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2 Abstract

Let A be the generator of a strongly continuous cosine family
(cos(tA))t∈R on a complex Banach space E . The paper develops an
operational calculus for integral transforms and functions of A using the
generalized harmonic analysis associated to certain hypergroups. It is
shown that characters of hypergroups which have Laplace representations
give rise to bounded operators on E . Examples include the Mehler–Fock
transform. The paper uses functional calculus for the cosine family
cos(t

√
∆) which is associated with waves that travel at unit speed. The

main results include an operational calculus theorem for Sturm–Liouville
hypergroups with Laplace representation as well as analogues to the
Kunze–Stein phenomenon in the hypergroup convolution setting.



3 Cosine families

Let E be a separable complex Banach space and L(E) the algebra of
bounded linear operators on E . Let A a closed and densely defined linear
operator in E . Formally, a cosine family on E is a strongly continuous
family {C(t)}t∈R of bounded operators on E such that
C(s − t) + C(s + t) = 2C(s)C(t) and C(0) = I. Such a family admits a
closed densely defined infinitesimal generator A and one naturally writes
cos(tA) for C(t). Cosine families arise in describing the solutions of
well-posed L2 Cauchy problems

∂2w
∂t2 = −A2w , w(0) = u, ∂w

∂t (0) = 0

with initial datum u ∈ L2. In classical situations, these systems admit
wave solutions which propagate at a fixed finite speed.
Given a cosine family {cos(tA)}t∈R, various authors have used this to use
this to define

f (A) = 1
2π

∫ ∞

−∞
F f (t) cos(tA) dt



4 Venturi regions

For ω > 0 we let Σω denote the strip {z ∈ C : |=z| < ω} and iΣω the
corresponding vertical strip. For 0 < θ < π, we introduce the open sector
S0
θ = {z ∈ C \ {0} : | arg z| < θ} and its reflection −S0

θ = {z : −z ∈ S0
θ}.

An important idea is to work with holomorphic functions on ‘Venturi’
regions; that is, those of the form

Vθ,ω = Σω ∪ S0
θ ∪ (−S0

θ ).

Likewise, iVθ,ω will denote the corresponding Venturi region with vertical
axis. As usual, H∞(S) will denote the Banach algebra of bounded
analytic functions on an open subset S of the complex plane.





5 Hypergroups on [0,∞)

Let X = [0,∞), and Cc(X) the space of compactly supported continuous
functions f : X → C. The set Mb(X) of bounded Radon measures on X
with the weak topology forms a complex vector space. When equipped
with a generalized convolution’ operation Mb(X) is a convolution
measure algebra called a hypergroup or ‘convo’ denoted (X, ∗) . Denote
the Dirac point mass at x by εx ∈ Mb(X). It is a hypergroup axiom that
for all x , y ∈ X, εx ∗ εy is a compactly supported probability measure
(generally with infinite support). The action of ∗ in a hypergroup is in
fact completely determined by the convolutions εx ∗ εy . When the base
space is X = [0,∞), the convolution ∗ is necessarily commutative, ε0 is a
multiplicative identity element. In general, hypergroups admit an
involution map x 7→ x−. For x ∈ X, the left translation operator Λx is
defined, initially on Cc(X) by

Λx f (y) =
∫

X
f (t) (εx ∗ εy )(dt) (x , y ∈ X).



6 Convolution and invariant measure

It is traditional and useful to write Λx f (y) as f (x ∗ y) (although this is
not in fact defining an operation on X). Since ∗ is commutative, there
exists an essentially unique Haar measure on X; that is, a nontrivial
positive invariant measure m on [0,∞) satisfying∫

X
Λx f (y)m(dy) =

∫
X

f (y)m(dy) (x ∈ X)

for all f ∈ Cc(X). This allows us to define a (commutative) convolution
between two functions f , g ∈ Cc(X) by

(f ∗ g)(x) =
∫

X
f (y) Λxg(y)m(dy) =

∫
X

f (y) g(x ∗ y)m(dy).

This map extends to L1(m) = L1(X,m) and makes (L1(m), ∗) into a
commutative Banach algebra. One often writes the convolution
operation as Λf g = f ∗ g for f , g ∈ L1(m).



