p-ellipticity

Oliver Dragičević (U. of Ljubljana)

based on collaboration with Andrea Carbonaro (U. of Genova)

IWOTA
Chemnitz, August 17, 2017

Problem in the calculus of variations

$F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of class C^{∞} and strongly convex, i.e.,
$\exists 0<\lambda<\Lambda$ such that for all $p, \xi \in \mathbb{R}^{n}$ we have

$$
\lambda|\xi|^{2} \leqslant\left\langle d^{2} F(p) \xi, \xi\right\rangle \leqslant \Lambda|\xi|^{2}
$$

$\Omega \subset \mathbb{R}^{n}$ bounded domain, $\phi \in C^{1}(\bar{\Omega})$ given.

Variational problem (VP)

Minimize the functional

$$
I(v):=\int_{\Omega} F(\nabla v) d m
$$

among all $v \in H^{1}(\Omega)$ with $\left.v\right|_{\partial \Omega}=\phi$ (in the trace sense).
Example: $F(p)=|p|^{2}$ (Dirichlet energy)

Problem in the calculus of variations

$F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of class C^{∞} and strongly convex, i.e.,
$\exists 0<\lambda<\Lambda$ such that for all $p, \xi \in \mathbb{R}^{n}$ we have

$$
\lambda|\xi|^{2} \leqslant\left\langle d^{2} F(p) \xi, \xi\right\rangle \leqslant \Lambda|\xi|^{2}
$$

$\Omega \subset \mathbb{R}^{n}$ bounded domain, $\phi \in C^{1}(\bar{\Omega})$ given.

Variational problem (VP)

Minimize the functional

$$
I(v):=\int_{\Omega} F(\nabla v) d m
$$

among all $v \in H^{1}(\Omega)$ with $\left.v\right|_{\partial \Omega}=\phi$ (in the trace sense).
Example: $F(p)=|p|^{2}$ (Dirichlet energy)
VP has a unique minimizer.

Problem in the calculus of variations

$F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of class C^{∞} and strongly convex, i.e.,
$\exists 0<\lambda<\Lambda$ such that for all $p, \xi \in \mathbb{R}^{n}$ we have

$$
\lambda|\xi|^{2} \leqslant\left\langle d^{2} F(p) \xi, \xi\right\rangle \leqslant \Lambda|\xi|^{2}
$$

$\Omega \subset \mathbb{R}^{n}$ bounded domain, $\phi \in C^{1}(\bar{\Omega})$ given.

Variational problem (VP)

Minimize the functional

$$
I(v):=\int_{\Omega} F(\nabla v) d m
$$

among all $v \in H^{1}(\Omega)$ with $\left.v\right|_{\partial \Omega}=\phi$ (in the trace sense).
Example: $F(p)=|p|^{2}$ (Dirichlet energy)
VP has a unique minimizer. This solves Hilbert's 20th problem.

Hilbert's 19th problem

Are the solutions of regular problems in the calculus of variations always necessarily analytic?

D. Hilbert (ICM Paris 1900)

"Eine der begrifflich merkwürdigsten Tatsachen in den Elementen der Theorie der analytischen Funktionen erblicke ich darin, daß es partielle Differentialgleichungen gibt, deren Integrale sämtlich notwendig analytische Funktionen der unabhängigen Variablen sind, die also, kurz gesagt, nur analytischer Lösungen fähig sind."

Euler-Lagrange equation for minimizers

Suppose u minimizes (VP) and $A=\operatorname{Hess} F(\nabla u)$. Then $\tilde{u}:=\partial_{x_{k}} u$ is in $V \subset \subset \Omega$ a weak solution of $\operatorname{div}(A \nabla \tilde{u})=0$.

Euler-Lagrange equation for minimizers

Suppose u minimizes (VP) and $A=$ Hess $F(\nabla u)$.
Then $\tilde{u}:=\partial_{x_{k}} u$ is in $V \subset \subset \Omega$ a weak solution of

$$
\operatorname{div}(A \nabla \tilde{u})=0 .
$$

Thus the problem of regularity of solutions to (VP) converts into an elliptic regularity problem.

Euler-Lagrange equation for minimizers

Suppose u minimizes (VP) and $A=\operatorname{Hess} F(\nabla u)$.
Then $\tilde{u}:=\partial_{x_{k}} u$ is in $V \subset \subset \Omega$ a weak solution of

$$
\operatorname{div}(A \nabla \tilde{u})=0
$$

Thus the problem of regularity of solutions to (VP) converts into an elliptic regularity problem.

Problem:

The "usual" regularity theory for weak solutions of the PDE $L u=f$ cannot be applied, since it requires smoothness of L, while in our case L depends on u, which is precisely the quantity we wish to establish regularity of!

Euler-Lagrange equation for minimizers

Suppose u minimizes (VP) and $A=\operatorname{Hess} F(\nabla u)$.
Then $\tilde{u}:=\partial_{x_{k}} u$ is in $V \subset \subset \Omega$ a weak solution of

$$
\operatorname{div}(A \nabla \tilde{u})=0 .
$$

Thus the problem of regularity of solutions to (VP) converts into an elliptic regularity problem.

Problem:

The "usual" regularity theory for weak solutions of the PDE $L u=f$ cannot be applied, since it requires smoothness of L, while in our case L depends on u, which is precisely the quantity we wish to establish regularity of!

Remedy:

Regularity theory that relies only on the ellipticity of the matrix.

De Giorgi - Nash - Moser theorem

$A=\left[a_{i j}\right]: \Omega \rightarrow \mathbb{C}^{n, n}$ is said to be a complex uniformly strictly accretive (or elliptic) $n \times n$ matrix function on Ω with L^{∞} coefficients if $a_{i j} \in L^{\infty}(\Omega)$ and $\exists \lambda>0$ such that for a.e. $x \in \Omega$,

$$
\Re\langle A(x) \xi, \xi\rangle \geqslant \lambda|\xi|^{2}, \quad \forall \xi \in \mathbb{C}^{n}
$$

Here $|\xi|^{2}=\langle\xi, \xi\rangle_{\mathbb{C}^{n}}$. Let $\Lambda=\|A\|_{\infty}$ and $L_{A} u:=-\operatorname{div}(A \nabla u)$.
Denote the set of all such matrix functions by $\mathcal{A}_{\lambda, \wedge}(\Omega)$.

Theorem (E. De Giorgi 1957, J. Nash 1958, J. Moser 1960)

Suppose $\Omega \subset \mathbb{R}^{n}$ is a bounded domain and $A \in \mathcal{A}_{\lambda, \Lambda}(\Omega)$ is real symmetric. Then every weak solution $v \in H^{1}(\Omega)$ of the equation

$$
\operatorname{div}(A \nabla v)=0
$$

belongs to the Hölder space $C_{\text {loc }}^{0, \alpha}(\Omega)$ for some $0<\alpha(n, \lambda, \Lambda) \leqslant 1$.

