose that u ∈ H1

loc(Ω) is a weak solution to div (A∇u) = 0 in
Ω. Let

p0 := inf{p > 1 ;A is p − elliptic}.

Then, for any B4r (x) ⊂ Ω,

〈|u|p〉1/p
Br (x) . 〈|u|

q〉1/q
B2r (x)

for all p, q ∈ (p0, p′0n/(n − 2)).
The implied constants depend on the p-ellipticity constants, n, Λ,
but not on x , r , u.

Mayboroda (2010): sharpness of the range of p.
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Dindoš-Pipher theorems (December 2016)

Theorem 2 (Caccioppoli estimate)
Under the above assumptions we have, for p ∈ (p0, p′0),∫

Br (x)
|∇u|2|u|p−2 dm . r−2

∫
B2r (x)

|u|p dm.

Application:
solvability of the Lp Dirichlet boundary value problem for
u 7→ div (A∇u)
(again assuming p-ellipticity).

8/26



p-ellipticity (Carbonaro–D. 2015)

For p > 1 define the R-linear map Jp : Cn → Cn by

Jp(α + iβ) = α

p + i βq

Here α, β ∈ Rn and 1/p + 1/q = 1. Set

∆p(A) := 2 ess inf
x∈Ω

min
|ξ|=1
<〈A(x)ξ, Jpξ〉Cn .

Key assumption:
∆p(A) > 0

That is, ∃ C > 0 such that p.p. x ∈ Ω we have

<〈A(x)ξ, Jpξ〉 > C |ξ|2 , ∀ξ ∈ Cn.

Obvious: ∆2(A) > 0 ⇐⇒ (uniform strict) ellipticity.
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p-ellipticity (Carbonaro–D. 2015)

If A is real then ∆p(A) > 0 for all p > 1.

For any A ∈ An set

µ(A) := ess inf < 〈A(x)ξ, ξ〉
|〈A(x)ξ, ξ̄〉|

;

ess inf over all x ∈ Ω and all ξ ∈ Cn for which 〈A(x)ξ, ξ̄〉 6= 0.
The key assumption ∆p(A) > 0 is equivalent to

|1− 2/p| < µ(A)

Immediate: λ/Λ 6 µ(A) 6 1.
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p-ellipticity comes from studying (generalized) convexity properties
of power functions of a single complex variable.

Study of power functions was motivated by our attempts to
understand convexity of a particular Bellman function due to
Nazarov and Treil, which comprises tensor products of power
functions.

This was in turn pursued as a part of our (D.–Volberg 2011,
Carbonaro–D. 2015) efforts to prove bilinear embedding
theorem for arbitrary complex accretive matrices A.
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Bilinear embedding

A typical example:∫ ∞
0

∫
Ω

∣∣∣∇xe−tLf (x)
∣∣∣ ∣∣∣∇xe−tLg(x)

∣∣∣ dµ(x) dt . ‖f ‖p‖g‖q

Proof: study of the monotonicity of the heat flow

t 7→
∫

Ω
Q
(
e−tLf , e−tLg

)
dµ

where Q : C× C→ R should admit adequate:
size estimate
convexity.

I.e., Q is a Bellman function.

The best (known) example for our purpose: the Nazarov–Treil
function.
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The Nazarov–Treil function

Bellman function method: Nazarov–Treil–Volberg 1994

An early concrete example:

Nazarov–Treil (1995)
Fix p > 2 and δ > 0. Write q = p/(p − 1). Introduce
℘ = ℘p,δ : R+ × R+ −→ R+ by

℘(u, v) = up + vq + δ


u2v2−q ; up 6 vq

2
p up +

(2
q − 1

)
vq ; up > vq .

The Bellman function: Q = Qp,δ : C× C −→ R+,

Q(ζ, η) := ℘(|ζ|, |η|) .

Structural feature: tensor products of power functions.
What is convexity?
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Generalized Hessians

Suppose F : C\{0} → R is differentiable and A ∈ Cn,n.
Introduce the identification operator V : C→ R2 by

V(u + iv) = (u, v).