7 Multiplicative functions and characters

1 A continuous function φ : X → C is said to be multiplicative if
φ(x ∗ y) = φ(x)φ(y) for all x , y ∈ X and φ(z) 6= 0 for some z ∈ X.

2 A character on the hypergroup X is a bounded and multiplicative
function φ such that φ(x−) = φ(x) and φ(0) = 1. The character
space X̂ is the set of all characters on X.

When X = [0,∞) the involution is always the identity x− = x , and the
condition that φ(x−) = φ(x) is equivalent to the condition that φ(x) ∈ R
and this simplifies some of the definitions below. The set of bounded and
multiplicative functions φλ can be naturally parametrized by a domain
SX ⊆ C. This occurs, in particular, for Sturm–Liouville hypergroups, in
which case λ is a spectral parameter.



8 The Fourier transform

The character space X̂ is always sufficiently large in our context to enable
one to do harmonic analysis. We can define the Fourier transform of
f ∈ L1(X;m) by setting

f̂ (φ) =
∫

X
f (x)φ(x)m(dx), (φ ∈ X̂).

In the case that X̂ ⊆ {φλ : λ ∈ SX} we shall write f̂ (λ) rather than
f̂ (φλ) and we can extend f̂ to be a function of the complex variable λ.



9 The Plancherel measure

Theorem
(i) (Levitan) There exists a unique Plancherel measure π0 supported on a
closed subset S of X̂ such that f 7→ f̂ for f ∈ L2(m) ∩ L1(m) extends to
a unitary isomorphism L2(m) → L2(π0).
(ii) (Voigt) There exists a unique positive character φ0 ∈ S, and φ0 can
be different from the trivial character I.



10 Laplace representation for characters

Definition A hypergroup (X, ∗) is said to have a Laplace representation
if (a, b) ⊆ S for some 0 < a < b, and for every x ≥ 0, there exists a
positive Radon measure τx on [−x , x ] such that τx([−x , x ]) = φ0(x) and
for every character φλ in S

φλ(x) =
∫ x

−x
cos(λt)τx(dt).

The integral is taken over [−x , x ], and includes any point masses at ±x .



11 Extension of the Fourier transform

Lemma
Suppose that there exist M0, ω0 > 0 such that∫ x

−x
cosh(ω0t) τx(dt) ≤ M0 (x ≥ 0).

1 Then for all λ ∈ Σω0 the function φλ : X → C,

φλ(x) =
∫ x

−x
cos(λt) τx(dt) (x ≥ 0)

is bounded and multiplicative;
2 for all x ∈ X, the map hx : λ 7→ φλ(x) is in H∞(Σω0);
3 R ∪ [−iω0, iω0] is contained in X̂;
4 the Fourier transform f 7→ f̂ is bounded L1(m) → H∞(Σω0).



12 Laplace representation and cosine families

In this section we shall suppose that the operator A generates a strongly
continuous cosine family (cos(tA))t∈R on E , and that (X, ∗) is a
hypergroup which admits a Laplace representation for its characters φλ

as given in Definition 10.
In this setting we define the family of bounded linear operators
{φA(x)}x≥0 on E by the strong operator convergent integrals

φA(x) =
∫ x

−x
cos(At) τx(dt) (x ≥ 0).

Indeed, this enables us to deal with unbounded cosine families, as in
Proposition 13 below.



13 Operational calculus for hypergroups with Laplace
representation

Proposition
Let (X, ∗) have a Laplace representation satisfying and suppose that A
generates a strongly continuous cosine family on E satisfying

‖ cos(tA)‖L(E) ≤ κ cosh(tω0) (t ≥ 0).

1 Then (φA(x))x>0 is a uniformly bounded family of operators;
2 for all f ∈ L1(m), the following integral converges strongly

TA(f ) =
∫ ∞

0
f (x)φA(x)m(dx)

and defines a bounded linear operator on E ;
3 for f , g ∈ L1(m), TA(f ∗ g) = TA(f )TA(g), and so the map

TA : L1(m) → L(E) is an algebra homomorphism.

blower
Sticky Note
 bounds from frame 11



14 Kunze Stein phenomenon

For a locally compact group G, the space L1(G) acts boundedly on
L2(G) by left-convolution. That is, if f ∈ L1(G) then Λf : g 7→ f ∗ g is a
bounded operator on L2(G). In general, this result does not extend to
f ∈ Lp(G) for p > 1. The Kunze–Stein phenomenon refers to the fact
that for certain Lie groups, most classically for G = SL(2,C), for
1 ≤ p < 2 one does obtain a bound of the form

‖f ∗ g‖L2(G) ≤ Cp‖f ‖Lp(G)‖g‖L2(G).

