# Toeplitz kernels, model spaces, and multipliers 

Jonathan R. Partington (Leeds, UK)

IWOTA 2017
Joint work with Cristina Câmara (Lisbon)

## Hardy spaces

As usual $H^{2}(\mathbb{D})$ is the Hardy space of the unit disc $\mathbb{D}$, the functions

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

with

$$
\|f\|^{2}=\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<\infty
$$

It embeds isometrically as a subspace of $L^{2}(\mathbb{T})$, with $\mathbb{T}$ the unit circle,

$$
f\left(e^{i t}\right) \sim \sum_{n=0}^{\infty} a_{n} e^{i n t}
$$

## Orthogonal decomposition

Indeed we may write

$$
L^{2}(\mathbb{T})=H^{2} \oplus\left(H^{2}\right)^{\perp}
$$

so that

$$
\sum_{n=-\infty}^{\infty} a_{n} e^{i n t}=\sum_{n=0}^{\infty} a_{n} e^{i n t}+\sum_{n=-\infty}^{-1} a_{n} e^{i n t}
$$

and

$$
f \in H^{2} \Longleftrightarrow \bar{z} \bar{f} \in\left(H^{2}\right)^{\perp}=\overline{H_{0}^{2}}
$$

Here, and usually from now on, we write $z=e^{i t}$.

## Toeplitz operators in brief

For $g \in L^{\infty}(\mathbb{T})$ we define the Toeplitz operator $T_{g}$ on $H^{2}$ by

$$
T_{g} f=P_{H^{2}}(g f) \quad\left(f \in H^{2}\right)
$$

or multiplication followed by orthogonal projection. It is well known that $\left\|T_{g}\right\|=\|g\|_{\infty}$, and if $g$ has Fourier coefficients $\left(c_{n}\right)$, then $T_{g}$ has the matrix

$$
\left(\begin{array}{cccc}
c_{0} & c_{-1} & c_{-2} & \cdots \\
c_{1} & c_{0} & c_{-1} & \ddots \\
c_{2} & c_{1} & c_{0} & \ddots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

## Inner-outer factorizations

Recall that if $f \in H^{2}$, not the 0 function, then it has an inner-outer factorization (unique up to unimodular constants)

$$
f=\theta u
$$

with $\theta$ inner, i.e., $\left|\theta\left(e^{i t}\right)\right|=1$ a.e., and with $u$ outer (no nontrivial inner divisors). Equivalently,

$$
\overline{\operatorname{span}}\left(u, z u, z^{2} u, \ldots\right)=H^{2}
$$

## Model spaces

The factorization follows from Beurling's theorem, that the non-trivial closed invariant subspaces for the shift $S=T_{z}$ are the subspaces $\theta H^{2}$, with $\theta$ inner.

Now it follows that the invariant subspaces for the backwards shift $S^{*}=T_{\bar{z}}$ are the model spaces

$$
K_{\theta}=H^{2} \ominus \theta H^{2}=H^{2} \cap \theta \overline{H_{0}^{2}}
$$

with $\theta$ inner.
It is easy to check that $K_{\theta}=\operatorname{ker} T_{\bar{\theta}}$.

## Examples

(i) Take $\theta(z)=z^{n}$, and then

$$
K_{\theta}=\operatorname{span}\left(1, z, z^{2}, \ldots, z^{n-1}\right)
$$

(ii) Take

$$
\theta(z)=\prod_{j=1}^{n} \frac{z-a_{j}}{1-\overline{a_{j}} z}
$$

a finite Blaschke product with distinct zeroes $a_{1}, a_{2}, \ldots, a_{n}$ in $\mathbb{D}$. Then

$$
K_{\theta}=\operatorname{span}\left(\frac{1}{1-\overline{a_{1}} z}, \ldots, \frac{1}{1-\overline{a_{n} z}}\right) .
$$

## On the right half-plane $\mathbb{C}_{+}$

For an infinite-dimensional example, let $\mathcal{L}$ denote the Laplace transform, and consider, for $T>0$,

$$
\begin{array}{ccc}
L^{2}(0, T) & \hookrightarrow & L^{2}(0, \infty) \\
\downarrow \mathcal{L} & & \downarrow \mathcal{L} \\
K_{\theta} & \hookrightarrow & H^{2}\left(\mathbb{C}_{+}\right)
\end{array}
$$

with $H^{2}\left(\mathbb{C}_{+}\right)$the Hardy space on $\mathbb{C}_{+}$.
Here $\mathcal{L}$ acts as an isomorphism, $\theta$ is the inner function $\theta(s)=e^{-s T}$, and $K_{\theta}$ is its model space (a Paley-Wiener space).