Solution of the Hilbert's 19th problem - (J. Moser)

- Sobolev embedding
- Caccioppoli inequality
- reverse Hölder inequality
- iteration of r.H.i.
- John-Nirenberg inequality
- Moser-Harnack inequality
- Hölder continuity of weak solutions (De Giorgi - Nash - Moser)
- analiticity of solutions (Schauder theory)

Solution of the Hilbert's 19th problem - (J. Moser)

- Sobolev embedding
- Caccioppoli inequality
- reverse Hölder inequality
- iteration of r.H.i.
- John-Nirenberg inequality
- Moser-Harnack inequality
- Hölder continuity of weak solutions (De Giorgi - Nash - Moser)
- analiticity of solutions (Schauder theory)

Reverse Hölder inequality

$$
\left\langle v^{2 n /(n-2)}\right\rangle_{B_{r^{\prime}}}^{(n-2) / n} \lesssim\left\langle v^{2}\right\rangle_{B_{r}}, \quad r^{\prime}<r<2 r^{\prime}
$$

Solution of the Hilbert's 19th problem - (J. Moser)

- Sobolev embedding
- Caccioppoli inequality
- reverse Hölder inequality
- iteration of r.H.i.
- John-Nirenberg inequality
- Moser-Harnack inequality
- Hölder continuity of weak solutions (De Giorgi - Nash - Moser)
- analiticity of solutions (Schauder theory)

Reverse Hölder inequality

$$
\left\langle v^{2 n /(n-2)}\right\rangle_{B_{r^{\prime}}}^{(n-2) / n} \lesssim\left\langle v^{2}\right\rangle_{B_{r}}, \quad \quad r^{\prime}<r<2 r^{\prime}
$$

Complex case fails: Maz' ya-Nazarov-Plamenevskij (1982)
Existence of weak solutions to an elliptic equation which are not locally Hölder continuous, $n \geqslant 5$.

Dindoš-Pipher theorems (December 2016)

"Substitute for the De Giorgi-Nash-Moser regularity theory for real divergence form elliptic equations"

Dindoš-Pipher theorems (December 2016)

"Substitute for the De Giorgi-Nash-Moser regularity theory for real divergence form elliptic equations"

Theorem 1 (Reverse Hölder inequality)

Suppose that $u \in H_{\text {loc }}^{1}(\Omega)$ is a weak solution to $\operatorname{div}(A \nabla u)=0$ in Ω. Let

$$
p_{0}:=\inf \{p>1 ; A \text { is } p-\text { elliptic }\} .
$$

Then, for any $B_{4 r}(x) \subset \Omega$,

$$
\left.\left.\left.\langle | u\right|^{p}\right\rangle\left._{B_{r}(x)}^{1 / p} \lesssim\langle | u\right|^{q}\right\rangle_{B_{2 r}(x)}^{1 / q}
$$

for all $p, q \in\left(p_{0}, p_{0}^{\prime} n /(n-2)\right)$.
The implied constants depend on the p-ellipticity constants, n, Λ, but not on x, r, u.

Dindoš-Pipher theorems (December 2016)

"Substitute for the De Giorgi-Nash-Moser regularity theory for real divergence form elliptic equations"

Theorem 1 (Reverse Hölder inequality)

Suppose that $u \in H_{\text {loc }}^{1}(\Omega)$ is a weak solution to $\operatorname{div}(A \nabla u)=0$ in Ω. Let

$$
p_{0}:=\inf \{p>1 ; A \text { is } p-\text { elliptic }\} .
$$

Then, for any $B_{4 r}(x) \subset \Omega$,

$$
\left.\left.\left.\langle | u\right|^{p}\right\rangle\left._{B_{r}(x)}^{1 / p} \lesssim\langle | u\right|^{q}\right\rangle_{B_{2 r}(x)}^{1 / q}
$$

for all $p, q \in\left(p_{0}, p_{0}^{\prime} n /(n-2)\right)$.
The implied constants depend on the p-ellipticity constants, n, Λ, but not on x, r, u.

Mayboroda (2010): sharpness of the range of p.

Dindoš-Pipher theorems (December 2016)

Theorem 2 (Caccioppoli estimate)

Under the above assumptions we have, for $p \in\left(p_{0}, p_{0}^{\prime}\right)$,

$$
\int_{B_{r}(x)}|\nabla u|^{2}|u|^{p-2} d m \lesssim r^{-2} \int_{B_{2 r}(x)}|u|^{p} d m
$$

Application:

solvability of the L^{p} Dirichlet boundary value problem for $u \mapsto \operatorname{div}(A \nabla u)$
(again assuming p-ellipticity).

p-ellipticity (Carbonaro-D. 2015)

p-ellipticity (Carbonaro-D. 2015)

For $p>1$ define the \mathbb{R}-linear map $\mathcal{J}_{p}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ by

$$
\mathcal{J}_{p}(\alpha+i \beta)=\frac{\alpha}{p}+i \frac{\beta}{q}
$$

Here $\alpha, \beta \in \mathbb{R}^{n}$ and $1 / p+1 / q=1$.

p-ellipticity (Carbonaro-D. 2015)

For $p>1$ define the \mathbb{R}-linear map $\mathcal{J}_{p}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ by

$$
\mathcal{J}_{p}(\alpha+i \beta)=\frac{\alpha}{p}+i \frac{\beta}{q}
$$

Here $\alpha, \beta \in \mathbb{R}^{n}$ and $1 / p+1 / q=1$. Set

$$
\Delta_{p}(A):=2 \underset{x \in \Omega}{\operatorname{ess} \inf } \min _{|\xi|=1} \Re\left\langle A(x) \xi, \partial_{p} \xi\right\rangle_{\mathbb{C}^{n}} .
$$

p-ellipticity (Carbonaro-D. 2015)

For $p>1$ define the \mathbb{R}-linear map $\mathcal{J}_{p}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ by

$$
\mathcal{J}_{p}(\alpha+i \beta)=\frac{\alpha}{p}+i \frac{\beta}{q}
$$

Here $\alpha, \beta \in \mathbb{R}^{n}$ and $1 / p+1 / q=1$. Set

$$
\Delta_{p}(A):=2 \underset{x \in \Omega}{\operatorname{ess} \inf } \min _{|\xi|=1} \Re\left\langle A(x) \xi, \mathscr{J}_{p} \xi\right\rangle_{\mathbb{C}^{n}} .
$$

Key assumption:

$$
\Delta_{p}(A)>0
$$

That is, $\exists C>0$ such that p.p. $x \in \Omega$ we have

$$
\Re\left\langle A(x) \xi, \mathcal{\partial}_{p} \xi\right\rangle \geqslant C|\xi|^{2}, \quad \forall \xi \in \mathbb{C}^{n}
$$

p-ellipticity (Carbonaro-D. 2015)