Thus the representation Λ : (L1(G), ∗) → L(L2(G)) : f 7→ Λf extends to
a bounded linear map Λ : Lp(G) → L(L2(G)). Indeed the classical case is
G = SL(2,C) has a maximal compact subgroup K = SU(2,C) such that
K × K acts upon G via (h, k) : g 7→ h−1gk for h, k ∈ K and g ∈ G,
producing a space of orbits G//K = {KgK : g ∈ G}. The double coset
space G//K inherits the structure of a commutative hypergroup
modelled on X = [0,∞).



15 The hypergroup model of G//K

By results of Trimèche, there exists a commutative hypergroup on [0,∞)
that has invariant measure 22 sinh2 x dx . We introduce

ϕλ(x) =
sinλx
λ sinh x =

∫ x

−x

cosλt
2 sinh x dt (λ ∈ C)

so that ϕλ is a bounded multiplicative function for λ ∈ Σ1 and so that
ϕ±i is the trivial character, so that ω0 = 1. The Plancherel measure is

π0(dλ) =
λ2

4π I(0,∞)(λ) dλ,

so that ϕ0(x) = x/ sinh x is the unique positive character in the support
of π0. Also ∫ ∞

0
ϕ0(x)ν sinh2 x dx =

∫ ∞

0
xν sinh2−ν x dx

converges for all ν > 2.



16 Kunze–Stein phenomenon for hypergroups

Theorem
Let (X, ∗) have a Laplace representation and suppose that A generates a
strongly continuous cosine family on E satisfying growth bounds as in 13.
Suppose further that φ0 ∈ Lν(m) for some 2 < ν < ∞. Let 0 < α < 1
and let p = ν/(ν + α− 1). Then

1 the Fourier transform f 7→ f̂ is bounded Lp(m) → H∞(Σαω0);
2 the convolution operator Λf : g 7→ f ∗ g gives a bounded linear

operator on L2(m) for all f ∈ Lp(m);
3 the map f 7→ TαA(f ) is bounded Lp(m) → L(E).

The crucial idea is that α slows the propagation speed of the hypergroup.



17 Mehler–Fock transform

1 For µ = 0, 1, . . . , the associated Legendre functions may be defined
to be the functions Pµ

ν such that

Pµ
ν (cosh x) =

√
2
π

(sinh x)µ
Γ((1/2)− µ)

∫ x

0

cosh(ν + (1/2))y
(cosh x − cosh y)µ+(1/2) dy .

2 Legendre’s functions are defined by

φλ(x) = Piλ−(1/2)(cosh x) = 1
π
√

2

∫ x

−x

cosλy√
cosh x − cosh y

dy .

An alternative notation is R (0,0)
z = Pz with z = iλ− (1/2).

3 The Mehler–Fock transform of order zero of f ∈ L1(sinh x dx) is

f̂ (λ) =
∫ ∞

0
f (x)φλ(x) sinh x dx .



18 Operations for the Mehler–Fock transform

Proposition
Let (cos(tA))t∈R be a cosine family on E and suppose that there exists κ
such that ‖ cos(tA)‖L(E) ≤ κ cosh(t/2) for all t ≥ 0. Then

1 there exists a hypergroup ([0,∞), ∗) with Laplace representation
such that f 7→ f̂ is the Mehler–Fock transform of order zero;

2 (φA(x))x>0 is a bounded family of operators;
3 the integral

TA(f ) =
∫ ∞

0
φA(x)f (x) sinh x dx (f ∈ L1(sinh x dx))

defines a bounded linear operator such that
TA(g ∗ h) = TA(g)TA(h) for all g , h ∈ L1(sinh x dx);

4 for 2 < ν < ∞, 0 < α < 1 and p = ν/(ν + α− 1), the linear
operator f 7→ TαA(f ) is bounded Lp(sinh x dx) → L(E).