For ζ ∈ C\{0} and ξ ∈ Cn define (in block notation) the
generalized Hessian of F associated with A by

HA
F [ζ; ξ]

=
〈

Hess(F ◦ V−1;V(ζ))

 <ξ
=ξ

 ,
 <A −=A

=A <A

 <ξ
=ξ

〉
R2n

Basically, HA
F [ζ; ξ] is the quadratic form corresponding to the

matrix AT [d2F (ζ)⊗ In] and applied to ξ.

We say that A is convex with respect to F if HA
F [ζ; ξ] > 0

uniformly.
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Power functions

For r > 0 define Fr (ζ) = |ζ|r , ζ ∈ C.

Origin of p-ellipticity

∆p(A) = ∆q(A) = 2
p2 ess inf

x∈Ω
min
|ξ|=1

min
|ζ|=1

HA(x)
Fp

[ζ; ξ]

= 2
p2 ess inf

x∈Ω
min
|ξ|=1

HA(x)
Fp

[1; ξ] .

We find:
HA(x)

Fp
[1; ξ] = p2<〈A(x)ξ, Jqξ〉Cn .
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Convexity of power functions – earlier cases (review)

A = I (Nazarov − Treil 1995)

A real (D.− Volberg 2011)

A = eiφI (Carbonaro − D. 2012)

A = eiφB,B real (Carbonaro − D. 2015)

In particular,
∆p(eiφ∗ I) = sinφ− |1− 2/p|.

This was essential for solving the problem of the optimal
holomorphic functional calculus on Lp in sectors for arbitrary
generators of symmetric contraction semigroups (Carbonaro–D.
2013) and nonsymmetric OU operators (Carbonaro–D. 2016).
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Square functions

Bilinear integrals are dominated by vertical square functions:∫ ∞
0

∫
Rn
|∇xe−tLAf (x)| |∇xe−tLBg(x)| dx dt 6 ‖GLAf ‖p‖GLBg‖q ,

where
GLu(x) :=

(∫ ∞
0

∣∣∇e−tLu(x)
∣∣2 dt)1/2

.

Bilinear integrals are also dominated by conical square functions:∫ ∞
0

∫
Rn
|∇xe−tLAf (x)| |∇xe−tLBg(x)| dx dt . n ‖gLA(f )‖p‖gLB (g)‖q ,

where, with Vx = {(y , t) ∈ Rn × (0,∞) ; |x − y | <
√
t},

gL(u)(x) =
(∫∫

Vx

∣∣∣∇y (e−tLu)(y)
∣∣∣2 dy dt

tn/2

)1/2
.

(Fefferman-Stein 1972, Coifman-Meyer-Stein 1985.)
17/26



Bilinear embedding for complex accretive matrices

Auscher (2004): Lp-estimates for vertical square function in a
limited range of p , even for real A.

D.–Volberg (2007): dimension-free bilinear embedding for real A
and
Auscher, Hofmann, Martell (2012): Lp-est. for conical square
functions and complex A for p ∈ (p−(L),∞). Here (p−(L), p+(L))
is the range of boundedness of e−tL. It is (1,∞) for real A.

Theorem (Carbonaro–D. 2015)

Suppose p > 1, A,B ∈ Aλ,Λ(Rn) satisfy ∆p := ∆p(A,B) > 0.
Then and all f , g ∈ C∞c (Rn) we have∫ ∞

0

∫
Rn
|∇xe−tLAf (x)| |∇xe−tLBg(x)| dx dt 6 20

∆p
· Λ
λ
‖f ‖p‖g‖q .

Connection with contractivity of e−tL on Lp?

18/26



Bilinear embedding for complex accretive matrices

Auscher (2004): Lp-estimates for vertical square function in a
limited range of p , even for real A.
D.–Volberg (2007): dimension-free bilinear embedding for real A
and all p ∈ (1,∞).

Auscher, Hofmann, Martell (2012): Lp-est. for conical square
functions and complex A for p ∈ (p−(L),∞). Here (p−(L), p+(L))
is the range of boundedness of e−tL. It is (1,∞) for real A.