## General Toeplitz kernels

We mentioned that $K_{\theta}=\operatorname{ker} T_{\bar{\theta}}$, so let's look at general Toeplitz kernels (T-kernels for short), ker $T_{g}$.
These are nearly invariant, i.e., if $f \in \operatorname{ker} T_{g}$, with $f(0)=0$, then $f(z) / z$ is in $\operatorname{ker} T_{g}$.
Proof: $g f \in \overline{H_{0}^{2}}$ and so $\bar{z} g f \in \overline{H_{0}^{2}}$.
In fact Toeplitz kernels have the stronger property that one can divide out any inner function $\theta$, not just $\theta(z)=z$.
Hitt (1988) and then Sarason (also 1988) classified nearly-invariant subspaces.

## Nearly-invariant subspaces

Near invariance means that if $f \in N$, with $f(0)=0$, then $f(z) / z$ is in $N$.
They have the form $N=F K$, where $K$ is a model space, $\{0\}$, or $H^{2}$, and $F$ is an isometric multiplier. That is,

$$
\|F h\|=\|h\| \quad(h \in K)
$$

For Toeplitz kernels (apart from $\{0\}$, which we'll always exclude), $F$ will actually be an outer function, and $K$ will be a $K_{\theta}$.

## Minimal Toeplitz kernels

Let $f \in H^{2}$. Then there is a minimal T-kernel $K$ containing $f$. That is, $f \in K=\operatorname{ker} T_{g}$ for some $g \in L^{\infty}$, and if $f \in \operatorname{ker} T_{h}$ then $\operatorname{ker} T_{g} \subseteq \operatorname{ker} T_{h}$. We write $K=\mathcal{K}_{\text {min }}(f)$.

Indeed if $f=\theta u$ (inner/outer factorization), then we may take

$$
g=\frac{\bar{z} \bar{\theta} \bar{u}}{u}
$$

(Câmara-JRP, 2014, using ideas of Sarason et al).
Note that $g$ is even unimodular.

## The vectorial case

For $n \geq 1$, let $\left(H^{2}\right)^{n}=H^{2}\left(\mathbb{D}, \mathbb{C}^{n}\right)$ denote the Hardy space of $\mathbb{C}^{n}$-valued functions, with the obvious Hilbert space norm.
We can make a similar definition of Toeplitz operators $\left(H^{2}\right)^{n} \rightarrow\left(H^{2}\right)^{n}$, with matrix-valued symbols in $L^{\infty, n \times n}$.
It is still unknown whether every function in $\left(H^{2}\right)^{n}$ is contained in a minimal T-kernel.
In the rational case, the result does hold.

## Maximal vectors

Back in the scalar case, it now turns out that Toeplitz kernels are not so complicated after all.
Theorem. [CP14] Every Toeplitz kernel $K$ is $\mathcal{K}_{\text {min }}(f)$ for some $f \in K$.
Indeed, if $K \neq\{0\}$ and $K=\operatorname{ker} T_{g}$, then $K=\mathcal{K}_{\text {min }}(k)$ if and only if $k \in H^{2}$ and

$$
k=g^{-1} \overline{z u},
$$

with $u$ outer. We call these maximal vectors.

## Example

With $\theta(z)=z^{2}, K_{\theta}=\operatorname{span}(1, z)$.
The maximal vectors are $k(z)=a+b z$ where $\bar{a} z+\bar{b}$ is outer. That is, $0 \leq|a| \leq|b|, b \neq 0$.
For example, $\mathcal{K}_{\min }\left(z+\frac{1}{2}\right)=K_{\theta}$, as by near-invariance we can divide out the inner function $\left(z+\frac{1}{2}\right) /(1+z / 2)$, and so $1+z / 2$ is also in the minimal kernel.
But $\mathcal{K}_{\text {min }}(z+2)=\operatorname{span}(z+2)$, a Toeplitz kernel but not a model space.
Indeed, $\operatorname{span}(z+2)=\operatorname{ker} T_{g}$, with

$$
g(z)=\frac{\bar{z}(\bar{z}+2)}{z+2} .
$$

## Multipliers

For arbitrary subspaces $P, Q \subseteq H^{2}$, we write

$$
M(P, Q)=\{w \in \operatorname{Hol}(\mathbb{D}): w p \in Q \text { for all } p \in P\}
$$

If $P$ is a Toeplitz kernel, then it contains an outer function (these have no zeroes) so all multipliers from $P$ to $Q$ are automatically in $\operatorname{Hol}(\mathbb{D})$.
Functions in $M(P, Q)$ need not lie in $H^{2}$, although they do if $P$ is a model space.

## Multipliers again

For example,

$$
f(z)=(z-1)^{1 / 2}
$$

spans a 1-dimensional T-kernel $K=T_{g}$ with symbol

$$
g(z)=z^{-3 / 2}
$$

with $\arg z \in[0,2 \pi)$ on $\mathbb{T}$. (Trust me...)
So the function $1 / f$, which is not in $H^{2}$, multiplies $K$ onto the space of constant functions, which is $\operatorname{ker} T_{\bar{z}}$.

