Limit Operators

Getting your hands on the essentials.

Marko Lindner

UHH

This talk is based on joint work with

- Markus Seidel, Zwickau
- Raffael Hagger, Hannover
- Hagen Söding, TU Hamburg
- Simon Chandler-Wilde, Reading
- Bernd Silbermann, Chemnitz

2 Limit operators

Stability of approximation methods

The Fibonacci Hamiltonian

The essentials

2 Limit operators

3 Stability of approximation methods

🕘 The Fibonacci Hamiltonian

For a bounded linear operator

$$\mathcal{A} : X \to X$$

on a Banach space X, choose a basis in X and represent A as an infinite matrix.

Sometimes it is convenient to number the basis elements over the integers \mathbb{Z} (rather than the naturals \mathbb{N}), leading to a **bi-infinite matrix**:

$$A = \begin{pmatrix} \ddots & \vdots & \vdots & \vdots & \ddots \\ \cdots & a_{-1,-1} & a_{-1,0} & a_{-1,1} & \cdots \\ \cdots & a_{0,-1} & a_{0,0} & a_{0,1} & \cdots \\ \cdots & a_{1,-1} & a_{1,0} & a_{1,1} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

We will mostly think of **banded matrices** *A* with uniformly bounded entries: sup $|a_{ij}| < \infty$, so *A* acts as a bounded linear operator on $\ell^{p}(\mathbb{Z})$, $p \in [1, \infty]$.

For a Banach space X, put

 $\mathcal{L}(X) =$ the set (Banach algebra) of all **bounded** linear operators $X \to X$, $\mathcal{K}(X) =$ the set of all **compact** operators $X \to X$ (closed ideal in $\mathcal{L}(X)$).

Then one can form the factor algebra

The Calkin algebra

$$\mathcal{L}(X)/\mathcal{K}(X) \; = \; \{A + \mathcal{K}(X) : A \in \mathcal{L}(X)\}.$$

For a Banach space X, put

 $\mathcal{L}(X) =$ the set (Banach algebra) of all **bounded** linear operators $X \to X$, $\mathcal{K}(X) =$ the set of all **compact** operators $X \to X$ (closed ideal in $\mathcal{L}(X)$).

Then one can form the factor algebra

The Calkin algebra

$$\mathcal{L}(X)/\mathcal{K}(X) = \{A + \mathcal{K}(X) : A \in \mathcal{L}(X)\}.$$

More specifically, for $X = \ell^{p}(\mathbb{Z})$, let

BO(X) = the set (algebra) of all operators $X \to X$ with a **band matrix**, BDO(X) = the norm closure (Banach algebra) of BO(X).

Operator classes graphically

Operator classes graphically

$$\mathcal{K}(X)$$

compact operators

Operator classes graphically

Let $A \in \mathcal{L}(X)$.

Definition: essential norm

$$\|A\|_{ess} := \|A + \mathcal{K}(X)\| = \inf\{\|A + K\| : K \in \mathcal{K}(X)\} = dist(A, \mathcal{K}(X))$$

Let $A \in \mathcal{L}(X)$.

Definition: essential norm

$$\|A\|_{\text{ess}} := \|A + \mathcal{K}(X)\| = \inf\{\|A + K\| : K \in \mathcal{K}(X)\} = \text{dist}(A, \mathcal{K}(X))$$

Definition: Fredholmness

A is Fredholm ("essentially invertible") iff $A + \mathcal{K}(X)$ is invertible in $\mathcal{L}(X)/\mathcal{K}(X)$.

A is Fredholm iff its kernel and cokernel have finite dimension.

Let $A \in \mathcal{L}(X)$.

Definition: essential norm

$$\|A\|_{\text{ess}} := \|A + \mathcal{K}(X)\| = \inf\{\|A + K\| : K \in \mathcal{K}(X)\} = \text{dist}(A, \mathcal{K}(X))$$

Definition: Fredholmness

A is Fredholm ("essentially invertible") iff $A + \mathcal{K}(X)$ is invertible in $\mathcal{L}(X)/\mathcal{K}(X)$.

A is Fredholm iff its kernel and cokernel have finite dimension.

Definition: Essential spectrum

$$\mathsf{spec}_{\mathsf{ess}} A \ := \ \mathsf{spec}_{\mathcal{L}(X)/\mathcal{K}(X)}(A + \mathcal{K}(X)) \ = \ \{\lambda \in \mathbb{C} : A - \lambda I \text{ is not Fredholm}\}$$

Essential spectrum and norm: diagonal examples

we clearly have

spec $A = \{3, 5\}, \qquad ||A|| = 5$

but

$$spec_{ess}A = \{3\}, \qquad ||A||_{ess} = 3.$$

Essential spectrum and norm: diagonal examples

we clearly have

spec $A = \{3, 5\}, \qquad ||A|| = 5$

but

TUHH

$$\operatorname{spec}_{\operatorname{ess}} A = \{3\}, \qquad \|A\|_{\operatorname{ess}} = 3.$$

The spectral value 5 is not essential ("not visible at ∞ "). A - 5I is not invertible but still Fredholm (kernel and cokernel have finite dimension). For

$$A = \begin{pmatrix} \ddots & & & & \\ & 3 + \varepsilon_{-1} & & \\ & & 3 + \varepsilon_{0} & \\ & & & 3 + \varepsilon_{1} & \\ & & & & 3 + \varepsilon_{2} & \\ & & & & & \ddots \end{pmatrix}$$

with positive ε_n such that $\varepsilon_n \to 0$ as $n \to \pm \infty$, we have

spec
$$A = \{3 + \varepsilon_n : n \in \mathbb{Z}\} \cup \{3\}, \qquad ||A|| = \max\{3 + \varepsilon_n : n \in \mathbb{Z}\}.$$

The spectral value 3 is no eigenvalue but still in the spectrum. A - 3I is injective but has no bounded inverse (not Fredholm, range not closed).

For

$$A = \begin{pmatrix} \ddots & & & \\ & 3 + \varepsilon_{-1} & & \\ & & 3 + \varepsilon_{0} & \\ & & & 3 + \varepsilon_{1} & \\ & & & & 3 + \varepsilon_{2} & \\ & & & & & \ddots \end{pmatrix}$$

with positive ε_n such that $\varepsilon_n \to 0$ as $n \to \pm \infty$, we have

spec
$$A = \{3 + \varepsilon_n : n \in \mathbb{Z}\} \cup \{3\}, \qquad ||A|| = \max\{3 + \varepsilon_n : n \in \mathbb{Z}\}.$$

The spectral value 3 is no eigenvalue but still in the spectrum. A - 3I is injective but has no bounded inverse (not Fredholm, range not closed). It holds

$$\operatorname{spec}_{\operatorname{ess}} A = \{3\}, \qquad \|A\|_{\operatorname{ess}} = 3.$$

Essential spectrum and norm: diagonal examples

For

with positive ε_n such that $\varepsilon_n \to 0$ as $n \to \pm \infty$, we have

spec $A = \{3 + \varepsilon_n, 5 + \varepsilon_n : n \in \mathbb{Z}\} \cup \{3, 5\}, \qquad ||A|| = \max\{3 + \varepsilon_n, 5 + \varepsilon_n : n \in \mathbb{Z}\}.$

The spectral values 3 and 5 are no eigenvalues of A. A - 3I and A - 5I are injective but have no bounded inverse (range not closed).