Theorem (Carbonaro–D. 2015)

Suppose p > 1, A,B ∈ Aλ,Λ(Rn) satisfy ∆p := ∆p(A,B) > 0.
Then and all f , g ∈ C∞c (Rn) we have∫ ∞

0

∫
Rn
|∇xe−tLAf (x)| |∇xe−tLBg(x)| dx dt 6 20

∆p
· Λ
λ
‖f ‖p‖g‖q .

Connection with contractivity of e−tL on Lp?

18/26



Bilinear embedding for complex accretive matrices

Auscher (2004): Lp-estimates for vertical square function in a
limited range of p , even for real A.
D.–Volberg (2007): dimension-free bilinear embedding for real A
and all p ∈ (1,∞).
Auscher, Hofmann, Martell (2012): Lp-est. for conical square
functions and complex A for p ∈ (p−(L),∞). Here (p−(L), p+(L))
is the range of boundedness of e−tL. It is (1,∞) for real A.

Theorem (Carbonaro–D. 2015)

Suppose p > 1, A,B ∈ Aλ,Λ(Rn) satisfy ∆p := ∆p(A,B) > 0.
Then and all f , g ∈ C∞c (Rn) we have∫ ∞

0

∫
Rn
|∇xe−tLAf (x)| |∇xe−tLBg(x)| dx dt 6 20

∆p
· Λ
λ
‖f ‖p‖g‖q .

Connection with contractivity of e−tL on Lp?

18/26



Bilinear embedding for complex accretive matrices

Auscher (2004): Lp-estimates for vertical square function in a
limited range of p , even for real A.
D.–Volberg (2007): dimension-free bilinear embedding for real A
and all p ∈ (1,∞).
Auscher, Hofmann, Martell (2012): Lp-est. for conical square
functions and complex A for p ∈ (p−(L),∞). Here (p−(L), p+(L))
is the range of boundedness of e−tL. It is (1,∞) for real A.

Theorem (Carbonaro–D. 2015)

Suppose p > 1, A,B ∈ Aλ,Λ(Rn) satisfy ∆p := ∆p(A,B) > 0.
Then and all f , g ∈ C∞c (Rn) we have∫ ∞

0

∫
Rn
|∇xe−tLAf (x)| |∇xe−tLBg(x)| dx dt 6 20

∆p
· Λ
λ
‖f ‖p‖g‖q .

Connection with contractivity of e−tL on Lp?

18/26



Bilinear embedding for complex accretive matrices

Auscher (2004): Lp-estimates for vertical square function in a
limited range of p, even for real A.
D.–Volberg (2007): dimension-free bilinear embedding for real A
and all p ∈ (1,∞).
Auscher, Hofmann, Martell (2012): Lp-est. for conical square
functions and complex A for p ∈ (p−(L),∞). Here (p−(L), p+(L))
is the range of boundedness of e−tL. It is (1,∞) for real A.

Theorem (Carbonaro–D. 2015)

Suppose p > 1, A,B ∈ Aλ,Λ(Rn) satisfy ∆p := ∆p(A,B) > 0.
Then and all f , g ∈ C∞c (Rn) we have∫ ∞

0

∫
Rn
|∇xe−tLAf (x)| |∇xe−tLBg(x)| dx dt 6 20

∆p
· Λ
λ
‖f ‖p‖g‖q .

Connection with contractivity of e−tL on Lp?

18/26



Cialdea–Maz’ya theorems (2005)

Theorem 1 (sufficient conditions)
Let A ∈ A(Ω) is such that

A ∈ C1(Ω) for some bounded domain Ω ⊂ Rn with
sufficiently regular boundary.

Take p > 1. Assume also that for all x ∈ Ω,

4
pq 〈<A(x)α, α〉+ 〈<A(x)β, β〉

+ 2
〈(1

p=A(x) + 1
q=A

∗(x)
)
α, β

〉
> 0 ∀α, β ∈ Rn;

Then exp(−tLA) is contractive on Lp(Ω).
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Cialdea–Maz’ya theorems (2005)

Theorem 2 (characterization)
Let A ∈ A(Ω) is such that either

A ∈ C1(Ω) for some bounded domain Ω ⊂ Rn with
sufficiently regular boundary; and
=A is symmetric

or else
A is constant and Ω contains balls of arbitrarily large radius.

