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Hardy spaces
As usual H2(D) is the Hardy space of the unit disc
D, the functions

f (z) =
∞∑
n=0

anz
n

with

‖f ‖2 =
∞∑
n=0

|an|2 <∞.

It embeds isometrically as a subspace of L2(T), with
T the unit circle,

f (e it) ∼
∞∑
n=0

ane
int .



Orthogonal decomposition

Indeed we may write

L2(T) = H2 ⊕ (H2)⊥,

so that

∞∑
n=−∞

ane
int =

∞∑
n=0

ane
int +

−1∑
n=−∞

ane
int ,

and
f ∈ H2 ⇐⇒ zf ∈ (H2)⊥ = H2

0 .

Here, and usually from now on, we write z = e it .



Toeplitz operators in brief
For g ∈ L∞(T) we define the Toeplitz operator Tg

on H2 by

Tg f = PH2(gf ) (f ∈ H2),

or multiplication followed by orthogonal projection.
It is well known that ‖Tg‖ = ‖g‖∞, and if g has
Fourier coefficients (cn), then Tg has the matrix

c0 c−1 c−2 · · ·
c1 c0 c−1

. . .

c2 c1 c0
. . .

...
...

... . . .

 .



Inner–outer factorizations

Recall that if f ∈ H2, not the 0 function, then it has
an inner–outer factorization (unique up to
unimodular constants)

f = θu

with θ inner, i.e., |θ(e it)| = 1 a.e., and with u outer
(no nontrivial inner divisors). Equivalently,

span (u, zu, z2u, . . .) = H2.



Model spaces

The factorization follows from Beurling’s theorem,
that the non-trivial closed invariant subspaces for
the shift S = Tz are the subspaces θH2, with θ
inner.

Now it follows that the invariant subspaces for the
backwards shift S∗ = Tz are the model spaces

Kθ = H2 	 θH2 = H2 ∩ θH2
0

with θ inner.

It is easy to check that Kθ = kerTθ.



Examples
(i) Take θ(z) = zn, and then

Kθ = span(1, z , z2, . . . , zn−1).

(ii) Take

θ(z) =
n∏

j=1

z − aj
1− ajz

,

a finite Blaschke product with distinct zeroes
a1, a2, . . . , an in D. Then

Kθ = span

(
1

1− a1z
, . . . ,

1

1− anz

)
.



On the right half-plane C+

For an infinite-dimensional example, let L denote
the Laplace transform, and consider, for T > 0,

L2(0,T ) ↪→ L2(0,∞)

↓ L ↓ L

Kθ ↪→ H2(C+)

with H2(C+) the Hardy space on C+.

Here L acts as an isomorphism, θ is the inner
function θ(s) = e−sT , and Kθ is its model space (a
Paley–Wiener space).



General Toeplitz kernels

We mentioned that Kθ = kerTθ, so let’s look at
general Toeplitz kernels (T-kernels for short),
kerTg .

These are nearly invariant, i.e., if f ∈ kerTg , with
f (0) = 0, then f (z)/z is in kerTg .

Proof: gf ∈ H2
0 and so zgf ∈ H2

0 .

In fact Toeplitz kernels have the stronger property
that one can divide out any inner function θ, not
just θ(z) = z .

Hitt (1988) and then Sarason (also 1988) classified
nearly-invariant subspaces.



Nearly-invariant subspaces

Near invariance means that if f ∈ N , with f (0) = 0,
then f (z)/z is in N .

They have the form N = FK , where K is a model
space, {0}, or H2, and F is an isometric multiplier.
That is,

‖Fh‖ = ‖h‖ (h ∈ K ).

For Toeplitz kernels (apart from {0}, which we’ll
always exclude), F will actually be an outer
function, and K will be a Kθ.



Minimal Toeplitz kernels

Let f ∈ H2. Then there is a minimal T-kernel K
containing f . That is, f ∈ K = kerTg for some
g ∈ L∞, and if f ∈ kerTh then kerTg ⊆ kerTh.

We write K = Kmin(f ).

Indeed if f = θu (inner/outer factorization), then
we may take

g =
zθu

u
,

(Câmara–JRP, 2014, using ideas of Sarason et al).

Note that g is even unimodular.



The vectorial case

For n ≥ 1, let (H2)n = H2(D,Cn) denote the Hardy
space of Cn-valued functions, with the obvious
Hilbert space norm.

We can make a similar definition of Toeplitz
operators (H2)n → (H2)n, with matrix-valued
symbols in L∞,n×n.

It is still unknown whether every function in (H2)n is
contained in a minimal T-kernel.

In the rational case, the result does hold.



Maximal vectors

Back in the scalar case, it now turns out that
Toeplitz kernels are not so complicated after all.

Theorem. [CP14] Every Toeplitz kernel K is
Kmin(f ) for some f ∈ K .

Indeed, if K 6= {0} and K = kerTg , then
K = Kmin(k) if and only if k ∈ H2 and

k = g−1zu,

with u outer. We call these maximal vectors.