Essential spectrum and norm: diagonal examples

For

with positive ε_n such that $\varepsilon_n \to 0$ as $n \to \pm \infty$, we have

spec $A = \{3 + \varepsilon_n, 5 + \varepsilon_n : n \in \mathbb{Z}\} \cup \{3, 5\}, \qquad ||A|| = \max\{3 + \varepsilon_n, 5 + \varepsilon_n : n \in \mathbb{Z}\}.$

The spectral values 3 and 5 are no eigenvalues of A. A - 3I and A - 5I are injective but have no bounded inverse (range not closed).

It holds

$$spec_{ess}A = \{3, 5\}, \qquad ||A||_{ess} = 5.$$

it holds that

spec_{ess}
$$A =$$
 the set of all partial limits of the sequence $(a_{n,n})_{n \in \mathbb{Z}}$.

In other words:

$$\lambda \in \operatorname{spec}_{\operatorname{ess}} A \quad \iff \quad \exists n_1, n_2, \dots \to \pm \infty : a_{n_k, n_k} \to \lambda.$$

Moreover,

 $||A||_{ess} = the largest (in modulus) partial limit = lim sup |a_{n,n}|.$

it holds that

spec_{ess}
$$A =$$
 the set of all partial limits of the sequence $(a_{n,n})_{n \in \mathbb{Z}}$.

In other words:

$$\lambda \in \operatorname{spec}_{\operatorname{ess}} A \quad \iff \quad \exists n_1, n_2, \dots \to \pm \infty : a_{n_k, n_k} \to \lambda.$$

Moreover,

 $||A||_{ess} =$ the largest (in modulus) partial limit = lim sup $|a_{n,n}|$.

it holds that

 $spec_{ess}A = the set of all partial limits of the sequence <math>(a_{n,n})_{n \in \mathbb{Z}}$.

In other words:

$$\lambda \in \operatorname{spec}_{\operatorname{ess}} A \quad \iff \quad \exists n_1, n_2, \dots \to \pm \infty : a_{n_k, n_k} \to \lambda.$$

Moreover,

 $||A||_{ess} =$ the largest (in modulus) partial limit $= \lim \sup |a_{n,n}|$.

For a general (bounded) diagonal matrix

it holds that

 $\operatorname{spec}_{\operatorname{ess}} A = \operatorname{the set}$ of all partial limits of the sequence $(a_{n,n})_{n \in \mathbb{Z}}$ $\|A\|_{\operatorname{ess}} = \operatorname{the largest}$ (in modulus) partial limit $= \limsup |a_{n,n}|$.

For a general (bounded) diagonal matrix

it holds that

 $\operatorname{spec}_{\operatorname{ess}} A = \operatorname{the set}$ of all partial limits of the sequence $(a_{n,n})_{n \in \mathbb{Z}}$ $\|A\|_{\operatorname{ess}} = \operatorname{the} \operatorname{largest}$ (in modulus) partial limit $= \operatorname{lim} \sup |a_{n,n}|$.

The whole coset $A + \mathcal{K}(X) \in \mathcal{L}(X)/\mathcal{K}(X)$ is encoded in the partial limits of $(a_{n,n})_{n \in \mathbb{Z}}$.

For a general (bounded) diagonal matrix

it holds that

 $\operatorname{spec}_{\operatorname{ess}} A =$ the set of all partial limits of the sequence $(a_{n,n})_{n \in \mathbb{Z}}$ $\|A\|_{\operatorname{ess}} =$ the largest (in modulus) partial limit = $\limsup |a_{n,n}|$.

The whole coset $A + \mathcal{K}(X) \in \mathcal{L}(X)/\mathcal{K}(X)$ is encoded in the partial limits of $(a_{n,n})_{n \in \mathbb{Z}}$. Restricting consideration to diagonal matrices, the Calkin algebra is

 $\mathcal{L}_{\operatorname{diag}}(X)/\mathcal{K}_{\operatorname{diag}}(X) \cong \ell^{\infty}/c_0.$

Limit operators 2

From diagonal to band-dominated matrices

For $A \in BDO(X)$, the coset $A + \mathcal{K}(X)$ is still determined by the asymptotics of $A = (a_{i,j})$ at infinity. Again, take a sequence $n_1, n_2, \dots \to \pm \infty$ and

follow the entries
$$a_{n_k,n_k}$$
 as $k \to \infty$. (1)

New: Now also the context of the entries (1) is important.

From diagonal to band-dominated matrices

For $A \in BDO(X)$, the coset $A + \mathcal{K}(X)$ is still determined by the asymptotics of $A = (a_{i,j})$ at infinity. Again, take a sequence $n_1, n_2, \dots \to \pm \infty$ and

follow the entries
$$a_{n_k,n_k}$$
 as $k \to \infty$. (1)

New: Now also the context of the entries (1) is important.

Not only the sequence (1) itself shall converge but also its neighbour entries:

$$a_{n_k+i,n_k+j} \rightarrow : b_{i,j} \quad \forall i,j \in \mathbb{Z}.$$

The existence of such sequences $h = (n_k)$ is guaranteed by the Bolzano-Weierstrass theorem.

Definition: limit operator

The operator with matrix $B = (b_{i,j})_{i,j \in \mathbb{Z}}$ is called *limit operator of A w.r.t. the sequence h.*

We write A_h for B and $\sigma^{op}(A)$ for the set of all A_h .

Limit operators: Time for examples

A periodic matrix:

Limit operators: Time for examples

A periodic matrix:

Simple but non-periodic:

Discrete Schrödinger operator in 1D

Marko Lindner

гинн

$$(Ax)_n = x_{n-1} + v(n)x_n + x_{n+1}, \qquad n \in \mathbb{Z}$$

with a bounded potential $v \in \ell^{\infty}(\mathbb{Z})$. The matrix looks like this

Discrete Schrödinger operator in 1D

$$(Ax)_n = x_{n-1} + v(n)x_n + x_{n+1}, \qquad n \in \mathbb{Z}$$

with a bounded potential $v \in \ell^{\infty}(\mathbb{Z})$. The matrix looks like this

$$A = \begin{pmatrix} \ddots & \ddots & & & \\ \ddots & v_{-2} & 1 & & & \\ & 1 & v_{-1} & 1 & & & \\ & & 1 & v_0 & 1 & & \\ & & & 1 & v_1 & 1 & \\ & & & & 1 & v_2 & \ddots \\ & & & & & \ddots & \ddots \end{pmatrix}$$

Limit op's of A:

$$(Bx)_n = x_{n-1} + w(n)x_n + x_{n+1}, \qquad n \in \mathbb{Z}$$

with a potential w "locally representing v at infinity".