19 Proof

(i) Mehler showed that

−φ′′
λ(x)− coth x φ′

λ(x) = (λ2 + (1/4))φλ(x).

Trimèche introduces a hypergroup structure on (0,∞) such that the φλ

for λ ∈ Σ1/2 are bounded and multiplicative for this hypergroup, and he
shows that the invariant measure and the Plancherel measure are
supported on [0,∞), and satisfy

m(x) dx = sinh x dx ,

π0(dλ) = λ tanh(πλ)dλ,

so the generalized Fourier transform f̂ (λ) =
∫∞

0 f (x)φλ(x)m(x) dx
reduces to the Mehler–Fock transform of order zero. Note that λ = i/2
gives the trivial character, which is not in the support of π0.



20 Laplace representation and the positive character

(ii) Definition 17 gives the Laplace representation. We now observe that∫ x

−x

cosh(y/2) dy√
cosh x − cosh y

=

∫ x

−x

cosh(y/2) dy√
sinh2(x/2)− sinh2(y/2)

is bounded, Hence Proposition 13 gives ‖φA(x)‖L(E) ≤ κ.
(iii) Given that the hypergroup convolution ∗ exists, we can apply
Proposition 13.
(iv) Whereas φ0(x) can be expressed in terms of Jacobi’s complete
elliptic integral of the first kind with modulus i sinh(x/2), we require only
the formula

φ0(x) =
1
π

∫ x

0

dy√
sinh2(x/2)− sinh2(y/2)

≤ 2
√

2x
π
√
sinh(x/2)

.

From the differential equation we obtain φ0(x) = O(xe−x/2) as x → ∞,
so φ0 ∈ Lν(sinh x) for all 2 < ν < ∞. Hence we can apply Theorem 16.



21 Operational calculus for Sturm–Liouville hypergroups

To produce natural examples of hypergroups as in Theorem 16, we
consider certain differential operators of the form

Lφ(x) = −d2φ

dx2 − m′(x)
m(x)

dφ
dx , (x ≥ 0).

Under suitable conditions on the function m, one can define a
hypergroup structure on X = [0,∞) for which the characters correspond
to suitably normalized eigenfunctions of this operator. The Haar measure
for these hypergroups is just m(x) dx where dx is the usual Lebesgue
measure on X.



22 Conditions on Sturm–Liouville operators

Definition Suppose that ω0 ≥ 0 and γ > −1/2. We say that a function
m : [0,∞) → [0,∞) satisfies (H(ω0)) if:

1 m(x) = x2γ+1q(x) where q ∈ C∞(R) is even, positive and
m(x)/x2γ+1 → q(0) > 0 as x → 0+;

2 m(x) increases to infinity as x → ∞, and m′(x)/m(x) → 2ω0 as
x → ∞; and either

3 m′(x)/m(x) is decreasing; or
4 the function

Q(x) = 1
2

(q′

q

)′
+

1
4

(q′

q

)2
+

2γ + 1
2x

(q′

q

)
− ω2

0.

is positive, decreasing and integrable with respect to Lebesgue
measure over (0,∞).



23 Existence of Laplace representations for SL hypergroups

Lemma
Suppose that ω0 > 0 and that m satisfies (H(ω0)).

1 Then there exists a commutative hypergroup on [0,∞) such that
x− = x ;

2 the solutions of

−d2φλ

dx2 − m′(x)
m(x)

dφλ

dx = (ω2
0 + λ2)φλ

such that φλ(0) = 1, and φ′
λ(0) = 0 for λ ≥ 0 are characters in S;

3 φλ(x) has a Laplace representation, where ±iω0 corresponds to the
trivial character, and the bound holds;

4 X̂ = R ∪ [−iω0, iω0].



24 Kunze–Stein phenomenon for Sturm–Liouville
hypergroups

Theorem
Suppose that m and φλ are as in Lemma 23 with ω0 > 0 and that
(cos(tA))t∈R is a strongly continuous cosine family on E such that

‖ cos(tA)‖L(E) ≤ κ cosh(ω0t) (t ∈ R)

and some κ < ∞. Let 2 < ν < ∞, 0 < α < 1 and p = ν/(ν + α− 1).
1 Then φλ is a bounded multiplicative function on (X, ∗) for all

λ ∈ Σω0 ;
2 the Fourier transform f 7→ f̂ (λ) is bounded Lp(m) → H∞(Σαω0);
3 (φA(x))x≥0 gives a bounded family of linear operators on E ,

TA(f ) =
∫∞

0 f (x)φA(x)m(x) dx defines a bounded linear operator
on E for all f ∈ L1(m), and TA(f ∗ g) = TA(f )TA(g) for all
f , g ∈ L1(m);

4 the map f 7→ TαA(f ) is bounded Lp(m) → L(E).



