Limit Operators

Getting your hands on the essentials.

Marko Lindner

 Technische Universität Hamburg

14-18 August 2017

This talk is based on joint work with

- Markus Seidel, Zwickau
- Raffael Hagger, Hannover
- Hagen Söding, TU Hamburg
- Simon Chandler-Wilde, Reading
- Bernd Silbermann, Chemnitz
(1) The essentials
(2) Limit operators
(3) Stability of approximation methods

4 The Fibonacci Hamiltonian

(1) The essentials

(3) Stability of approximation methods

4 The Fibonacci Hamiltonian

For a bounded linear operator

$$
\mathcal{A}: X \rightarrow X
$$

on a Banach space X, choose a basis in X and represent \mathcal{A} as an infinite matrix.

Sometimes it is convenient to number the basis elements over the integers \mathbb{Z} (rather than the naturals \mathbb{N}), leading to a bi-infinite matrix:

$$
A=\left(\begin{array}{ccccc}
\ddots & \vdots & \vdots & \vdots & . \\
\cdots & a_{-1,-1} & a_{-1,0} & a_{-1,1} & \cdots \\
\cdots & a_{0,-1} & a_{0,0} & a_{0,1} & \cdots \\
\cdots & a_{1,-1} & a_{1,0} & a_{1,1} & \cdots \\
. & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

We will mostly think of banded matrices A with uniformly bounded entries:
$\sup \left|a_{i j}\right|<\infty$, so A acts as a bounded linear operator on $\ell^{P}(\mathbb{Z}), p \in[1, \infty]$.

Compact operators \& the Calkin algebra

For a Banach space X, put

$$
\begin{aligned}
\mathcal{L}(X) & =\text { the set (Banach algebra) of all bounded linear operators } X \rightarrow X, \\
\mathcal{K}(X) & =\text { the set of all compact operators } X \rightarrow X \text { (closed ideal in } \mathcal{L}(X)) .
\end{aligned}
$$

Then one can form the factor algebra
The Calkin algebra

$$
\mathcal{L}(X) / \mathcal{K}(X)=\{A+\mathcal{K}(X): A \in \mathcal{L}(X)\} .
$$

Compact operators \& the Calkin algebra

For a Banach space X, put

$$
\begin{aligned}
& \mathcal{L}(X)=\text { the set (Banach algebra) of all bounded linear operators } X \rightarrow X, \\
& \mathcal{K}(X)=\text { the set of all compact operators } X \rightarrow X \text { (closed ideal in } \mathcal{L}(X)) .
\end{aligned}
$$

Then one can form the factor algebra

The Calkin algebra

$$
\mathcal{L}(X) / \mathcal{K}(X)=\{A+\mathcal{K}(X): A \in \mathcal{L}(X)\} .
$$

More specifically, for $X=\ell^{p}(\mathbb{Z})$, let

$$
\begin{aligned}
\mathrm{BO}(X) & =\text { the set (algebra) of all operators } X \rightarrow X \text { with a band matrix, } \\
\mathrm{BDO}(X) & =\text { the norm closure (Banach algebra) of } \mathrm{BO}(X) .
\end{aligned}
$$

$=\mathrm{BO}(X)$
band operators

Operator classes graphically

The essentials

Let $A \in \mathcal{L}(X)$.
Definition: essential norm

$$
\|A\|_{\text {ess }}:=\|A+\mathcal{K}(X)\|=\inf \{\|A+K\|: K \in \mathcal{K}(X)\}=\operatorname{dist}(A, \mathcal{K}(X))
$$

The essentials

Let $A \in \mathcal{L}(X)$.
Definition: essential norm

$$
\|A\|_{\text {ess }}:=\|A+\mathcal{K}(X)\|=\inf \{\|A+K\|: K \in \mathcal{K}(X)\}=\operatorname{dist}(A, \mathcal{K}(X))
$$

Definition: Fredholmness

A is Fredholm ("essentially invertible") iff $A+\mathcal{K}(X)$ is invertible in $\mathcal{L}(X) / \mathcal{K}(X)$.
A is Fredholm iff its kernel and cokernel have finite dimension.