So it is enough to look at the potential v:

Example 1: locally constant potential

$$\mathbf{v} = (\cdots, \underbrace{\beta, \beta, \beta, \beta}_{4}, \underbrace{\alpha, \alpha, \alpha}_{3}, \underbrace{\beta, \beta}_{2}, \underbrace{\alpha}_{1}, \underbrace{\beta, \beta}_{2}, \underbrace{\alpha, \alpha, \alpha}_{3}, \underbrace{\beta, \beta, \beta, \beta}_{4}, \cdots), \qquad \alpha \neq \beta$$

So it is enough to look at the potential v:

Example 1: locally constant potential

$$\mathbf{v} = (\cdots, \underbrace{\beta, \beta, \beta, \beta}_{4}, \underbrace{\alpha, \alpha, \alpha}_{3}, \underbrace{\beta, \beta}_{2}, \underbrace{\alpha}_{1}, \underbrace{\beta, \beta}_{2}, \underbrace{\alpha, \alpha, \alpha}_{3}, \underbrace{\beta, \beta, \beta, \beta}_{4}, \cdots), \qquad \alpha \neq \beta$$

 \Rightarrow 4 limop's:

$$w = (\cdots, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \cdots)$$
$$w = (\cdots, \beta, \beta, \beta, \beta, \beta, \beta, \beta, \cdots)$$
$$w = (\cdots, \alpha, \alpha, \alpha, \beta, \beta, \beta, \cdots)$$
$$w = (\cdots, \beta, \beta, \beta, \alpha, \alpha, \alpha, \cdots)$$

...and shifts of the latter two.

So it is enough to look at the potential v:

Example 1: locally constant potential

$$\nu = (\cdots, \underbrace{\beta, \beta, \beta, \beta}_{4}, \underbrace{\alpha, \alpha, \alpha}_{3}, \underbrace{\beta, \beta}_{2}, \underbrace{\alpha}_{1}, \underbrace{\beta, \beta}_{2}, \underbrace{\alpha, \alpha, \alpha}_{3}, \underbrace{\beta, \beta, \beta, \beta}_{4}, \cdots), \qquad \alpha \neq \beta$$

 \Rightarrow 4 limop's:

$$w = (\cdots, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \cdots)$$
$$w = (\cdots, \beta, \beta, \beta, \beta, \beta, \beta, \beta, \cdots)$$
$$w = (\cdots, \alpha, \alpha, \alpha, \beta, \beta, \beta, \cdots)$$
$$w = (\cdots, \beta, \beta, \beta, \alpha, \alpha, \alpha, \cdots)$$

...and shifts of the latter two.

Example 2: slowly oscillating potential

$$v(n+1)-v(n) \rightarrow 0, \qquad n \rightarrow \infty$$

e.g. $v(n) = \cos \sqrt{|n|}$.

So it is enough to look at the potential *v*:

Example 1: locally constant potential

$$\nu = (\cdots, \underbrace{\beta, \beta, \beta, \beta}_{4}, \underbrace{\alpha, \alpha, \alpha}_{3}, \underbrace{\beta, \beta}_{2}, \underbrace{\alpha}_{1}, \underbrace{\beta, \beta}_{2}, \underbrace{\alpha, \alpha, \alpha}_{3}, \underbrace{\beta, \beta, \beta, \beta}_{4}, \cdots), \qquad \alpha \neq \beta$$

 \Rightarrow 4 limop's:

$$w = (\cdots, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \cdots)$$
$$w = (\cdots, \beta, \beta, \beta, \beta, \beta, \beta, \beta, \cdots)$$
$$w = (\cdots, \alpha, \alpha, \alpha, \beta, \beta, \beta, \cdots)$$
$$w = (\cdots, \beta, \beta, \beta, \alpha, \alpha, \alpha, \cdots)$$

...and shifts of the latter two.

Example 2: slowly oscillating potential

$$v(n+1)-v(n) \rightarrow 0, \qquad n \rightarrow \infty$$

e.g. $v(n) = \cos \sqrt{|n|}$.

 \Rightarrow Limop's (all constant):

$$w(n) \equiv a, \qquad a \in v(\infty)$$

Take random (i.i.d.) samples v(n) from a compact set $V \subset \mathbb{C}$.

 $\xrightarrow{a.s.}$ The infinite "word" $(\cdots, v(-1), v(0), v(1), \cdots)$ contains **every** finite word over V as a subword (up to arbitrary accuracy $\varepsilon > 0$). [*pseudo-ergodic*, Davies 2001]

Take random (i.i.d.) samples v(n) from a compact set $V \subset \mathbb{C}$.

a.s. The infinite "word" $(\dots, v(-1), v(0), v(1), \dots)$ contains **every** finite word over V as a subword (up to arbitrary accuracy $\varepsilon > 0$). [*pseudo-ergodic*, Davies 2001]

 \Rightarrow lots of limop's: **all** functions $w : \mathbb{Z} \to V$

Take random (i.i.d.) samples v(n) from a compact set $V \subset \mathbb{C}$.

a.s. The infinite "word" (··· , v(-1), v(0), v(1), ···) contains **every** finite word over V as a subword (up to arbitrary accuracy $\varepsilon > 0$). [*pseudo-ergodic*, Davies 2001]

 \Rightarrow lots of limop's: **all** functions $w : \mathbb{Z} \to V$

Example 4: (almost-)periodic potential

$$v(n) = \cos(n\alpha), \quad n \in \mathbb{Z}$$

Case 1: $\alpha = \frac{p}{q} 2\pi \in \pi \mathbb{Q}$ (periodic) $\Rightarrow q$ limop's:

$$w_k(n) = \cos((n+k)\alpha), \qquad k=1,...,q$$

Take random (i.i.d.) samples v(n) from a compact set $V \subset \mathbb{C}$.

a.s. The infinite "word" (··· , v(-1), v(0), v(1), ···) contains **every** finite word over V as a subword (up to arbitrary accuracy $\varepsilon > 0$). [*pseudo-ergodic*, Davies 2001]

 \Rightarrow lots of limop's: **all** functions $w : \mathbb{Z} \to V$

Example 4: (almost-)periodic potential

$$v(n) = \cos(n\alpha), \quad n \in \mathbb{Z}$$

Case 1: $\alpha = \frac{p}{q} 2\pi \in \pi \mathbb{Q}$ (periodic) $\Rightarrow q$ limop's:

$$w_k(n) = \cos((n+k)\alpha), \qquad k = 1, ..., q$$

Case 2: $\alpha \notin \pi \mathbb{Q}$ (almost-periodic, see Almost-Mathieu operator) $\Rightarrow \infty$ -many limop's:

$$w_{\theta}(n) = \cos(n\alpha + \theta), \qquad \theta \in [0, 2\pi)$$

For each $n \in \mathbb{Z}$, define the *n*-shift on $X = \ell^{p}(\mathbb{Z})$ via

 $S_n: x \mapsto y$ with $x_i = y_{i+n}$.

For each $n \in \mathbb{Z}$, define the *n*-shift on $X = \ell^{p}(\mathbb{Z})$ via

 $S_n: x \mapsto y$ with $x_i = y_{i+n}$.

Then, for $h = (n_1, n_2, ...)$ with $|n_k| \to \infty$, one has

 $(S_{-n_k}AS_{n_k})_{i,j} = A_{i+n_k,j+n_k}, \qquad i,j\in\mathbb{Z},$

so that the limit operator A_h of $A \in BDO(X)$ equals

$$A_h = \lim_{k\to\infty} S_{-n_k} A S_{n_k},$$

the limit taken in the strong topology (pointwise convergence on X).

For each $n \in \mathbb{Z}$, define the *n*-shift on $X = \ell^{p}(\mathbb{Z})$ via

 $S_n: x \mapsto y$ with $x_i = y_{i+n}$.