Take p > 1. Then exp(−tLA) is contractive on Lp(Ω) if and only if

|p − 2||〈=A(x)ξ, ξ〉| 6 2
√
p − 1〈<A(x)ξ, ξ〉 ∀x ∈ Ω, ξ ∈ Rn.

Question (Cialdea 2010):
generalize these results beyond the restrictions posed by the above
smoothness and symmetry conditions.
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Our findings (2016)

Ms, Ma: symmetric resp. antisymmetric part of M ∈ Cn,n.

We:
interpret the Cialdea–Maz’ya conditions in terms of the
(generalized) convexity of power functions,
prove sufficiency for any open Ω ⊂ Rn, A ∈ A(Ω) and p > 1.

Moreover, we extend the characterization by Cialdea–Maz’ya to all
cases when

Ω ⊂ Rn is an arbitrary open set,
A is not necessarily smooth, and
div (=A)(k)

a = 0 for all k ∈ {1, . . . , n}, but not necessarily
(=A)a = 0.

The last remaining case is fundamentally different, because when
the div-zero condition fails, the Cialdea–Maz’ya criterion is in
general not equivalent to the contractivity of exp(−tLA) on Lp(Ω),
not even for A ∈ C∞(Rn).
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Proposition (sufficiency condition in Cialdea–Maz’ya)
Take A = U + iV ∈ A(Ω) and p > 1. TFAE:

p.p. x ∈ Ω:

4
pq 〈<A(x)α, α〉+ 〈<A(x)β, β〉

+ 2
〈(1

p=A(x) + 1
q=A

∗(x)
)
α, β

〉
> 0 ∀α, β ∈ Rn;

∆p(A) > 0.

Proposition (necessity condition in Cialdea–Maz’ya)
Take A = U + iV ∈ A(Ω) and p > 1. TFAE:

p.p. x ∈ Ω:

|p − 2||〈V (x)α, α〉| 6 2
√
p − 1〈U(x)α, α〉 ∀α ∈ Rn;

∆p(As) > 0.
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Our findings (cont.)

Theorem (Carbonaro–D. 2016)

Suppose that n ∈ N, Ω ⊂ Rn is open, A ∈ A(Ω) and p > 1.
Consider the following statements:
(a) ∆p(A) > 0;

(b) exp(−tLA) contractive on Lp(Ω);

(c) ∆p(As) > 0.

Then:
(a) ⇒ (b) ⇒ (c) ;
if div (=A)(k)

a = 0 for all k ∈ {1, . . . , n}, then (b) ⇔ (c);
if div (=A)(k)

a 6= 0 for some k ∈ {1, . . . , n}, then, in general,
(c) 6⇒ (b).
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Ingredients of our proofs (cf. Lp-contractivity of e−tLA)

Let Dp(a) =
{
u ∈ H1

0 (Ω) ; |u|p−2u ∈ H1
0 (Ω)

}
.

Nittka’s theorem (2012)
‖e−tLA‖p→p 6 1 if and only if∫

Ω
<〈A∇f ,∇(|f |p−2f )〉Cn > 0 ∀ f ∈ Dp(a) .

p<〈A∇f ,∇(|f |p−2f )〉Cn = HA
Fp [f ;∇f ] .

When div (=A)(k)
a = 0 for all k ∈ {1, . . . , n} then also

p<
∫

Ω
〈A∇f ,∇(|f |p−2f )〉Cn =

∫
Ω
HAs

Fp
[f ;∇f ] .

uniform positivity of HB
Fp
⇔ ∆p(B) > 0
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Consequences of p-ellipticity (summary)

p-ellipticity lies at the junction of:

1 convexity of power functions
(uniform positivity of the Hessian forms AT [d2|ζ|p ⊗ In])

2 dimension-free bilinear embedding
3 Lp-contractivity of semigroups associated with elliptic

div-form operators with (nonsmooth) complex coefficients
4 holomorphic functional calculus for generators of symmetric

contraction semigroups on σ-finite spaces (p-ellipticity of
eiφI) and nonsymetric OU (p-ellipticity of eiφB, B real)

5 (Dindoš-Pipher 2016)
regularity theory of elliptic PDE with complex coefficients
(reverse Hölder inequalities for solutions of LAu for complex
matrices A).
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