The essentials

Let $A \in \mathcal{L}(X)$.
Definition: essential norm

$$
\|A\|_{\text {ess }}:=\|A+\mathcal{K}(X)\|=\inf \{\|A+K\|: K \in \mathcal{K}(X)\}=\operatorname{dist}(A, \mathcal{K}(X))
$$

Definition: Fredholmness

A is Fredholm ("essentially invertible") iff $A+\mathcal{K}(X)$ is invertible in $\mathcal{L}(X) / \mathcal{K}(X)$.
A is Fredholm iff its kernel and cokernel have finite dimension.

Definition: Essential spectrum

$$
\operatorname{spec}_{\mathrm{ess}} A:=\operatorname{spec}_{\mathcal{L}(X) / \mathcal{K}(X)}(A+\mathcal{K}(X))=\{\lambda \in \mathbb{C}: A-\lambda / \text { is not Fredholm }\}
$$

Essential spectrum and norm: diagonal examples

For

$$
A=\left(\begin{array}{llllllll}
\ddots & & & & & & & \\
& 3 & & & & & & \\
& & 5 & & & & & \\
& & & 3 & & & & \\
& & & & 5 & & & \\
& & & & & 3 & & \\
& & & & & & 3 & \\
& & & & & & & \ddots
\end{array}\right)
$$

we clearly have

$$
\operatorname{spec} A=\{3,5\}, \quad\|A\|=5
$$

but

$$
\mathrm{spec}_{\mathrm{ess}} A=\{3\}, \quad\|A\|_{\mathrm{ess}}=3
$$

Essential spectrum and norm: diagonal examples

For

$$
A=\left(\begin{array}{llllllll}
\ddots & & & & & & & \\
& 3 & & & & & & \\
& & 5 & & & & & \\
& & & 3 & & & & \\
& & & & 5 & & & \\
& & & & & 3 & & \\
& & & & & & 3 & \\
& & & & & & & \ddots
\end{array}\right)
$$

we clearly have

$$
\operatorname{spec} A=\{3,5\}, \quad\|A\|=5
$$

but

$$
\operatorname{spec}_{\mathrm{ess}} A=\{3\}, \quad\|A\|_{\mathrm{ess}}=3
$$

The spectral value 5 is not essential ("not visible at ∞ "). $A-5 I$ is not invertible but still Fredholm (kernel and cokernel have finite dimension).

Essential spectrum and norm: diagonal examples

For

$$
A=\left(\begin{array}{llllll}
\ddots & & & & \\
& 3+\varepsilon_{-1} & & & & \\
& & 3+\varepsilon_{0} & & & \\
& & & 3+\varepsilon_{1} & & \\
& & & & 3+\varepsilon_{2} & \\
& & & & & \ddots
\end{array}\right),
$$

with positive ε_{n} such that $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \pm \infty$, we have

$$
\operatorname{spec} A=\left\{3+\varepsilon_{n}: n \in \mathbb{Z}\right\} \cup\{3\}, \quad\|A\|=\max \left\{3+\varepsilon_{n}: n \in \mathbb{Z}\right\}
$$

The spectral value 3 is no eigenvalue but still in the spectrum. $A-3 I$ is injective but has no bounded inverse (not Fredholm, range not closed).

Essential spectrum and norm: diagonal examples

For

$$
A=\left(\begin{array}{lllll}
\ddots & & & & \\
& 3+\varepsilon_{-1} & & & \\
& & 3+\varepsilon_{0} & & \\
& & & 3+\varepsilon_{1} & \\
& & & & 3+\varepsilon_{2} \\
& & & & \\
& & & & \ddots
\end{array}\right)
$$

with positive ε_{n} such that $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \pm \infty$, we have

$$
\operatorname{spec} A=\left\{3+\varepsilon_{n}: n \in \mathbb{Z}\right\} \cup\{3\}, \quad\|A\|=\max \left\{3+\varepsilon_{n}: n \in \mathbb{Z}\right\}
$$

The spectral value 3 is no eigenvalue but still in the spectrum. $A-3 I$ is injective but has no bounded inverse (not Fredholm, range not closed).