Then, for $h = (n_1, n_2, ...)$ with $|n_k| \to \infty$, one has

 $(S_{-n_k}AS_{n_k})_{i,j} = A_{i+n_k,j+n_k}, \qquad i,j\in\mathbb{Z},$

so that the limit operator A_h of $A \in BDO(X)$ equals

$$A_h = \lim_{k \to \infty} S_{-n_k} A S_{n_k},$$

the limit taken in the strong topology (pointwise convergence on X).

In this sense, the set $\sigma^{op}(A)$ of **all** limit operators of A is the set of all partial limits of the operator sequence

$$(S_{-n}AS_n)_{n\in\mathbb{Z}}.$$

The very same can be done with $X = \ell^{p}(\mathbb{Z}^{d})$ and $A \in BDO(X)$.

Again, the set $\sigma^{op}(A)$ of all limit operators of A is the set of all partial limits of the operator "sequence"

 $(S_{-n}AS_n)_{n\in\mathbb{Z}^d}$ or, likewise, of the function $f_A: n\in\mathbb{Z}^d\mapsto S_{-n}AS_n\in BDO(X)$.

The very same can be done with $X = \ell^p(\mathbb{Z}^d)$ and $A \in BDO(X)$.

Again, the set $\sigma^{op}(A)$ of all limit operators of A is the set of all partial limits of the operator "sequence"

 $(S_{-n}AS_n)_{n\in\mathbb{Z}^d}$ or, likewise, of the function $f_A: n\in\mathbb{Z}^d\mapsto S_{-n}AS_n\in BDO(X)$.

- Take a suitable **compactification** of \mathbb{Z}^d .
- Extend the function f_A continuously to it.
- Evaluate f_A at the **boundary** $\partial \mathbb{Z}^d$
 - \Rightarrow limit operators of A

One can enumerate the limit operators of *A* by the elements of $\partial \mathbb{Z}^d$ (rather than by sequences $h = (n_1, n_2, ...)$ for which $S_{-n_k}AS_{n_k}$ converges).

The very same can be done with $X = \ell^{p}(\mathbb{Z}^{d})$ and $A \in BDO(X)$.

Again, the set $\sigma^{op}(A)$ of all limit operators of A is the set of all partial limits of the operator "sequence"

 $(S_{-n}AS_n)_{n\in\mathbb{Z}^d}$ or, likewise, of the function $f_A: n\in\mathbb{Z}^d\mapsto S_{-n}AS_n\in BDO(X)$.

- Take a suitable **compactification** of \mathbb{Z}^d .
- Extend the function f_A continuously to it.
- Evaluate f_A at the **boundary** $\partial \mathbb{Z}^d$
 - \Rightarrow limit operators of A

One can enumerate the limit operators of A by the elements of $\partial \mathbb{Z}^d$ (rather than by sequences $h = (n_1, n_2, ...)$ for which $S_{-n_k}AS_{n_k}$ converges).

These ideas can be extended from $\ell^{p}(\mathbb{Z}^{d})$ [Rabinovich, Roch, Silbermann 1998] to

- $\ell^{p}(G)$ for finitely generated discrete groups G [Roe 2005]
- $\ell^{p}(X)$ for strongly discrete metric spaces X [Spakula & Willett 2014]
- $L^p(X,\mu)$ for fairly general metric spaces X and measures μ [Hagger & Seifert 2017_{+×}]

So we have

New enumeration (independent of A) of the limit operators of A

 $\sigma^{\text{op}}(A) = \{A_h : h = (n_1, n_2, \dots) \text{ in } \mathbb{Z}^d \text{ with } |n_k| \to \infty \text{ s.t. } \lim S_{-n_k} A S_{n_k} \text{ exists} \}$ $= \{A_g : g \in \partial \mathbb{Z}^d \}$

Now one can add or multiply two instances of $\sigma^{op}(A)$ elementwise and get

$$\sigma^{\mathsf{op}}(A+B) = \sigma^{\mathsf{op}}(A) + \sigma^{\mathsf{op}}(B), \quad \sigma^{\mathsf{op}}(AB) = \sigma^{\mathsf{op}}(A)\sigma^{\mathsf{op}}(B), \quad \sigma^{\mathsf{op}}(\alpha A) = \alpha \sigma^{\mathsf{op}}(A).$$

So we have

New enumeration (independent of A) of the limit operators of A

 $\sigma^{\text{op}}(A) = \{A_h : h = (n_1, n_2, \dots) \text{ in } \mathbb{Z}^d \text{ with } |n_k| \to \infty \text{ s.t. } \lim S_{-n_k} A S_{n_k} \text{ exists} \}$ $= \{A_g : g \in \partial \mathbb{Z}^d\}$

Now one can add or multiply two instances of $\sigma^{op}(A)$ elementwise and get

$$\sigma^{\mathsf{op}}(A+B) = \sigma^{\mathsf{op}}(A) + \sigma^{\mathsf{op}}(B), \quad \sigma^{\mathsf{op}}(AB) = \sigma^{\mathsf{op}}(A)\sigma^{\mathsf{op}}(B), \quad \sigma^{\mathsf{op}}(\alpha A) = \alpha \sigma^{\mathsf{op}}(A).$$

In short: The map

$$\varphi: A \mapsto \sigma^{\operatorname{op}}(A), \qquad \operatorname{BDO}(X) \to \ell^{\infty}(\partial \mathbb{Z}^d, \operatorname{BDO}(X))$$

is an algebra homomorphism.

So we have

New enumeration (independent of A) of the limit operators of A

 $\sigma^{\text{op}}(A) = \{A_h : h = (n_1, n_2, \dots) \text{ in } \mathbb{Z}^d \text{ with } |n_k| \to \infty \text{ s.t. } \lim S_{-n_k} A S_{n_k} \text{ exists} \}$ $= \{A_g : g \in \partial \mathbb{Z}^d \}$

Now one can add or multiply two instances of $\sigma^{op}(A)$ elementwise and get

$$\sigma^{\mathsf{op}}(A+B) = \sigma^{\mathsf{op}}(A) + \sigma^{\mathsf{op}}(B), \quad \sigma^{\mathsf{op}}(AB) = \sigma^{\mathsf{op}}(A)\sigma^{\mathsf{op}}(B), \quad \sigma^{\mathsf{op}}(\alpha A) = \alpha \sigma^{\mathsf{op}}(A).$$

In short: The map

$$\varphi: A \mapsto \sigma^{\mathsf{op}}(A), \qquad \mathsf{BDO}(X) \to \ell^{\infty}(\partial \mathbb{Z}^d, \mathsf{BDO}(X))$$

is an algebra homomorphism.

Key observation

The kernel of that homomorphism $\varphi : A \mapsto \sigma^{op}(A)$ is K(X). So $A + K(X) \mapsto \sigma^{op}(A)$ is an **isomorphism** BDO(X)/ker $\varphi \to \operatorname{im} \varphi$.