For $p>1$ define the \mathbb{R}-linear map $\mathcal{J}_{p}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ by

$$
\mathcal{J}_{p}(\alpha+i \beta)=\frac{\alpha}{p}+i \frac{\beta}{q}
$$

Here $\alpha, \beta \in \mathbb{R}^{n}$ and $1 / p+1 / q=1$. Set

$$
\Delta_{p}(A):=2 \underset{x \in \Omega}{\operatorname{ess} \inf } \min _{|\xi|=1} \Re\left\langle A(x) \xi, \mathscr{J}_{p} \xi\right\rangle_{\mathbb{C}^{n}} .
$$

Key assumption:

$$
\Delta_{p}(A)>0
$$

That is, $\exists C>0$ such that p.p. $x \in \Omega$ we have

$$
\Re\left\langle A(x) \xi, \mathscr{\partial}_{p} \xi\right\rangle \geqslant C|\xi|^{2}, \quad \forall \xi \in \mathbb{C}^{n} .
$$

Obvious: $\quad \Delta_{2}(A)>0 \Longleftrightarrow$ (uniform strict) ellipticity.

p-ellipticity (Carbonaro-D. 2015)

If A is real then $\Delta_{p}(A)>0$ for all $p>1$.

p-ellipticity (Carbonaro-D. 2015)

If A is real then $\Delta_{p}(A)>0$ for all $p>1$.
For any $A \in \mathcal{A}_{n}$ set

$$
\mu(A):=\operatorname{ess} \inf \Re \frac{\langle A(x) \xi, \xi\rangle}{|\langle A(x) \xi, \bar{\xi}\rangle|}
$$

ess inf over all $x \in \Omega$ and all $\xi \in \mathbb{C}^{n}$ for which $\langle A(x) \xi, \bar{\xi}\rangle \neq 0$. The key assumption $\Delta_{p}(A)>0$ is equivalent to

$$
|1-2 / p|<\mu(A)
$$

p-ellipticity (Carbonaro-D. 2015)

If A is real then $\Delta_{p}(A)>0$ for all $p>1$.
For any $A \in \mathcal{A}_{n}$ set

$$
\mu(A):=\operatorname{ess} \inf \Re \frac{\langle A(x) \xi, \xi\rangle}{|\langle A(x) \xi, \bar{\xi}\rangle|}
$$

ess inf over all $x \in \Omega$ and all $\xi \in \mathbb{C}^{n}$ for which $\langle A(x) \xi, \bar{\xi}\rangle \neq 0$. The key assumption $\Delta_{p}(A)>0$ is equivalent to

$$
|1-2 / p|<\mu(A)
$$

Immediate: $\lambda / \Lambda \leqslant \mu(A) \leqslant 1$.
p-ellipticity comes from studying (generalized) convexity properties of power functions of a single complex variable.
p-ellipticity comes from studying (generalized) convexity properties of power functions of a single complex variable.

Study of power functions was motivated by our attempts to understand convexity of a particular Bellman function due to Nazarov and Treil, which comprises tensor products of power functions.
p-ellipticity comes from studying (generalized) convexity properties of power functions of a single complex variable.

Study of power functions was motivated by our attempts to understand convexity of a particular Bellman function due to Nazarov and Treil, which comprises tensor products of power functions.

This was in turn pursued as a part of our (D.-Volberg 2011, Carbonaro-D. 2015) efforts to prove bilinear embedding theorem for arbitrary complex accretive matrices A.

Bilinear embedding

A typical example:

$$
\int_{0}^{\infty} \int_{\Omega}\left|\nabla_{x} e^{-t L} f(x)\right|\left|\nabla_{x} e^{-t L} g(x)\right| d \mu(x) d t \lesssim\|f\|_{p}\|g\|_{q}
$$

Proof: study of the monotonicity of the heat flow

$$
t \mapsto \int_{\Omega} Q\left(e^{-t L} f, e^{-t L} g\right) d \mu
$$

where $Q: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{R}$ should admit adequate:

- size estimate
- convexity.
I.e., Q is a Bellman function.

Bilinear embedding

A typical example:

$$
\int_{0}^{\infty} \int_{\Omega}\left|\nabla_{x} e^{-t L} f(x)\right|\left|\nabla_{x} e^{-t L} g(x)\right| d \mu(x) d t \lesssim\|f\|_{p}\|g\|_{q}
$$

Proof: study of the monotonicity of the heat flow

$$
t \mapsto \int_{\Omega} Q\left(e^{-t L} f, e^{-t L} g\right) d \mu
$$

where $Q: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{R}$ should admit adequate:

- size estimate
- convexity.
I.e., Q is a Bellman function.

The best (known) example for our purpose: the Nazarov-Treil function.

The Nazarov-Treil function

Bellman function method: Nazarov-Treil-Volberg 1994

The Nazarov-Treil function

Bellman function method: Nazarov-Treil-Volberg 1994 An early concrete example:

Nazarov-Treil (1995)

Fix $p \geqslant 2$ and $\delta>0$. Write $q=p /(p-1)$. Introduce
$\wp=\wp_{p, \delta}: \mathbb{R}_{+} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}_{+}$by

$$
\wp(u, v)=u^{p}+v^{q}+\delta \begin{cases}u^{2} v^{2-q} & ; u^{p} \leqslant v^{q} \\ \frac{2}{p} u^{p}+\left(\frac{2}{q}-1\right) v^{q} & ; u^{p} \geqslant v^{q} .\end{cases}
$$

The Bellman function: $Q=Q_{p, \delta}: \mathbb{C} \times \mathbb{C} \longrightarrow \mathbb{R}_{+}$,

$$
Q(\zeta, \eta):=\wp(|\zeta|,|\eta|) .
$$

The Nazarov-Treil function

Bellman function method: Nazarov-Treil-Volberg 1994 An early concrete example:

Nazarov-Treil (1995)

Fix $p \geqslant 2$ and $\delta>0$. Write $q=p /(p-1)$. Introduce
$\wp=\wp_{p, \delta}: \mathbb{R}_{+} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}_{+}$by

$$
\wp(u, v)=u^{p}+v^{q}+\delta \begin{cases}u^{2} v^{2-q} & ; u^{p} \leqslant v^{q} \\ \frac{2}{p} u^{p}+\left(\frac{2}{q}-1\right) v^{q} & ; u^{p} \geqslant v^{q} .\end{cases}
$$

The Bellman function: $Q=Q_{p, \delta}: \mathbb{C} \times \mathbb{C} \longrightarrow \mathbb{R}_{+}$,

$$
Q(\zeta, \eta):=\wp(|\zeta|,|\eta|) .
$$

Structural feature: tensor products of power functions.