25 Geometrical application

Let M be a complete Riemannian manifold of dimension n with metric ρ
that has injectivity radius bounded below by some r0 > 0. This means
that the exponential map is injective on the tangent space above the ball
B(x , r0) = {y ∈ M : ρ(x , y) ≤ r0} for all x ∈ M. For fixed x0 ∈ M, we
can use ρ(x , x0) as the radius in a system of polar coordinates with
centre x0, noting that ρ is not differentiable on the cut locus. Let vol be
the Riemannian volume measure, and for an open subset Ω with compact
closure, let Ωε = {x ∈ M : ∃y ∈ Ω : ρ(x , y) ≤ ε} be its ε-enlargement
for ε > 0. Then let the outer Hausdorff measure of the boundary ∂Ω of
Ω be

area(∂Ω) = lim sup
ε→0+

ε−1(vol(Ωε)− vol(Ω)).

In particular, let σ(x0, r) = area(∂B(x0, r)) be the surface area of a
sphere, and m(x0, r) = vol(B(x0, r)) the volume of a ball.



26 Laplace operator on Riemannian manifold

The Laplace operator ∆ is essentially self-adjoint on C∞
c (M;C) by

Chernoff’s theorem so we can define functions of
√
∆ via the spectral

theorem in L2(M, vol) = L2(M). The distributional support of
cos t

√
∆δx0 travels at unit speed on M. Then for any smooth radial

function g(r), the Laplace operator satisfies

∆g = −g ′′(r)− σ′(x0, r)
σ(x0, r)

g ′(r).

For r0 > δ > 0, the modified Cheeger constant is

I∞,δ(M) = inf
{area(∂Ω)

vol(Ω)
: Ω

}
where the infimum is taken over all the open subsets Ω of M that have
compact closure, have smooth boundary ∂Ω and contain a metric ball of
radius δ.



27 Radial Laplacian gives a SL hypergroup

Proposition
Let the Riemannian manifold M be as above and suppose that

1 M is noncompact with Ricci curvature bounded below by κ(n − 1)
where κ < 0;

2 I∞,δ(M) > 0 for some δ > 0;
3 r 7→ logm(x0, r) and r 7→ log σ(x0, r) are concave functions of

r ∈ (0,∞).
Then m(x0, r) and σ(x0, r) satisfy conditions (1), (2) and (3) of
Definition 22 with 2ω0 ≥ I∞,δ(M).

Hence the Sturm-Liouville hypergroup theory can be applied to the
Laplace operator ∆ on radial functions.



28 Hyperbolic space

In particular, this result applies to hyperbolic space with constant
negative curvature. Let H = {z = x + iy : y > 0} and let SL(2,R) act
on H by linear fractional transformations[

a b
c d

]
: z 7→ az + b

cz + d .

The geodesic polar coordinates with respect to centre i are (r , u), where[
cos u sin u
− sin u cos u

] [
e−r/2 0

0 er/2

]
acting on i gives a point at distance r and angle u. The Laplace operator
acting on radial functions, which depend on ρ, has eigenfunctions

−φ′′(r)− coth r φ′(r) = ((1/4) + t2)φ(r),

with solution
φ(r) = P−1/2+it(cosh r).



29 Functional Calculus Problem

f ∈ (L1(m), ∗) −→ f̂ ∈ A ⊂ H∞(Σω)
↘ ↓

Lp(m) −→ L(E)

f̂ (A) = TA(f ) =
∫

f (x)φA(x)m(x)dx

Problem
Let Vθ,ω be a Venturi region that contains Σω. Under what conditions on
E and A is there a bounded H∞ functional calculus map
H∞(Vθ,ω) → L(E) that extends TA?
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