The result is an identification

Marko Lindner

$$A + \mathcal{K}(X) \cong \sigma^{op}(A)$$

A	$A + \mathcal{K}(X)$	$\sigma^{\sf op}(A)$
essential norm $\ A\ _{ m ess}$	$\ \mathcal{A} + \mathcal{K}(X)\ _{\mathcal{L}(X)/\mathcal{K}(X)}$	$\max_{h} \ A_{h}\ $

The result is an identification

$$A + \mathcal{K}(X) \cong \sigma^{op}(A)$$

A	$A + \mathcal{K}(X)$	$\sigma^{op}(\mathcal{A})$
essential norm $\ A\ _{ m ess}$	$\ \mathcal{A} + \mathcal{K}(X)\ _{\mathcal{L}(X)/\mathcal{K}(X)}$	$\max_h \ A_h\ $
A is Fredholm	$A + \mathcal{K}(X)$ invertible in $\mathcal{L}(X)/\mathcal{K}(X)$	all A_h are invertible

The result is an identification

$$A + \mathcal{K}(X) \cong \sigma^{op}(A)$$

A	$A + \mathcal{K}(X)$	$\sigma^{\sf op}(A)$
essential norm $\ A\ _{ m ess}$	$\ \mathcal{A} + \mathcal{K}(X)\ _{\mathcal{L}(X)/\mathcal{K}(X)}$	$\max_h \ A_h\ $
A is Fredholm	$A + \mathcal{K}(X)$ invertible in $\mathcal{L}(X)/\mathcal{K}(X)$	all A_h are invertible
B is a Φ -regulariser of A	$B + \mathcal{K}(X) = [A + \mathcal{K}(X)]^{-1}$	$B_h = A_h^{-1}$

The result is an identification

$$A + \mathcal{K}(X) \cong \sigma^{op}(A)$$

for all $A \in BDO(X)$ – with the following consequences:

A	$A + \mathcal{K}(X)$	$\sigma^{\sf op}(A)$
essential norm $\ A\ _{ess}$	$\ \mathcal{A} + \mathcal{K}(X)\ _{\mathcal{L}(X)/\mathcal{K}(X)}$	$\max_h \ A_h\ $
A is Fredholm	$A + \mathcal{K}(X)$ invertible in $\mathcal{L}(X)/\mathcal{K}(X)$	all A_h are invertible
B is a Φ -regulariser of A	$B + \mathcal{K}(X) = [A + \mathcal{K}(X)]^{-1}$	$B_h = A_h^{-1}$
essential spectrum spec _{ess} A	$spec_{\mathcal{L}(X)/\mathcal{K}(X)}(A + \mathcal{K}(X))$	$\cup_h \operatorname{spec} A_h$

/ 44

The result is an identification

$$A + \mathcal{K}(X) \cong \sigma^{op}(A)$$

for all $A \in BDO(X)$ – with the following consequences:

A	$A + \mathcal{K}(X)$	$\sigma^{op}(A)$
essential norm $\ A\ _{ m ess}$	$\ \mathcal{A} + \mathcal{K}(X)\ _{\mathcal{L}(X)/\mathcal{K}(X)}$	$\max_{h} \ A_{h}\ $
A is Fredholm	$A + \mathcal{K}(X)$ invertible in $\mathcal{L}(X)/\mathcal{K}(X)$	all A_h are invertible
B is a Φ -regulariser of A	$B + \mathcal{K}(X) = [A + \mathcal{K}(X)]^{-1}$	$B_h = A_h^{-1}$
essential spectrum spec _{ess} A	$\operatorname{spec}_{\mathcal{L}(X)/\mathcal{K}(X)}(A + \mathcal{K}(X))$	\cup_h spec A_h
essential pseudospectrum $\operatorname{spec}_{\operatorname{ess}}^{\operatorname{\varepsilon}} A$	$\operatorname{spec}^arepsilon_{\mathcal{L}(X)/\mathcal{K}(X)}^arepsilon(A+\mathcal{K}(X))$	$\cup_h \operatorname{spec}^{\varepsilon} A_h$

5 / 44

The result is an identification

$$A + \mathcal{K}(X) \cong \sigma^{op}(A)$$

A	$A + \mathcal{K}(X)$	$\sigma^{op}(A)$
essential norm $\ A\ _{ m ess}$	$\ \mathcal{A} + \mathcal{K}(X)\ _{\mathcal{L}(X)/\mathcal{K}(X)}$	$\max_h \ A_h\ $
A is Fredholm	$A + \mathcal{K}(X)$ invertible in $\mathcal{L}(X)/\mathcal{K}(X)$	all A_h are invertible
B is a Φ -regulariser of A	$B + \mathcal{K}(X) = [A + \mathcal{K}(X)]^{-1}$	$B_h = A_h^{-1}$
essential spectrum spec _{ess} A	$\operatorname{spec}_{\mathcal{L}(X)/\mathcal{K}(X)}(A + \mathcal{K}(X))$	\cup_h spec A_h
essential pseudospectrum $\operatorname{spec}_{\operatorname{ess}}^{\operatorname{\varepsilon}} A$	$spec^arepsilon_{\mathcal{L}(X)/\mathcal{K}(X)}(A+\mathcal{K}(X))$	$\cup_h \operatorname{spec}^{\varepsilon} A_h$
For $A \in BO(X)$ and $d = 1$: A is Fredholm $spec_{ess}A$	$A + \mathcal{K}(X)$ invertible in $\mathcal{L}(X)/\mathcal{K}(X)$ spec $_{\mathcal{L}(X)/\mathcal{K}(X)}(A + \mathcal{K}(X))$	all A_h injective on $\ell^\infty(\mathbb{Z})$ $\cup_h \operatorname{spec}_{\operatorname{point}}^\infty A_h$

$$A + \mathcal{K}(X) \cong \sigma^{op}(A)$$

A	$\sigma^{op}(A)$	
essential norm $\ A\ _{ m ess}$	$\max_{h} \ A_{h}\ $	[Hagger, ML, Seidel 2016]
A is Fredholm	all A_h are invertible	[Lange, Rabinovich 1985+] [Rabinovich, Roch, Silbermann 1998+] [ML, Silbermann 2003], [ML 2003+] [Chandler-Wilde, ML 2007] [Seidel, ML 2014]
B is a Φ -regulariser of A	$B_h = A_h^{-1}$	[Seidel 2013]
essential spectrum spec _{ess} A	\cup_h spec A_h	[Seidel, ML 2014]
essential pseudospectrum $\operatorname{spec}_{\operatorname{ess}}^{\operatorname{\varepsilon}} A$	$\cup_h \operatorname{spec}^{\varepsilon} A_h$	[Hagger, ML, Seidel 2016]
For $A \in BO(X)$ and $d = 1$: A is Fredholm $spec_{ess}A$	$ \begin{array}{l} \text{ all } A_h \text{ injective on } \ell^\infty(\mathbb{Z}) \\ \cup_h \operatorname{spec}_{\operatorname{point}}^\infty A_h \end{array} \end{array} $	[Chandler-Wilde, ML 2008]

28th IWOTA, Aug 2017, Chemnitz

26 / 44

Definition: self-similar operator

We say that $A \in BDO(X)$ is *self-similar* if $A \in \sigma^{op}(A)$.

Roughly speaking, this means that

- A contains a copy of itself, at infinity.
- Each pattern that you see once in A, you will see infinitely often in A.

Definition: self-similar operator

We say that $A \in BDO(X)$ is *self-similar* if $A \in \sigma^{op}(A)$.

Roughly speaking, this means that

- A contains a copy of itself, at infinity.
- Each pattern that you see once in A, you will see infinitely often in A.