The Nazarov-Treil function

Bellman function method: Nazarov-Treil-Volberg 1994 An early concrete example:

Nazarov-Treil (1995)

Fix $p \geqslant 2$ and $\delta>0$. Write $q=p /(p-1)$. Introduce
$\wp=\wp_{p, \delta}: \mathbb{R}_{+} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}_{+}$by

$$
\wp(u, v)=u^{p}+v^{q}+\delta \begin{cases}u^{2} v^{2-q} & ; u^{p} \leqslant v^{q} \\ \frac{2}{p} u^{p}+\left(\frac{2}{q}-1\right) v^{q} & ; u^{p} \geqslant v^{q} .\end{cases}
$$

The Bellman function: $Q=Q_{p, \delta}: \mathbb{C} \times \mathbb{C} \longrightarrow \mathbb{R}_{+}$,

$$
Q(\zeta, \eta):=\wp(|\zeta|,|\eta|) .
$$

Structural feature: tensor products of power functions.
What is convexity?

Generalized Hessians

Suppose $F: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{R}$ is differentiable and $A \in \mathbb{C}^{n, n}$. Introduce the identification operator $\mathcal{V}: \mathbb{C} \rightarrow \mathbb{R}^{2}$ by

$$
\mathcal{V}(u+i v)=(u, v)
$$

For $\zeta \in \mathbb{C} \backslash\{0\}$ and $\xi \in \mathbb{C}^{n}$ define (in block notation) the generalized Hessian of F associated with A by $H_{F}^{A}[\zeta ; \xi]$

$$
=\left\langle\operatorname{Hess}\left(F \circ \mathcal{V}^{-1} ; \mathcal{V}(\zeta)\right)\left[\begin{array}{c}
\Re \xi \\
\Im \xi
\end{array}\right],\left[\begin{array}{rr}
\Re A & -\Im A \\
\Im A & \Re A
\end{array}\right]\left[\begin{array}{c}
\Re \xi \\
\Im \xi
\end{array}\right]\right\rangle_{\mathbb{R}^{2 n}}
$$

Basically, $H_{F}^{A}[\zeta ; \xi]$ is the quadratic form corresponding to the matrix $A^{T}\left[d^{2} F(\zeta) \otimes I_{n}\right]$ and applied to ξ.

We say that A is convex with respect to F if $H_{F}^{A}[\zeta ; \xi]>0$ uniformly.

Power functions

For $r \geqslant 0$ define $F_{r}(\zeta)=|\zeta|^{r}, \zeta \in \mathbb{C}$.

Power functions

For $r \geqslant 0$ define $F_{r}(\zeta)=|\zeta|^{r}, \zeta \in \mathbb{C}$.

Origin of p-ellipticity

$$
\Delta_{p}(A)=\Delta_{q}(A)=\frac{2}{p^{2}} \underset{x \in \Omega}{\operatorname{ess} \inf } \min _{|\xi|=1} \min _{|\zeta|=1} H_{F_{p}}^{A(x)}[\zeta ; \xi]
$$

Power functions

For $r \geqslant 0$ define $F_{r}(\zeta)=|\zeta|^{r}, \zeta \in \mathbb{C}$.

Origin of p-ellipticity

$$
\begin{aligned}
\Delta_{p}(A)=\Delta_{q}(A) & =\frac{2}{p^{2}} \underset{x \in \Omega}{\operatorname{essinf}} \min _{|\xi|=1} \min _{|\zeta|=1} H_{F_{p}}^{A(x)}[\zeta ; \xi] \\
& =\frac{2}{p^{2}} \underset{x \in \Omega}{\operatorname{essinf}} \min _{|\xi|=1} H_{F_{p}}^{A(x)}[1 ; \xi]
\end{aligned}
$$

Power functions

For $r \geqslant 0$ define $F_{r}(\zeta)=|\zeta|^{r}, \zeta \in \mathbb{C}$.

Origin of p-ellipticity

$$
\begin{aligned}
\Delta_{p}(A)=\Delta_{q}(A) & =\frac{2}{p^{2}} \underset{x \in \Omega}{\operatorname{essinf}} \min _{|\xi|=1} \min _{|\zeta|=1} H_{F_{p}}^{A(x)}[\zeta ; \xi] \\
& =\frac{2}{p^{2}} \underset{x \in \Omega}{\operatorname{essinf}} \min _{|\xi|=1} H_{F_{p}}^{A(x)}[1 ; \xi]
\end{aligned}
$$

We find:

$$
H_{F_{p}}^{A(x)}[1 ; \xi]=p^{2} \Re\left\langle A(x) \xi, \mathcal{J}_{q} \xi\right\rangle_{\mathbb{C}^{n}}
$$

Convexity of power functions - earlier cases (review)

$$
\begin{array}{ll}
A=I & (\text { Nazarov - Treil 1995) } \\
A \text { real } & (D .- \text { Volberg 2011) } \\
A=e^{i \phi} I & (\text { Carbonaro }-D .2012) \\
A=e^{i \phi} B, B \text { real } & (\text { Carbonaro }-D .2015)
\end{array}
$$

Convexity of power functions - earlier cases (review)

$$
\begin{array}{ll}
A=I & (\text { Nazarov }- \text { Treil 1995) } \\
A \text { real } & (D .- \text { Volberg 2011) } \\
A=e^{i \phi} I & (\text { Carbonaro }-D .2012) \\
A=e^{i \phi} B, B \text { real } & (\text { Carbonaro }-D .2015)
\end{array}
$$

In particular,

$$
\Delta_{p}\left(e^{i \phi^{*}} l\right)=\sin \phi-|1-2 / p|
$$

Convexity of power functions - earlier cases (review)

$$
\begin{array}{ll}
A=I & (\text { Nazarov - Treil 1995) } \\
A \text { real } & (D .- \text { Volberg 2011) } \\
A=e^{i \phi} I & (\text { Carbonaro }-D .2012) \\
A=e^{i \phi} B, B \text { real } & (\text { Carbonaro }-D .2015)
\end{array}
$$

In particular,

$$
\Delta_{p}\left(e^{i \phi^{*}} l\right)=\sin \phi-|1-2 / p|
$$

This was essential for solving the problem of the optimal holomorphic functional calculus on L^{p} in sectors for arbitrary generators of symmetric contraction semigroups (Carbonaro-D. 2013) and nonsymmetric OU operators (Carbonaro-D. 2016).