It holds

$$
\operatorname{spec}_{\mathrm{ess}} A=\{3\}, \quad\|A\|_{\mathrm{ess}}=3
$$

Essential spectrum and norm: diagonal examples

For
with positive ε_{n} such that $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \pm \infty$, we have

$$
\operatorname{spec} A=\left\{3+\varepsilon_{n}, 5+\varepsilon_{n}: n \in \mathbb{Z}\right\} \cup\{3,5\}, \quad\|A\|=\max \left\{3+\varepsilon_{n}, 5+\varepsilon_{n}: n \in \mathbb{Z}\right\}
$$

The spectral values 3 and 5 are no eigenvalues of A.
$A-3 I$ and $A-5 I$ are injective but have no bounded inverse (range not closed).

Essential spectrum and norm: diagonal examples

For
with positive ε_{n} such that $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \pm \infty$, we have

$$
\operatorname{spec} A=\left\{3+\varepsilon_{n}, 5+\varepsilon_{n}: n \in \mathbb{Z}\right\} \cup\{3,5\}, \quad\|A\|=\max \left\{3+\varepsilon_{n}, 5+\varepsilon_{n}: n \in \mathbb{Z}\right\}
$$

The spectral values 3 and 5 are no eigenvalues of A.
$A-3 I$ and $A-5 I$ are injective but have no bounded inverse (range not closed).
It holds

$$
\mathrm{spec}_{\mathrm{ess}} A=\{3,5\}, \quad\|A\|_{\mathrm{ess}}=5
$$

Essential spectrum and norm: a general diagonal matrix

For a general (bounded) diagonal matrix

$$
A=\left(\begin{array}{llllll}
\ddots & & & & \\
& a_{-1,-1} & & & & \\
& & a_{0,0} & & & \\
& & & a_{1,1} & & \\
& & & & a_{2,2} & \\
& & & & & \ddots .
\end{array}\right)
$$

it holds that

$$
\operatorname{spec}_{\text {ess }} A=\text { the set of all partial limits of the sequence }\left(a_{n, n}\right)_{n \in \mathbb{Z}} .
$$

In other words:

$$
\lambda \in \operatorname{spec}_{\mathrm{ess}} A \quad \Longleftrightarrow \quad \exists n_{1}, n_{2}, \cdots \rightarrow \pm \infty: \quad a_{n_{k}, n_{k}} \rightarrow \lambda
$$

Moreover,

$$
\|A\|_{\text {ess }}=\text { the largest (in modulus) partial limit }=\lim \sup \left|a_{n, n}\right| .
$$

Essential spectrum and norm: a general diagonal matrix

For a general (bounded) diagonal matrix

$$
A=\left(\begin{array}{llllll}
\ddots & & & & & \\
& a_{-1,-1} & & & & \\
& & a_{0,0} & & & \\
& & & a_{1,1} & & \\
& & & & a_{2,2} & \\
& & & & & \ddots .
\end{array}\right)
$$

it holds that

$$
\operatorname{spec}_{\text {ess }} A=\text { the set of all partial limits of the sequence }\left(a_{n, n}\right)_{n \in \mathbb{Z}} .
$$

In other words:

$$
\lambda \in \operatorname{spec}_{\mathrm{ess}} A \quad \Longleftrightarrow \quad \exists n_{1}, n_{2}, \cdots \rightarrow \pm \infty: \quad a_{n_{k}, n_{k}} \rightarrow \lambda
$$

Moreover,

$$
\|A\|_{\text {ess }}=\text { the largest (in modulus) partial limit }=\lim \sup \left|a_{n, n}\right| .
$$

Essential spectrum and norm: a general diagonal matrix

For a general (bounded) diagonal matrix

$$
A=\left(\begin{array}{llllll}
\ddots & & & & & \\
& a_{-1,-1} & & & & \\
& & a_{0,0} & & & \\
& & & a_{1,1} & & \\
& & & & a_{2,2} & \\
& & & & & \ddots .
\end{array}\right)
$$

it holds that

$$
\operatorname{spec}_{\text {ess }} A=\text { the set of all partial limits of the sequence }\left(a_{n, n}\right)_{n \in \mathbb{Z}} .
$$