Example
With θ(z) = z2, Kθ = span(1, z).

The maximal vectors are k(z) = a + bz where
az + b is outer. That is, 0 ≤ |a| ≤ |b|, b 6= 0.

For example, Kmin(z + 1
2) = Kθ, as by

near-invariance we can divide out the inner function
(z + 1

2)/(1 + z/2), and so 1 + z/2 is also in the
minimal kernel.

But Kmin(z + 2) = span(z + 2), a Toeplitz kernel
but not a model space.

Indeed, span(z + 2) = kerTg , with

g(z) =
z(z + 2)

z + 2
.



Multipliers

For arbitrary subspaces P ,Q ⊆ H2, we write

M(P ,Q) = {w ∈ Hol(D) : wp ∈ Q for all p ∈ P}.

If P is a Toeplitz kernel, then it contains an outer
function (these have no zeroes) so all multipliers
from P to Q are automatically in Hol(D).

Functions in M(P ,Q) need not lie in H2, although
they do if P is a model space.



Multipliers again

For example,

f (z) = (z − 1)1/2

spans a 1-dimensional T-kernel K = Tg with symbol

g(z) = z−3/2

with arg z ∈ [0, 2π) on T. (Trust me...)

So the function 1/f , which is not in H2, multiplies
K onto the space of constant functions, which is
kerTz .



Multipliers for model spaces

Theorem: (Fricain, Hartmann, Ross, 2016). For θ,
ϕ inner, w ∈ M(Kθ,Kϕ) if and only if both

(i) w(S∗θ) ∈ Kϕ (note that (S∗θ)(z) = θ(z)−θ(0)
z ),

and

(ii) wKθ ⊂ L2(T).

The second condition says that |w |2dm is a
Carleson measure for Kθ.

Since S∗θ ∈ Kθ both conditions are obviously
necessary.



Multipliers for Toeplitz kernels

One generalization (Câmara–JRP, 2016) goes as
follows:

Assume that kerTg and kerTh are non-trivial. Then
w ∈ M(kerTg , kerTh) if and only if both

(i) wk ∈ kerTh for some (and hence every) maximal
vector k in kerTg , and

(ii) w kerTg ⊆ L2(T).

Again both conditions are obviously necessary, and
since Kθ = Kmin(S∗θ) for θ inner, we may deduce
the [FHR] result.



What test functions can we use?

In fact only maximal vectors can be used.

For if k ∈ kerTg and suppose that k is not
maximal, i.e., Kmin(k) ( kerTg .

Then the multiplier w(z) = 1 maps k into Kmin(k),
but doesn’t map kerTg into Kmin(k).

Often, reproducing kernels are used as test functions
(e.g. for boundedness of Hankel operators and
Carleson measures), but not here, since in general
they are not maximal.



Carleson measures for T-kernels

Since we have kerTg = FKθ for some inner function
θ and some isometric multiplier F , the Carleson
measures for kerTg can be expressed in terms of
those for Kθ.

A partial classification for Kθ (fairly transparent, but
only for some inner functions) is given by Cohn
(1982).

A full classification (less transparent) is in a recent
preprint of Lacey, Sawyer, Shen, Uriarte-Tuero and
Wick (2017).



Surjective multipliers
Crofoot (1994) looked at surjective multipliers for
model spaces, i.e., wKθ = Kϕ.
These exist only when θ and ϕ are related by a disc
automorphism, i.e, ϕ = τ ◦ θ.

For T-kernels we have:

Theorem: w kerTg = kerTh if and only if
w kerTg ⊂ L2(T), w−1 kerTh ⊂ L2(T), and

h = g
w

w

v

u
,

with u, v outer.
For model spaces this leads quickly to Crofoot’s
result.



The right half-plane

In the L2 case there is a unitary equivalence between
Hardy spaces on the disc and half-plane that
preserves Toeplitz kernels.

Thus, we have analogous results, e.g.,

w ∈ M(kerTg , kerTh) if and only if

(i) wk ∈ kerTh for some (and hence every) maximal
vector k in kerTg , and

(ii) w kerTg ⊆ L2(iR).

A suitable choice for Kθ is k(s) =
θ(s)− θ(1)

s − 1
.



What is different about the half-plane?

Note that on the half-plane Kθ can be
infinite-dimensional but still contained in H∞ (not
possible on the disc).

Thus for w ∈ H2 the Carleson measure condition is
automatically satisfied.

In particular, this happens for θ(s) = e−sT , giving
the Paley–Wiener model spaces.

There are applications in finite-time convolution
operators (which correspond to multipliers by the
inverse Laplace transform).



Related work

Closely related to multipliers are truncated
Toeplitz operators Aθ,ϕg mapping Kθ to Kϕ by

Aθ,ϕg f = PKϕ
(gf ) (f ∈ Kθ).

In the case of bounded g these are equivalent after
extension to Toeplitz operators on (H2)2 with 2× 2
matrix-valued symbols.



That’s all. Thank you.