Square functions

Bilinear integrals are dominated by vertical square functions:

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{n}}\left|\nabla_{x} e^{-t L_{A}} f(x)\right|\left|\nabla_{x} e^{-t L_{B}} g(x)\right| d x d t \leqslant\left\|G_{L_{A}} f\right\|_{p}\left\|G_{L_{B}} g\right\|_{q}
$$

where

$$
G_{L} u(x):=\left(\int_{0}^{\infty}\left|\nabla e^{-t L} u(x)\right|^{2} d t\right)^{1 / 2} .
$$

Bilinear integrals are also dominated by conical square functions:
$\int_{0}^{\infty} \int_{\mathbb{R}^{n}}\left|\nabla_{x} e^{-t L_{A}} f(x)\right|\left|\nabla_{x} e^{-t L_{B}} g(x)\right| d x d t \lesssim_{n}\left\|\mathfrak{g}_{L_{A}}(f)\right\|_{p}\left\|\mathfrak{g}_{L_{B}}(g)\right\|_{q}$,
where, with $V_{x}=\left\{(y, t) \in \mathbb{R}^{n} \times(0, \infty) ;|x-y|<\sqrt{t}\right\}$,

$$
\mathfrak{g}_{L}(u)(x)=\left(\iint_{V_{x}}\left|\nabla_{y}\left(e^{-t L} u\right)(y)\right|^{2} \frac{d y d t}{t^{n / 2}}\right)^{1 / 2}
$$

(Fefferman-Stein 1972, Coifman-Meyer-Stein 1985.)

Bilinear embedding for complex accretive matrices

Auscher (2004): L^{p}-estimates for vertical square function in a limited range of p, even for real A.

Bilinear embedding for complex accretive matrices

Auscher (2004): L^{p}-estimates for vertical square function in a limited range of p, even for real A.
D.-Volberg (2007): dimension-free bilinear embedding for real A and all $p \in(1, \infty)$.

Bilinear embedding for complex accretive matrices

Auscher (2004): L^{p}-estimates for vertical square function in a limited range of p, even for real A.
D.-Volberg (2007): dimension-free bilinear embedding for real A and all $p \in(1, \infty)$.
Auscher, Hofmann, Martell (2012): L^{p}-est. for conical square functions and complex A for $p \in\left(p_{-}(L), \infty\right)$. Here ($\left.p_{-}(L), p_{+}(L)\right)$ is the range of boundedness of $e^{-t L}$. It is $(1, \infty)$ for real A.

Bilinear embedding for complex accretive matrices

Auscher (2004): L L^{p}-estimates for vertical square function in a limited range of p, even for real A.
D.-Volberg (2007): dimension-free bilinear embedding for real A and all $p \in(1, \infty)$.
Auscher, Hofmann, Martell (2012): L^{p}-est. for conical square functions and complex A for $p \in\left(p_{-}(L), \infty\right)$. Here $\left(p_{-}(L), p_{+}(L)\right)$ is the range of boundedness of $e^{-t L}$. It is $(1, \infty)$ for real A.

Theorem (Carbonaro-D. 2015)

Suppose $p>1, A, B \in \mathcal{A}_{\lambda, \Lambda}\left(\mathbb{R}^{n}\right)$ satisfy $\Delta_{p}:=\Delta_{p}(A, B)>0$.
Then and all $f, g \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ we have

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{n}}\left|\nabla_{x} e^{-t L_{A}} f(x)\right|\left|\nabla_{x} e^{-t L_{B}} g(x)\right| d x d t \leqslant \frac{20}{\Delta_{p}} \cdot \frac{\Lambda}{\lambda}\|f\|_{p}\|g\|_{q}
$$

Bilinear embedding for complex accretive matrices

Auscher (2004): L^{p}-estimates for vertical square function in a limited range of p, even for real A.
D.-Volberg (2007): dimension-free bilinear embedding for real A and all $p \in(1, \infty)$.
Auscher, Hofmann, Martell (2012): L^{p}-est. for conical square functions and complex A for $p \in\left(p_{-}(L), \infty\right)$. Here $\left(p_{-}(L), p_{+}(L)\right)$ is the range of boundedness of $e^{-t L}$. It is $(1, \infty)$ for real A.

Theorem (Carbonaro-D. 2015)

Suppose $p>1, A, B \in \mathcal{A}_{\lambda, \Lambda}\left(\mathbb{R}^{n}\right)$ satisfy $\Delta_{p}:=\Delta_{p}(A, B)>0$.
Then and all $f, g \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ we have

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{n}}\left|\nabla_{x} e^{-t L_{A}} f(x)\right|\left|\nabla_{x} e^{-t L_{B}} g(x)\right| d x d t \leqslant \frac{20}{\Delta_{p}} \cdot \frac{\Lambda}{\lambda}\|f\|_{p}\|g\|_{q}
$$

Connection with contractivity of $e^{-t L}$ on L^{p} ?

Cialdea-Maz'ya theorems (2005)

Cialdea-Maz'ya theorems (2005)

Theorem 1 (sufficient conditions)

Let $A \in \mathcal{A}(\Omega)$ is such that

- $A \in C^{1}(\bar{\Omega})$ for some bounded domain $\Omega \subset \mathbb{R}^{n}$ with sufficiently regular boundary.
Take $p>1$. Assume also that for all $x \in \Omega$,

$$
\begin{aligned}
& \frac{4}{p q}\langle\Re A(x) \alpha, \alpha\rangle+\langle\Re A(x) \beta, \beta\rangle \\
& \quad+2\left\langle\left(\frac{1}{p} \Im A(x)+\frac{1}{q} \Im A^{*}(x)\right) \alpha, \beta\right\rangle \geqslant 0 \quad \forall \alpha, \beta \in \mathbb{R}^{n} ;
\end{aligned}
$$

Cialdea-Maz'ya theorems (2005)

Theorem 1 (sufficient conditions)

Let $A \in \mathcal{A}(\Omega)$ is such that

- $A \in C^{1}(\bar{\Omega})$ for some bounded domain $\Omega \subset \mathbb{R}^{n}$ with sufficiently regular boundary.
Take $p>1$. Assume also that for all $x \in \Omega$,

$$
\begin{aligned}
& \frac{4}{p q}\langle\Re A(x) \alpha, \alpha\rangle+\langle\Re A(x) \beta, \beta\rangle \\
& \quad+2\left\langle\left(\frac{1}{p} \Im A(x)+\frac{1}{q} \Im A^{*}(x)\right) \alpha, \beta\right\rangle \geqslant 0 \quad \forall \alpha, \beta \in \mathbb{R}^{n} ;
\end{aligned}
$$

Then $\exp \left(-t L_{A}\right)$ is contractive on $L^{p}(\Omega)$.

Cialdea-Maz'ya theorems (2005)

Theorem 2 (characterization)
Let $A \in \mathcal{A}(\Omega)$ is such that either

- $A \in C^{1}(\bar{\Omega})$ for some bounded domain $\Omega \subset \mathbb{R}^{n}$ with sufficiently regular boundary; and
- $\Im A$ is symmetric

Cialdea-Maz'ya theorems (2005)

Theorem 2 (characterization)
Let $A \in \mathcal{A}(\Omega)$ is such that either

- $A \in C^{1}(\bar{\Omega})$ for some bounded domain $\Omega \subset \mathbb{R}^{n}$ with sufficiently regular boundary; and
- $\Im A$ is symmetric
or else
- A is constant and Ω contains balls of arbitrarily large radius.