## Multipliers for model spaces

Theorem: (Fricain, Hartmann, Ross, 2016). For $\theta$, $\varphi$ inner, $w \in M\left(K_{\theta}, K_{\varphi}\right)$ if and only if both
(i) $w\left(S^{*} \theta\right) \in K_{\varphi}$ (note that $\left(S^{*} \theta\right)(z)=\frac{\theta(z)-\theta(0)}{z}$ ), and
(ii) $w K_{\theta} \subset L^{2}(\mathbb{T})$.

The second condition says that $|w|^{2} d m$ is a Carleson measure for $K_{\theta}$.

Since $S^{*} \theta \in K_{\theta}$ both conditions are obviously necessary.

## Multipliers for Toeplitz kernels

One generalization (Câmara-JRP, 2016) goes as follows:

Assume that ker $T_{g}$ and $\operatorname{ker} T_{h}$ are non-trivial. Then $w \in M\left(\operatorname{ker} T_{g}\right.$, $\left.\operatorname{ker} T_{h}\right)$ if and only if both
(i) $w k \in \operatorname{ker} T_{h}$ for some (and hence every) maximal vector $k$ in $\operatorname{ker} T_{g}$, and
(ii) $w \operatorname{ker} T_{g} \subseteq L^{2}(\mathbb{T})$.

Again both conditions are obviously necessary, and since $K_{\theta}=\mathcal{K}_{\text {min }}\left(S^{*} \theta\right)$ for $\theta$ inner, we may deduce the $[F H R]$ result.

## What test functions can we use?

In fact only maximal vectors can be used.
For if $k \in \operatorname{ker} T_{g}$ and suppose that $k$ is not maximal, i.e., $\mathcal{K}_{\min }(k) \subsetneq$ ker $T_{g}$.
Then the multiplier $w(z)=1$ maps $k$ into $\mathcal{K}_{\text {min }}(k)$, but doesn't map ker $T_{g}$ into $\mathcal{K}_{\text {min }}(k)$.
Often, reproducing kernels are used as test functions (e.g. for boundedness of Hankel operators and Carleson measures), but not here, since in general they are not maximal.

## Carleson measures for T-kernels

Since we have ker $T_{g}=F K_{\theta}$ for some inner function $\theta$ and some isometric multiplier $F$, the Carleson measures for ker $T_{g}$ can be expressed in terms of those for $K_{\theta}$.
A partial classification for $K_{\theta}$ (fairly transparent, but only for some inner functions) is given by Cohn (1982).

A full classification (less transparent) is in a recent preprint of Lacey, Sawyer, Shen, Uriarte-Tuero and Wick (2017).

## Surjective multipliers

Crofoot (1994) looked at surjective multipliers for model spaces, i.e., $w K_{\theta}=K_{\varphi}$.
These exist only when $\theta$ and $\varphi$ are related by a disc automorphism, i.e, $\varphi=\tau \circ \theta$.
For T-kernels we have:
Theorem: $w \operatorname{ker} T_{g}=\operatorname{ker} T_{h}$ if and only if $w \operatorname{ker} T_{g} \subset L^{2}(\mathbb{T}), w^{-1} \operatorname{ker} T_{h} \subset L^{2}(\mathbb{T})$, and

$$
h=g \frac{\bar{w}}{w} \frac{\bar{v}}{\bar{u}}
$$

with $u, v$ outer.
For model spaces this leads quickly to Crofoot's result.

## The right half-plane

In the $L^{2}$ case there is a unitary equivalence between Hardy spaces on the disc and half-plane that preserves Toeplitz kernels.
Thus, we have analogous results, e.g.,
$w \in M\left(\operatorname{ker} T_{g}\right.$, ker $\left.T_{h}\right)$ if and only if
(i) $w k \in \operatorname{ker} T_{h}$ for some (and hence every) maximal vector $k$ in $\operatorname{ker} T_{g}$, and
(ii) $w \operatorname{ker} T_{g} \subseteq L^{2}(i \mathbb{R})$.

A suitable choice for $K_{\theta}$ is $k(s)=\frac{\theta(s)-\theta(1)}{s-1}$.

## What is different about the half-plane?

Note that on the half-plane $K_{\theta}$ can be infinite-dimensional but still contained in $H^{\infty}$ (not possible on the disc).
Thus for $w \in H^{2}$ the Carleson measure condition is automatically satisfied.
In particular, this happens for $\theta(s)=e^{-s T}$, giving the Paley-Wiener model spaces.
There are applications in finite-time convolution operators (which correspond to multipliers by the inverse Laplace transform).

## Related work

Closely related to multipliers are truncated Toeplitz operators $A_{g}^{\theta, \varphi}$ mapping $K_{\theta}$ to $K_{\varphi}$ by

$$
A_{g}^{\theta, \varphi} f=P_{K_{\varphi}}(g f) \quad\left(f \in K_{\theta}\right)
$$

In the case of bounded $g$ these are equivalent after extension to Toeplitz operators on $\left(H^{2}\right)^{2}$ with $2 \times 2$ matrix-valued symbols.

That's all. Thank you.