In other words:

$$
\lambda \in \operatorname{spec}_{\mathrm{ess}} A \quad \Longleftrightarrow \quad \exists n_{1}, n_{2}, \cdots \rightarrow \pm \infty: \quad a_{n_{k}, n_{k}} \rightarrow \lambda
$$

Moreover,

$$
\|A\|_{\text {ess }}=\text { the largest (in modulus) partial limit }=\lim \sup \left|a_{n, n}\right| .
$$

Essential spectrum and norm: a general diagonal matrix

For a general (bounded) diagonal matrix

$$
A=\left(\begin{array}{llllll}
\ddots & & & & & \\
& a_{-1,-1} & & & & \\
& & a_{0,0} & & & \\
& & & a_{1,1} & & \\
& & & & a_{2,2} & \\
& & & & & \ddots
\end{array}\right)
$$

it holds that
$\operatorname{spec}_{\text {ess }} A=$ the set of all partial limits of the sequence $\left(a_{n, n}\right)_{n \in \mathbb{Z}}$
$\|A\|_{\text {ess }}=$ the largest (in modulus) partial limit $=\lim \sup \left|a_{n, n}\right|$.

Essential spectrum and norm: a general diagonal matrix

For a general (bounded) diagonal matrix

$$
A=\left(\begin{array}{llllll}
\ddots & & & & & \\
& a_{-1,-1} & & & & \\
& & a_{0,0} & & & \\
& & & a_{1,1} & & \\
& & & & a_{2,2} & \\
& & & & & \ddots
\end{array}\right)
$$

it holds that
$\operatorname{spec}_{\text {ess }} A=$ the set of all partial limits of the sequence $\left(a_{n, n}\right)_{n \in \mathbb{Z}}$
$\|A\|_{\text {ess }}=$ the largest (in modulus) partial limit $=\lim \sup \left|a_{n, n}\right|$.

The whole coset $A+\mathcal{K}(X) \in \mathcal{L}(X) / \mathcal{K}(X)$ is encoded in the partial limits of $\left(a_{n, n}\right)_{n \in \mathbb{Z}}$.

For a general (bounded) diagonal matrix

$$
A=\left(\begin{array}{llllll}
\ddots & & & & & \\
& a_{-1,-1} & & & & \\
& & a_{0,0} & & & \\
& & & a_{1,1} & & \\
& & & & a_{2,2} & \\
& & & & & \ddots
\end{array}\right)
$$

it holds that

$$
\begin{aligned}
\operatorname{spec}_{\text {ess }} A & =\text { the set of all partial limits of the sequence }\left(a_{n, n}\right)_{n \in \mathbb{Z}} \\
\|A\|_{\text {ess }} & =\text { the largest (in modulus) partial limit }=\lim \sup \left|a_{n, n}\right| .
\end{aligned}
$$

The whole coset $A+\mathcal{K}(X) \in \mathcal{L}(X) / \mathcal{K}(X)$ is encoded in the partial limits of $\left(a_{n, n}\right)_{n \in \mathbb{Z}}$. Restricting consideration to diagonal matrices, the Calkin algebra is

$$
\mathcal{L}_{\text {diag }}(X) / \mathcal{K}_{\text {diag }}(X) \cong \ell^{\infty} / c_{0}
$$

(2) Limit operators
(3) Stability of approximation methods

4 The Fibonacci Hamiltonian

From diagonal to band-dominated matrices

For $A \in \operatorname{BDO}(X)$, the coset $A+\mathcal{K}(X)$ is still determined by the asymptotics of $A=\left(a_{i, j}\right)$ at infinity. Again, take a sequence $n_{1}, n_{2}, \cdots \rightarrow \pm \infty$ and

$$
\begin{equation*}
\text { follow the entries } a_{n_{k}, n_{k}} \text { as } k \rightarrow \infty \text {. } \tag{1}
\end{equation*}
$$

New: Now also the context of the entries (1) is important.