Cialdea-Maz'ya theorems (2005)

Theorem 2 (characterization)

Let $A \in \mathcal{A}(\Omega)$ is such that either

- $A \in C^{1}(\bar{\Omega})$ for some bounded domain $\Omega \subset \mathbb{R}^{n}$ with sufficiently regular boundary; and
- $\Im A$ is symmetric
or else
- A is constant and Ω contains balls of arbitrarily large radius.

Take $p>1$. Then $\exp \left(-t L_{A}\right)$ is contractive on $L^{p}(\Omega)$ if and only if

$$
|p-2||\langle\Im A(x) \xi, \xi\rangle| \leqslant 2 \sqrt{p-1}\langle\Re A(x) \xi, \xi\rangle \quad \forall x \in \Omega, \xi \in \mathbb{R}^{n}
$$

Cialdea-Maz'ya theorems (2005)

Theorem 2 (characterization)

Let $A \in \mathcal{A}(\Omega)$ is such that either

- $A \in C^{1}(\bar{\Omega})$ for some bounded domain $\Omega \subset \mathbb{R}^{n}$ with sufficiently regular boundary; and
- $\Im A$ is symmetric
or else
- A is constant and Ω contains balls of arbitrarily large radius.

Take $p>1$. Then $\exp \left(-t L_{A}\right)$ is contractive on $L^{p}(\Omega)$ if and only if

$$
|p-2||\langle\Im A(x) \xi, \xi\rangle| \leqslant 2 \sqrt{p-1}\langle\Re A(x) \xi, \xi\rangle \quad \forall x \in \Omega, \xi \in \mathbb{R}^{n}
$$

Question (Cialdea 2010):
generalize these results beyond the restrictions posed by the above smoothness and symmetry conditions.

Our findings (2016)

$M_{\mathrm{s}}, M_{\mathrm{a}}$: symmetric resp. antisymmetric part of $M \in \mathbb{C}^{n, n}$.

Our findings (2016)

$M_{\mathrm{s}}, M_{\mathrm{a}}$: symmetric resp. antisymmetric part of $M \in \mathbb{C}^{n, n}$.
We:

- interpret the Cialdea-Maz'ya conditions in terms of the (generalized) convexity of power functions,

Our findings (2016)

$M_{\mathrm{s}}, M_{\mathrm{a}}$: symmetric resp. antisymmetric part of $M \in \mathbb{C}^{n, n}$.
We:

- interpret the Cialdea-Maz'ya conditions in terms of the (generalized) convexity of power functions,
- prove sufficiency for any open $\Omega \subset \mathbb{R}^{n}, A \in \mathcal{A}(\Omega)$ and $p>1$.

Our findings (2016)

$M_{\mathrm{s}}, M_{\mathrm{a}}$: symmetric resp. antisymmetric part of $M \in \mathbb{C}^{n, n}$. We:

- interpret the Cialdea-Maz'ya conditions in terms of the (generalized) convexity of power functions,
- prove sufficiency for any open $\Omega \subset \mathbb{R}^{n}, A \in \mathcal{A}(\Omega)$ and $p>1$. Moreover, we extend the characterization by Cialdea-Maz'ya to all cases when

Our findings (2016)

$M_{\mathrm{s}}, M_{\mathrm{a}}$: symmetric resp. antisymmetric part of $M \in \mathbb{C}^{n, n}$. We:

- interpret the Cialdea-Maz'ya conditions in terms of the (generalized) convexity of power functions,
- prove sufficiency for any open $\Omega \subset \mathbb{R}^{n}, A \in \mathcal{A}(\Omega)$ and $p>1$. Moreover, we extend the characterization by Cialdea-Maz'ya to all cases when
- $\Omega \subset \mathbb{R}^{n}$ is an arbitrary open set,

Our findings (2016)

$M_{\mathrm{s}}, M_{\mathrm{a}}$: symmetric resp. antisymmetric part of $M \in \mathbb{C}^{n, n}$. We:

- interpret the Cialdea-Maz'ya conditions in terms of the (generalized) convexity of power functions,
- prove sufficiency for any open $\Omega \subset \mathbb{R}^{n}, A \in \mathcal{A}(\Omega)$ and $p>1$. Moreover, we extend the characterization by Cialdea-Maz'ya to all cases when
- $\Omega \subset \mathbb{R}^{n}$ is an arbitrary open set,
- A is not necessarily smooth, and

Our findings (2016)

$M_{\mathrm{s}}, M_{\mathrm{a}}$: symmetric resp. antisymmetric part of $M \in \mathbb{C}^{n, n}$. We:

- interpret the Cialdea-Maz'ya conditions in terms of the (generalized) convexity of power functions,
- prove sufficiency for any open $\Omega \subset \mathbb{R}^{n}, A \in \mathcal{A}(\Omega)$ and $p>1$. Moreover, we extend the characterization by Cialdea-Maz'ya to all cases when
- $\Omega \subset \mathbb{R}^{n}$ is an arbitrary open set,
- A is not necessarily smooth, and
- $\operatorname{div}(\Im A)_{a}^{(k)}=0$ for all $k \in\{1, \ldots, n\}$, but not necessarily $(\Im A)_{a}=0$.

Our findings (2016)

$M_{\mathrm{s}}, M_{\mathrm{a}}$: symmetric resp. antisymmetric part of $M \in \mathbb{C}^{n, n}$.
We:

- interpret the Cialdea-Maz'ya conditions in terms of the (generalized) convexity of power functions,
- prove sufficiency for any open $\Omega \subset \mathbb{R}^{n}, A \in \mathcal{A}(\Omega)$ and $p>1$.

Moreover, we extend the characterization by Cialdea-Maz'ya to all cases when

- $\Omega \subset \mathbb{R}^{n}$ is an arbitrary open set,
- A is not necessarily smooth, and
- $\operatorname{div}(\Im A)_{a}^{(k)}=0$ for all $k \in\{1, \ldots, n\}$, but not necessarily $(\Im A)_{a}=0$.
The last remaining case is fundamentally different, because when the div-zero condition fails, the Cialdea-Maz'ya criterion is in general not equivalent to the contractivity of $\exp \left(-t L_{A}\right)$ on $L^{p}(\Omega)$, not even for $A \in C^{\infty}\left(\mathbb{R}^{n}\right)$.