But then, by the above,

$$\|A\|_{ess} = \|A\|$$

A is Fredholm $\iff A$ is invertible
 $\operatorname{spec}_{ess} A = \operatorname{spec} A$
 $\operatorname{spec}_{ess}^{\varepsilon} A = \operatorname{spec}^{\varepsilon} A$

Definition: self-similar operator

We say that $A \in BDO(X)$ is self-similar if $A \in \sigma^{op}(A)$.

Roughly speaking, this means that

- A contains a copy of itself, at infinity.
- Each pattern that you see once in A, you will see infinitely often in A.

But then, by the above,

$$\|A\|_{ess} = \|A\|$$

A is Fredholm $\iff A$ is invertible
 $spec_{ess}A = spec A$
 $spec_{ess}^{\varepsilon}A = spec^{\varepsilon}A$

		"essential stuff $=$ real stuff	f."	
			ㅁ > 〈웹 > 〈혼 > 〈혼 > ' 환	୬ ୯
TUHH	Marko Lindner	LimOps: Your hands on the essentials	28th IWOTA, Aug 2017, Chemnitz	27 / 44

The essentials

2 Limit operators

🕘 The Fibonacci Hamiltonian

The finite section method

Task: Find an approximate solution of the equation

$$Ax = b$$
.

The finite section method

Task: Find an approximate solution of the equation

Ax = b.

Idea: Approximate A by growing but finite square submatrices A_n

and, assuming that A is invertible, hope

- that also the inverses A_n^{-1} exist, at least for sufficiently large n, and
- that they converge to the inverse of A, i.e. $A_n^{-1} \rightarrow A^{-1}$,

The finite section method

Task: Find an approximate solution of the equation

Ax = b.

Idea: Approximate A by growing but finite square submatrices A_n

and, assuming that A is invertible, hope

- that also the inverses A_n^{-1} exist, at least for sufficiently large n, and
- that they converge to the inverse of A, i.e. $A_n^{-1} \rightarrow A^{-1}$,

It turns out: This "hope" will come true iff the sequence (A_n) is stable, meaning that

all A_n with sufficiently large n are invertible and $\sup_{n \ge n_0} ||A_n^{-1}|| < \infty$.

The sequence (A_n) is stable $\iff D := Diag(A_1, A_2, ...)$ is Fredholm.

This brings us back to limit operators of D – and hence of A.

TUHH

In the end we have to follow the two "corners" (semi-infinite matrices)

$$\left(\begin{array}{cc} a_{l_n,l_n} & \cdots \\ \vdots & \ddots \end{array}\right) \qquad \text{and} \qquad \left(\begin{array}{cc} \ddots & \vdots \\ \cdots & a_{r_n,r_n} \end{array}\right)$$

In the end we have to follow the two "corners" (semi-infinite matrices)

$$\left(\begin{array}{cc} a_{l_n,l_n} & \cdots \\ \vdots & \ddots \end{array}\right) \qquad \text{and} \qquad \left(\begin{array}{cc} \ddots & \vdots \\ \cdots & a_{r_n,r_n} \end{array}\right)$$

In the end we have to follow the two "corners" (semi-infinite matrices)

$$\left(\begin{array}{cc} a_{l_n,l_n} & \cdots \\ \vdots & \ddots \end{array}\right) \qquad \text{and} \qquad \left(\begin{array}{cc} \ddots & \vdots \\ \cdots & a_{r_n,r_n} \end{array}\right)$$

In the end we have to follow the two "corners" (semi-infinite matrices)

$$\left(\begin{array}{cc} a_{l_n,l_n} & \cdots \\ \vdots & \ddots \end{array}\right) \qquad \text{and} \qquad \left(\begin{array}{cc} \ddots & \vdots \\ \cdots & a_{r_n,r_n} \end{array}\right)$$

The essentials

2 Limit operators

3 Stability of approximation methods

The Fibonacci Hamiltonian

The Fibonacci Hamiltonian

The Fibonacci Hamiltonian is a particular discrete Schrödinger operator in 1D:

$$(Ax)_n = x_{n-1} + v_n x_n + x_{n+1}, \qquad n \in \mathbb{Z}.$$

So, again, the matrix looks like this

$$A = \begin{pmatrix} \ddots & \ddots & & & & & \\ \ddots & v_{-2} & 1 & & & & \\ & 1 & v_{-1} & 1 & & & \\ & & 1 & v_0 & 1 & & \\ & & & 1 & v_1 & 1 & \\ & & & & 1 & v_2 & \ddots \\ & & & & & \ddots & \ddots \end{pmatrix}$$

The potential v only assumes the values 0 and 1 – but in a very interesting pattern.

Fibonacci and his rabbit population

time	population	count
1		
2		
3		
4		
5		
6		
7		

time	population	count
1	1	1
2	10	2
3	101	3
4	10110	5
5	10110101	8
6	1011010110110	13
7	101101011011010101	21
8	101101011011010110110110110110110	34
9	101101011011010110110110110110110110110	55
	:	

Three equivalent constructions of the Fibonacci word

 $0 \mapsto 1, 1 \mapsto 10;$ $f_{k+1} := f_k f_{k-1};$ $v_n = \chi_{[1-\alpha,1)}(n\alpha \mod 1), \ \alpha = \frac{2}{1+\sqrt{5}}$

The last formula is also used to define v_n for all $n \in \mathbb{Z}$. (\Rightarrow bi-infinite Fibonacci word)

$$v_n = \chi_{[1-\alpha,1)}(n\alpha \mod 1), \qquad n \in \mathbb{Z}, \quad \alpha = rac{2}{1+\sqrt{5}} \quad (\text{"golden mean"})$$

$$v_n = \chi_{[1-\alpha,1)}(n\alpha \mod 1), \qquad n \in \mathbb{Z}, \quad \alpha = rac{2}{1+\sqrt{5}}$$
 ("golden mean")

$$v_n = \chi_{[1-\alpha,1)}($$
 $n\alpha \mod 1$), $n \in \mathbb{Z}, \quad \alpha = \frac{2}{1+\sqrt{5}}$ ("golden mean")

$$v_n = \chi_{[1-lpha,1)}($$
 $nlpha \mod 1$), $n \in \mathbb{Z},$ $lpha = rac{2}{1+\sqrt{5}}$ ("golden mean")

$$v_n = \chi_{[1-lpha,1)}($$
 $nlpha \mod 1$), $n \in \mathbb{Z},$ $lpha = rac{2}{1+\sqrt{5}}$ ("golden mean")

$$v_n = \chi_{[1-\alpha,1)}($$
 $n\alpha \mod 1$), $n \in \mathbb{Z}, \quad \alpha = rac{2}{1+\sqrt{5}}$ ("golden mean")

$$v_n = \chi_{[1-\alpha,1)}(n\alpha \mod 1), \qquad n \in \mathbb{Z}, \quad \alpha = rac{2}{1+\sqrt{5}} \quad (\text{``golden mean''})$$

$$v_n = \chi_{[1-\alpha,1)}($$
 $n\alpha \mod 1$), $n \in \mathbb{Z}, \quad \alpha = \frac{2}{1+\sqrt{5}}$ ("golden mean")

$$v_n = \chi_{[1-\alpha,1]}(n\alpha \mod 1), \qquad n \in \mathbb{Z}, \quad \alpha = rac{2}{1+\sqrt{5}} \quad (\text{``golden mean''})$$

$$v_n = \chi_{[1-\alpha,1)}(n\alpha \mod 1), \qquad n \in \mathbb{Z}, \quad \alpha = \frac{2}{1+\sqrt{5}}$$
 ("golden mean")

$$v_n = \chi_{[1-\alpha,1]}(n\alpha \mod 1), \qquad n \in \mathbb{Z}, \quad \alpha = rac{2}{1+\sqrt{5}} \quad (\text{"golden mean"})$$

Marko Lindner

$$v_n = \chi_{[1-\alpha,1)}(n\alpha \mod 1), \qquad n \in \mathbb{Z}, \quad \alpha = \frac{2}{1+\sqrt{5}}$$
 ("golden mean")

In an infinite random word over the alphabet $\{0,1\}$ you can find (almost surely) all 2^n subwords of length n.