From diagonal to band-dominated matrices

For $A \in \operatorname{BDO}(X)$, the coset $A+\mathcal{K}(X)$ is still determined by the asymptotics of $A=\left(a_{i, j}\right)$ at infinity. Again, take a sequence $n_{1}, n_{2}, \cdots \rightarrow \pm \infty$ and

$$
\begin{equation*}
\text { follow the entries } a_{n_{k}, n_{k}} \text { as } k \rightarrow \infty \text {. } \tag{1}
\end{equation*}
$$

New: Now also the context of the entries (1) is important.
Not only the sequence (1) itself shall converge but also its neighbour entries:

$$
a_{n_{k}+i, n_{k}+j} \rightarrow: \quad b_{i, j} \quad \forall i, j \in \mathbb{Z} .
$$

The existence of such sequences $h=\left(n_{k}\right)$ is guaranteed by the Bolzano-Weierstrass theorem.

Definition: limit operator

The operator with matrix $B=\left(b_{i, j}\right)_{i, j \in \mathbb{Z}}$ is called limit operator of A w.r.t. the sequence h.

We write A_{h} for B and $\sigma^{\text {op }}(A)$ for the set of all A_{h}.

Limit operators: Time for examples

A periodic matrix:

Limit operators: Time for examples

A periodic matrix:

Simple but non-periodic:

Limit operators: Time for examples

Discrete Schrödinger operator in 1D

$$
(A x)_{n}=x_{n-1}+v(n) x_{n}+x_{n+1}, \quad n \in \mathbb{Z}
$$

with a bounded potential $v \in \ell^{\infty}(\mathbb{Z})$. The matrix looks like this

$$
A=\left(\begin{array}{ccccccc}
\ddots & \ddots & & & & & \\
\ddots & v_{-2} & 1 & & & & \\
& 1 & v_{-1} & 1 & & & \\
& & & \begin{array}{c}
v_{0} \\
1
\end{array} & 1 & v_{1} & 1 \\
1 & v_{2} & \ddots \\
& & & & & \ddots & \ddots
\end{array}\right)
$$

Limit operators: Time for examples

Discrete Schrödinger operator in 1D

$$
(A x)_{n}=x_{n-1}+v(n) x_{n}+x_{n+1}, \quad n \in \mathbb{Z}
$$

with a bounded potential $v \in \ell^{\infty}(\mathbb{Z})$. The matrix looks like this

$$
A=\left(\begin{array}{ccccccc}
\ddots & \ddots & & & & & \\
\ddots & v_{-2} & 1 & & & & \\
& 1 & v_{-1} & 1 & & & \\
& & 1 & v_{0} & 1 \\
1 & v_{1} & 1 & & \\
& & & & 1 & v_{2} & \ddots \\
& & & & & \ddots & \ddots
\end{array}\right)
$$

Limit op's of A:

$$
(B x)_{n}=x_{n-1}+w(n) x_{n}+x_{n+1}, \quad n \in \mathbb{Z}
$$

with a potential w "locally representing v at infinity".

Example: Discrete Schrödinger operator

So it is enough to look at the potential v :

Example 1: locally constant potential

$$
v=(\cdots, \underbrace{\beta, \beta, \beta, \beta}_{4}, \underbrace{\alpha, \alpha, \alpha}_{3}, \underbrace{\beta, \beta}_{2}, \underbrace{\alpha}_{1}, \underbrace{\beta, \beta}_{2}, \underbrace{\alpha, \alpha, \alpha}_{3}, \underbrace{\beta, \beta, \beta, \beta}_{4}, \cdots), \quad \alpha \neq \beta
$$

Example: Discrete Schrödinger operator

So it is enough to look at the potential v :

Example 1: locally constant potential

$$
v=(\cdots, \underbrace{\beta, \beta, \beta, \beta}_{4}, \underbrace{\alpha, \alpha, \alpha}_{3}, \underbrace{\beta, \beta}_{2}, \underbrace{\alpha}_{1}, \underbrace{\beta, \beta}_{2}, \underbrace{\alpha, \alpha, \alpha}_{3}, \underbrace{\beta, \beta, \beta, \beta}_{4}, \cdots), \quad \alpha \neq \beta
$$

$\Rightarrow 4$ limop's:

$$
\begin{aligned}
& w=(\cdots, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \cdots) \\
& w=(\cdots, \beta, \beta, \beta, \beta, \beta, \beta, \cdots) \\
& w=(\cdots, \alpha, \alpha, \alpha, \beta, \beta, \beta, \cdots) \\
& w=(\cdots, \beta, \beta, \beta, \alpha, \alpha, \alpha, \cdots)
\end{aligned}
$$

...and shifts of the latter two.