Proposition (sufficiency condition in Cialdea-Maz'ya)
Take $A=U+i V \in \mathcal{A}(\Omega)$ and $p>1$. TFAE:

- p.p. $x \in \Omega$:

$$
\begin{aligned}
& \frac{4}{p q}\langle\Re A(x) \alpha, \alpha\rangle+\langle\Re A(x) \beta, \beta\rangle \\
& \quad+2\left\langle\left(\frac{1}{p} \Im A(x)+\frac{1}{q} \Im A^{*}(x)\right) \alpha, \beta\right\rangle \geqslant 0 \quad \forall \alpha, \beta \in \mathbb{R}^{n} ;
\end{aligned}
$$

Proposition (sufficiency condition in Cialdea-Maz'ya)
Take $A=U+i V \in \mathcal{A}(\Omega)$ and $p>1$. TFAE:

- p.p. $x \in \Omega$:

$$
\begin{aligned}
& \frac{4}{p q}\langle\Re A(x) \alpha, \alpha\rangle+\langle\Re A(x) \beta, \beta\rangle \\
& \quad+2\left\langle\left(\frac{1}{p} \Im A(x)+\frac{1}{q} \Im A^{*}(x)\right) \alpha, \beta\right\rangle \geqslant 0 \quad \forall \alpha, \beta \in \mathbb{R}^{n} ;
\end{aligned}
$$

- $\Delta_{p}(A) \geqslant 0$.

Proposition (sufficiency condition in Cialdea-Maz'ya)

Take $A=U+i V \in \mathcal{A}(\Omega)$ and $p>1$. TFAE:

- p.p. $x \in \Omega$:

$$
\begin{aligned}
& \frac{4}{p q}\langle\Re A(x) \alpha, \alpha\rangle+\langle\Re A(x) \beta, \beta\rangle \\
& \quad+2\left\langle\left(\frac{1}{p} \Im A(x)+\frac{1}{q} \Im A^{*}(x)\right) \alpha, \beta\right\rangle \geqslant 0 \quad \forall \alpha, \beta \in \mathbb{R}^{n} ;
\end{aligned}
$$

- $\Delta_{p}(A) \geqslant 0$.

Proposition (necessity condition in Cialdea-Maz'ya)
Take $A=U+i V \in \mathcal{A}(\Omega)$ and $p>1$. TFAE:

- p.p. $x \in \Omega$:

$$
|p-2||\langle V(x) \alpha, \alpha\rangle| \leqslant 2 \sqrt{p-1}\langle U(x) \alpha, \alpha\rangle \quad \forall \alpha \in \mathbb{R}^{n} ;
$$

Proposition (sufficiency condition in Cialdea-Maz'ya)

Take $A=U+i V \in \mathcal{A}(\Omega)$ and $p>1$. TFAE:

- p.p. $x \in \Omega$:

$$
\begin{aligned}
& \frac{4}{p q}\langle\Re A(x) \alpha, \alpha\rangle+\langle\Re A(x) \beta, \beta\rangle \\
& \quad+2\left\langle\left(\frac{1}{p} \Im A(x)+\frac{1}{q} \Im A^{*}(x)\right) \alpha, \beta\right\rangle \geqslant 0 \quad \forall \alpha, \beta \in \mathbb{R}^{n} ;
\end{aligned}
$$

- $\Delta_{p}(A) \geqslant 0$.

Proposition (necessity condition in Cialdea-Maz'ya)
Take $A=U+i V \in \mathcal{A}(\Omega)$ and $p>1$. TFAE:

- p.p. $x \in \Omega$:

$$
|p-2||\langle V(x) \alpha, \alpha\rangle| \leqslant 2 \sqrt{p-1}\langle U(x) \alpha, \alpha\rangle \quad \forall \alpha \in \mathbb{R}^{n} ;
$$

- $\Delta_{p}\left(A_{\mathrm{s}}\right) \geqslant 0$.

Our findings (cont.)

Theorem (Carbonaro-D. 2016)

Suppose that $n \in \mathbb{N}, \Omega \subset \mathbb{R}^{n}$ is open, $A \in \mathcal{A}(\Omega)$ and $p>1$.
Consider the following statements:
(a) $\Delta_{p}(A) \geqslant 0$;
(b) $\exp \left(-t L_{A}\right)$ contractive on $L^{p}(\Omega)$;
(c) $\Delta_{p}\left(A_{s}\right) \geqslant 0$.

Our findings (cont.)

Theorem (Carbonaro-D. 2016)

Suppose that $n \in \mathbb{N}, \Omega \subset \mathbb{R}^{n}$ is open, $A \in \mathcal{A}(\Omega)$ and $p>1$.
Consider the following statements:
(a) $\Delta_{p}(A) \geqslant 0$;
(b) $\exp \left(-t L_{A}\right)$ contractive on $L^{p}(\Omega)$;
(c) $\Delta_{p}\left(A_{s}\right) \geqslant 0$.

Then:

- $(a) \Rightarrow(b) \Rightarrow(c)$;

Our findings (cont.)

Theorem (Carbonaro-D. 2016)

Suppose that $n \in \mathbb{N}, \Omega \subset \mathbb{R}^{n}$ is open, $A \in \mathcal{A}(\Omega)$ and $p>1$.
Consider the following statements:
(a) $\Delta_{p}(A) \geqslant 0$;
(b) $\exp \left(-t L_{A}\right)$ contractive on $L^{p}(\Omega)$;
(c) $\Delta_{p}\left(A_{s}\right) \geqslant 0$.

Then:

- $(a) \Rightarrow(b) \Rightarrow(c)$;
- if $\operatorname{div}(\Im A)_{a}^{(k)}=0$ for all $k \in\{1, \ldots, n\}$, then $(b) \Leftrightarrow(c)$;

Our findings (cont.)

Theorem (Carbonaro-D. 2016)

Suppose that $n \in \mathbb{N}, \Omega \subset \mathbb{R}^{n}$ is open, $A \in \mathcal{A}(\Omega)$ and $p>1$.
Consider the following statements:
(a) $\Delta_{p}(A) \geqslant 0$;
(b) $\exp \left(-t L_{A}\right)$ contractive on $L^{p}(\Omega)$;
(c) $\Delta_{p}\left(A_{\mathrm{s}}\right) \geqslant 0$.

Then:

- $(a) \Rightarrow(b) \Rightarrow(c)$;
- if $\operatorname{div}(\Im A)_{a}^{(k)}=0$ for all $k \in\{1, \ldots, n\}$, then $(b) \Leftrightarrow(c)$;
- if $\operatorname{div}(\Im A)_{a}^{(k)} \neq 0$ for some $k \in\{1, \ldots, n\}$, then, in general, (c) $\nRightarrow(b)$.