In contrast: How many can you find in the Fibonacci word

List of subwords of length n length subwords count 1 0, 1 2

In an infinite random word over the alphabet $\{0,1\}$ you can find (almost surely) all 2^n subwords of length n.

In contrast: How many can you find in the Fibonacci word

List of subwords of length nlengthsubwords10, 1201, 10, 11

In an infinite random word over the alphabet $\{0,1\}$ you can find (almost surely) all 2^n subwords of length n.

In contrast: How many can you find in the Fibonacci word

List of subwords of length n

UHH

length	subwords	count
1	0, 1	2
2	01, 10, 11 010, 011, 101, 110	3
3	01 <mark>0</mark> , 011, 101, 110	4

/ 44

In an infinite random word over the alphabet $\{0,1\}$ you can find (almost surely) all 2^n subwords of length n.

In contrast: How many can you find in the Fibonacci word

List of subwords of length *n*

UHH

Ι	ength	subwords	count
	1	0, 1	2
	2	01, 1 <mark>0</mark> , 1 <mark>1</mark>	3
	3	01, 10, 11 010, 011, 101, 110	4
	4	0101, 0110, 101 <mark>0</mark> , 101 <mark>1</mark> , 1101	5
		, , , , ,	

In an infinite random word over the alphabet $\{0,1\}$ you can find (almost surely) all 2^n subwords of length n.

In contrast: How many can you find in the Fibonacci word

List of subwords of length n

length	subwords	count
1	0, 1	2
2	01, 10, 11	3
3	01 <mark>0</mark> , 01 1 , 101, 110	4
4	0101, 0110, 101 <mark>0</mark> , 1011, 1101	5
÷		÷
n		n+1

Interesting feature: Very moderate (in fact: minimal) growth, compared to 2^n .

In an infinite random word over the alphabet $\{0,1\}$ you can find (almost surely) all 2^n subwords of length n.

In contrast: How many can you find in the Fibonacci word

List of subwords of length n

length	subwords	count
1	0, 1	2
2	01, 1 <mark>0</mark> , 11	3
3	01 <mark>0</mark> , 01 <mark>1</mark> , 101, 110	4
4	0101, 0110, 101 <mark>0</mark> , 101 <mark>1</mark> , 1101	5
÷		÷
п		n+1

Interesting feature: Very moderate (in fact: minimal) growth, compared to 2^n .

One can show:

The main diagonal of every limit operator of A has the same list of subwords!

Let

- $A = S_{-1} + M_v + S_1$ be the Fibonacci Hamiltonian,

Let

- v = · · · 1011010110110101101101101101101101011 · · · be the Fibonacci word,
- $A = S_{-1} + M_v + S_1$ be the Fibonacci Hamiltonian,
- $h = (n_1, n_2, ...)$ be a sequence in $\mathbb Z$ with $n_k \to \pm \infty$ and limit operator
- $A_h = S_{-1} + M_{v_h} + S_1$ with $v_h = \lim_{k \to \infty} S_{-n_k} v$ (pointwise).

Let

- $A = S_{-1} + M_v + S_1$ be the Fibonacci Hamiltonian,
- $h = (n_1, n_2, ...)$ be a sequence in $\mathbb Z$ with $n_k \to \pm \infty$ and limit operator
- $A_h = S_{-1} + M_{v_h} + S_1$ with $v_h = \lim_{k \to \infty} S_{-n_k} v$ (pointwise).

The main diagonal of the limit operator A_h has the same subwords as that of A.

$$w \prec v \iff w \prec v_h$$

Let

- $A = S_{-1} + M_v + S_1$ be the Fibonacci Hamiltonian,
- $h = (n_1, n_2, ...)$ be a sequence in $\mathbb Z$ with $n_k \to \pm \infty$ and limit operator
- $A_h = S_{-1} + M_{v_h} + S_1$ with $v_h = \lim_{k \to \infty} S_{-n_k} v$ (pointwise).

The main diagonal of the limit operator A_h has the same subwords as that of A.

$$w \prec v \iff w \prec v_h$$

$$\models w \prec v_h \implies w \prec S_{-n_k} v \text{ for large } k \implies w \prec v.$$

Marko Lindner

Let

- $A = S_{-1} + M_v + S_1$ be the Fibonacci Hamiltonian,
- $h = (n_1, n_2, ...)$ be a sequence in \mathbb{Z} with $n_k \to \pm \infty$ and limit operator
- $A_h = S_{-1} + M_{v_h} + S_1$ with $v_h = \lim_{k \to \infty} S_{-n_k} v$ (pointwise).

The main diagonal of the limit operator A_h has the same subwords as that of A.

$$w \prec v \iff w \prec v_h$$

$$\begin{array}{c} \Leftarrow \\ w \prec v_h \implies w \prec S_{-n_k}v \text{ for large } k \implies w \prec v. \\ \hline \Rightarrow \\ \text{Let } w \prec v, \text{ say (w.l.o.g.) } w \prec v_+. \end{array}$$

 \implies Every $S_{-n_k}v$ contains w in a F_{n+1} -neighbourhood of zero.

 \implies Every limit potential v_h contains w in a F_{n+1} -neighbourhood of zero.

Limit operators and the "mod 1" rotation formula

For the Fibonacci Hamiltonian $A = S_{-1} + M_v + S_1$, one gets

$$\sigma^{\mathsf{op}}(A) = \Big\{ S_{-1} + M_{\nu\theta} + S_1, \ S_{-1} + M_{w\theta} + S_1 \ : \ \theta \in [0,1) \Big\},$$

where

$$v_n^{\theta} := \chi_{[1-\alpha,1]}(\theta + n\alpha \mod 1), \qquad w_n^{\theta} := \chi_{(1-\alpha,1]}(\theta + n\alpha \mod 1), \qquad n \in \mathbb{Z}.$$

In particular, $A \in \sigma^{op}(A)$; so A is self-similar.

What do we want from the Fibonacci Hamiltonian?

A lot is known of the spectrum of A; it is

- a Cantor set on the real line
- of Lebesgue measure zero,

UHH

- there is no point spectrum (w.r.t. ℓ^2)
- in fact, the spectrum is purely singular continuous...

What do we want from the Fibonacci Hamiltonian?

A lot is known of the spectrum of A; it is

- a Cantor set on the real line
- of Lebesgue measure zero,
- there is no point spectrum (w.r.t. ℓ^2)
- in fact, the spectrum is purely singular continuous...

Our focus: Applicability of the FSM with arbitrary cut-off points.