Ingredients of our proofs (cf. L^{P}-contractivity of $e^{-t L_{A}}$)

Ingredients of our proofs (cf. L^{P}-contractivity of $e^{-t L_{A}}$)

$$
\text { Let } \mathcal{D}_{p}(\mathfrak{a})=\left\{u \in H_{0}^{1}(\Omega) ;|u|^{p-2} u \in H_{0}^{1}(\Omega)\right\} \text {. }
$$

Nittka's theorem (2012)
$\left\|e^{-t L_{A}}\right\|_{p \rightarrow p} \leqslant 1$ if and only if

$$
\int_{\Omega} \Re\left\langle A \nabla f, \nabla\left(|f|^{p-2} f\right)\right\rangle_{\mathbb{C}^{n}} \geqslant 0 \quad \forall f \in \mathcal{D}_{p}(\mathfrak{a})
$$

Ingredients of our proofs (cf. L^{P}-contractivity of $e^{-t L_{A}}$)

$$
\text { Let } \mathcal{D}_{p}(\mathfrak{a})=\left\{u \in H_{0}^{1}(\Omega) ;|u|^{p-2} u \in H_{0}^{1}(\Omega)\right\} .
$$

Nittka's theorem (2012)
$\left\|e^{-t L_{A}}\right\|_{p \rightarrow p} \leqslant 1$ if and only if

$$
\int_{\Omega} \Re\left\langle A \nabla f, \nabla\left(|f|^{p-2} f\right)\right\rangle_{\mathbb{C}^{n}} \geqslant 0 \quad \forall f \in \mathcal{D}_{p}(\mathfrak{a})
$$

$$
p \Re\left\langle A \nabla f, \nabla\left(|f|^{p-2} f\right)\right\rangle_{\mathbb{C}^{n}}
$$

Ingredients of our proofs (cf. L^{P}-contractivity of $e^{-t L_{A}}$)

$$
\text { Let } \mathcal{D}_{p}(\mathfrak{a})=\left\{u \in H_{0}^{1}(\Omega) ;|u|^{p-2} u \in H_{0}^{1}(\Omega)\right\} \text {. }
$$

Nittka's theorem (2012)
$\left\|e^{-t L_{A}}\right\|_{p \rightarrow p} \leqslant 1$ if and only if

$$
\int_{\Omega} \Re\left\langle A \nabla f, \nabla\left(|f|^{p-2} f\right)\right\rangle_{\mathbb{C}^{n}} \geqslant 0 \quad \forall f \in \mathcal{D}_{p}(\mathfrak{a})
$$

$$
p \Re\left\langle A \nabla f, \nabla\left(|f|^{p-2} f\right)\right\rangle_{\mathbb{C}^{n}}=H_{F_{p}}^{A}[f ; \nabla f] .
$$

Ingredients of our proofs (cf. L^{P}-contractivity of $e^{-t L_{A}}$)

$$
\text { Let } \mathcal{D}_{p}(\mathfrak{a})=\left\{u \in H_{0}^{1}(\Omega) ;|u|^{p-2} u \in H_{0}^{1}(\Omega)\right\}
$$

Nittka's theorem (2012)

$$
\left\|e^{-t L_{A}}\right\|_{p \rightarrow p} \leqslant 1 \text { if and only if }
$$

$$
\int_{\Omega} \Re\left\langle A \nabla f, \nabla\left(|f|^{p-2} f\right)\right\rangle_{\mathbb{C}^{n}} \geqslant 0 \quad \forall f \in \mathcal{D}_{p}(\mathfrak{a})
$$

$$
p \Re\left\langle A \nabla f, \nabla\left(|f|^{p-2} f\right)\right\rangle_{\mathbb{C}^{n}}=H_{F_{p}}^{A}[f ; \nabla f] .
$$

When $\operatorname{div}(\Im A)_{a}^{(k)}=0$ for all $k \in\{1, \ldots, n\}$ then also

$$
p \Re \int_{\Omega}\left\langle A \nabla f, \nabla\left(|f|^{p-2} f\right)\right\rangle_{\mathbb{C}^{n}}=\int_{\Omega} H_{F_{p}}^{A_{s}}[f ; \nabla f] .
$$

Ingredients of our proofs (cf. L^{P}-contractivity of $e^{-t L_{A}}$)

$$
\text { Let } \mathcal{D}_{p}(\mathfrak{a})=\left\{u \in H_{0}^{1}(\Omega) ;|u|^{p-2} u \in H_{0}^{1}(\Omega)\right\} \text {. }
$$

Nittka's theorem (2012)

$$
\left\|e^{-t L_{A}}\right\|_{p \rightarrow p} \leqslant 1 \text { if and only if }
$$

$$
\int_{\Omega} \Re\left\langle A \nabla f, \nabla\left(|f|^{p-2} f\right)\right\rangle_{\mathbb{C}^{n}} \geqslant 0 \quad \forall f \in \mathcal{D}_{p}(\mathfrak{a})
$$

$$
p \Re\left\langle A \nabla f, \nabla\left(|f|^{p-2} f\right)\right\rangle_{\mathbb{C}^{n}}=H_{F_{p}}^{A}[f ; \nabla f] .
$$

When $\operatorname{div}(\Im A)_{a}^{(k)}=0$ for all $k \in\{1, \ldots, n\}$ then also

$$
p \Re \int_{\Omega}\left\langle A \nabla f, \nabla\left(|f|^{p-2} f\right)\right\rangle_{\mathbb{C}^{n}}=\int_{\Omega} H_{F_{p}}^{A_{s}}[f ; \nabla f] .
$$

uniform positivity of $H_{F_{p}}^{B} \Leftrightarrow \Delta_{p}(B) \geqslant 0$

Consequences of p-ellipticity (summary)

p-ellipticity lies at the junction of:
(1) convexity of power functions (uniform positivity of the Hessian forms $A^{T}\left[d^{2}|\zeta|^{p} \otimes I_{n}\right]$)
(2) dimension-free bilinear embedding
(3) L^{p}-contractivity of semigroups associated with elliptic div-form operators with (nonsmooth) complex coefficients
(4) holomorphic functional calculus for generators of symmetric contraction semigroups on σ-finite spaces (p-ellipticity of $e^{i \phi} I$) and nonsymetric OU (p-ellipticity of $e^{i \phi} B, B$ real)
(5) (Dindoš-Pipher 2016)
regularity theory of elliptic PDE with complex coefficients (reverse Hölder inequalities for solutions of $L_{A} u$ for complex matrices A).

Main literature

- V. Maz'ya, S. Nazarov, B. Plamenevski: Absence of a De Giorgi-type theorem for strongly elliptic equations with complex coefficients, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 115 (309) (1982) 156-168.
- A. Cialdea, V. Maz'ya: Criterion for the L^{p}-dissipativity of second order differential operators with complex coefficients, J. Math. Pures Appl. 84 (2005), 1067-1100.
- R. Nittka: Projections onto convex sets and L^{p}-quasi-con--tractivity of semigroups, Arch. Math. 98 (2012), 341-353.
- A. Carbonaro, O.D.: Convexity of power functions and bilinear embedding for divergence-form operators with complex coefficients, arXiv:1611.00653
- M. Dindoš, J. Pipher: Regularity theory for solutions to second order elliptic operators with complex coefficients and the L^{p} Dirichlet problem, arXiv:1612.01568