We show this via **invertibility** of B, B_+ and B_- for all $B \in \sigma^{op}(A)$, including B = A (i.e. 0 is not in the spectrum of any of these operators).

- A is Fredholm (\Rightarrow closed range)
- A is injective on ℓ^2
- A^* is injective on ℓ^2

- A is Fredholm (\Rightarrow closed range) \iff all $B \in \sigma^{op}(A)$ are invertible on ℓ^2
- A is injective on ℓ^2
- A^* is injective on ℓ^2

- A is Fredholm (\Rightarrow closed range) \iff all $B \in \sigma^{op}(A)$ are injective on ℓ^{∞}
- A is injective on ℓ^2
- A^* is injective on ℓ^2

- A is Fredholm (\Rightarrow closed range) \iff all $B \in \sigma^{\circ p}(A)$ are injective on ℓ^{∞}
- A is injective on $\ell^2 \iff A$ is injective on ℓ^{∞}
- A^* is injective on $\ell^2 \quad \longleftarrow \quad A = A^*$ is injective on ℓ^{∞}

To show that A is invertible on ℓ^2 (hence on any ℓ^p), we show that

- A is Fredholm (\Rightarrow closed range) \iff all $B \in \sigma^{op}(A)$ are injective on ℓ^{∞}
- A is injective on $\ell^2 \iff A$ is injective on ℓ^{∞}
- A^* is injective on $\ell^2 \iff A = A^*$ is injective on ℓ^{∞}

Similarly: For invertibility of all B_+ and B_- it is enough to show their injectivity on ℓ^{∞} (since all are Fredholm and self-adjoint).

To show that A is invertible on ℓ^2 (hence on any ℓ^p), we show that

- A is Fredholm (\Rightarrow closed range) \iff all $B \in \sigma^{\circ p}(A)$ are injective on ℓ^{∞}
- A is injective on $\ell^2 \iff A$ is injective on ℓ^{∞}
- A^* is injective on $\ell^2 \iff A = A^*$ is injective on ℓ^{∞}

Similarly: For invertibility of all B_+ and B_- it is enough to show their injectivity on ℓ^{∞} (since all are Fredholm and self-adjoint).

We demonstrate this for B = A (so that $B_+ = A_+$):

In short:

$$x_{n-1} + v_n x_n + x_{n+1} = 0$$
 for all $n \in \mathbb{N}$.

To show that A is invertible on ℓ^2 (hence on any ℓ^p), we show that

- A is Fredholm (\Rightarrow closed range) \iff all $B \in \sigma^{\circ p}(A)$ are injective on ℓ^{∞}
- A is injective on $\ell^2 \iff A$ is injective on ℓ^{∞}
- A^* is injective on $\ell^2 \iff A = A^*$ is injective on ℓ^{∞}

Similarly: For invertibility of all B_+ and B_- it is enough to show their injectivity on ℓ^{∞} (since all are Fredholm and self-adjoint).

We demonstrate this for B = A (so that $B_+ = A_+$):

In short:

$$x_{n-1} + v_n x_n + x_{n+1} = 0$$
 for all $n \in \mathbb{N}$.

Starting with $x_0 = 0$ and $x_1 = 1$ (w.l.o.g.) this is a 2-term recurrence for x_2, x_3, \ldots

In short:

$$x_{n-1} + v_n x_n + x_{n+1} = 0$$
 for all $n \in \mathbb{N}$.

Starting with $x_0 = 0$ and $x_1 = 1$ (w.l.o.g.) this is a 2-term recurrence for $x_2, x_3, ...$

In short:

$$x_{n-1} + v_n x_n + x_{n+1} = 0$$
 for all $n \in \mathbb{N}$.

Starting with $x_0 = 0$ and $x_1 = 1$ (w.l.o.g.) this is a 2-term recurrence for $x_2, x_3, ...$

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
															0					
×n	1	-1	$^{-1}$	2	-1	-2	3	2	-5	3	5	-8	3	8	-11	-8	19	-11	-19	30

In short:

тинн

$$x_{n-1} + \mathbf{v}_n x_n + x_{n+1} = 0$$
 for all $n \in \mathbb{N}$.

Starting with $x_0 = 0$ and $x_1 = 1$ (w.l.o.g.) this is a 2-term recurrence for x_2, x_3, \ldots

															15		17		19	20
vn	1	0	1	1	0	1	0	1	1	0	1	1	0	1	0	1	1	0	1	0
×n	1	$^{-1}$	$^{-1}$	2	-1	-2	3	2	-5	3	5	-8	3	8	-11	-8	19	-11	-19	30

 $\cdots \implies x \notin \ell^{\infty} \implies A_+ \text{ is injective on } \ell^{\infty}$

In short:

$$x_{n-1} + v_n x_n + x_{n+1} = 0$$
 for all $n \in \mathbb{N}$.

Starting with $x_0 = 0$ and $x_1 = 1$ (w.l.o.g.) this is a 2-term recurrence for x_2, x_3, \ldots

п	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
vn	1	0	1	1	0	1	0	1	1	0	1	1	0	1	0	1	1	0	1	0
×n	1	$^{-1}$	$^{-1}$	2	$^{-1}$	-2	3	2	-5	3	5	-8	3	8	-11	-8	19	-11	-19	30

 $\cdots \implies x \notin \ell^{\infty} \implies A_+ \text{ is injective on } \ell^{\infty}$

Similarly: B_+ and B_- are injective on ℓ^{∞} for all $B \in \sigma^{op}(A)$.

 \implies B_+ and B_- are invertible for all $B \in \sigma^{op}(A)$.

Marko Lindner

In short:

$$x_{n-1} + v_n x_n + x_{n+1} = 0$$
 for all $n \in \mathbb{N}$.

Starting with $x_0 = 0$ and $x_1 = 1$ (w.l.o.g.) this is a 2-term recurrence for $x_2, x_3, ...$

															15				19	20
vn	1	0	1	1	0	1	0	1	1	0	1	1	0	1	0	1	1	0	1	0
×n	1	$^{-1}$	$^{-1}$	2	$^{-1}$	-2	3	2	-5	3	5	-8	3	8	-11	-8	19	-11	-19	30

 $\cdots \implies x \not\in \ell^{\infty} \implies A_+ \text{ is injective on } \ell^{\infty}$

Similarly: B_+ and B_- are injective on ℓ^{∞} for all $B \in \sigma^{op}(A)$. $\implies B_+$ and B_- are invertible for all $B \in \sigma^{op}(A)$.

Theorem (ML, Söding 2016)

The FSM is applicable, with arbitrary cut-off points, to A and also to A_+ .

Thank you!

Literature

S.N. CHANDLER-WILDE and M. LINDNER: Sufficiency of Favards condition for a class of band-dominated operators..., J. Functional Analysis, 254 (2008).

M. LINDNER and M. SEIDEL: An affirmative answer to a core issue on limit operators, *J. Functional Analysis*, 267 (2014).

R. HAGGER, M. LINDNER and M. SEIDEL: Essential pseudospectra and essential norms of band-dominated operators, *J. Mathematical Analysis and Applications*, 437 (2016).

V. RABINOVICH, S. ROCH and B. SILBERMANN: Limit Operators and Their Applications in Operator Theory, Birkhäuser 2004.

M. LINDNER: Infinite Matrices and their Finite Sections, Birkhäuser 2006.