Example: Discrete Schrödinger operator

So it is enough to look at the potential v :

Example 1: locally constant potential

$$
v=(\cdots, \underbrace{\beta, \beta, \beta, \beta}_{4}, \underbrace{\alpha, \alpha, \alpha}_{3}, \underbrace{\beta, \beta}_{2}, \underbrace{\alpha}_{1}, \underbrace{\beta, \beta}_{2}, \underbrace{\alpha, \alpha, \alpha}_{3}, \underbrace{\beta, \beta, \beta, \beta}_{4}, \cdots), \quad \alpha \neq \beta
$$

$\Rightarrow 4$ limop's:

$$
\begin{aligned}
& w=(\cdots, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \cdots) \\
& w=(\cdots, \beta, \beta, \beta, \beta, \beta, \beta, \cdots) \\
& w=(\cdots, \alpha, \alpha, \alpha, \beta, \beta, \beta, \cdots) \\
& w=(\cdots, \beta, \beta, \beta, \alpha, \alpha, \alpha, \cdots)
\end{aligned}
$$

...and shifts of the latter two.

Example 2: slowly oscillating potential

$$
v(n+1)-v(n) \rightarrow 0, \quad n \rightarrow \infty
$$

e.g. $v(n)=\cos \sqrt{|n|}$.

Example: Discrete Schrödinger operator

So it is enough to look at the potential v :

Example 1: locally constant potential

$$
v=(\cdots, \underbrace{\beta, \beta, \beta, \beta}_{4}, \underbrace{\alpha, \alpha, \alpha}_{3}, \underbrace{\beta, \beta}_{2}, \underbrace{\alpha}_{1}, \underbrace{\beta, \beta}_{2}, \underbrace{\alpha, \alpha, \alpha}_{3}, \underbrace{\beta, \beta, \beta, \beta}_{4}, \cdots), \quad \alpha \neq \beta
$$

$\Rightarrow 4$ limop's:

$$
\begin{aligned}
& w=(\cdots, \alpha, \alpha, \alpha, \alpha, \alpha, \alpha, \cdots) \\
& w=(\cdots, \beta, \beta, \beta, \beta, \beta, \beta, \cdots) \\
& w=(\cdots, \alpha, \alpha, \alpha, \beta, \beta, \beta, \cdots) \\
& w=(\cdots, \beta, \beta, \beta, \alpha, \alpha, \alpha, \cdots)
\end{aligned}
$$

...and shifts of the latter two.

Example 2: slowly oscillating potential

$$
v(n+1)-v(n) \rightarrow 0, \quad n \rightarrow \infty
$$

e.g. $v(n)=\cos \sqrt{|n|}$.
\Rightarrow Limop's (all constant):

$$
w(n) \equiv a, \quad a \in v(\infty)
$$

Example: Discrete Schrödinger operator

Example 3: random (actually pseudo-ergodic) potential
Take random (i.i.d.) samples $v(n)$ from a compact set $V \subset \mathbb{C}$.
$\xrightarrow{\text { a.s. }}$ The infinite "word" $(\cdots, v(-1), v(0), v(1), \cdots)$ contains every finite word over V as a subword (up to arbitrary accuracy $\varepsilon>0$). [pseudo-ergodic, Davies 2001]

Example: Discrete Schrödinger operator

Example 3: random (actually pseudo-ergodic) potential
Take random (i.i.d.) samples $v(n)$ from a compact set $V \subset \mathbb{C}$.
$\xrightarrow{\text { a.s. }}$ The infinite "word" $(\cdots, v(-1), v(0), v(1), \cdots)$ contains every finite word over V as a subword (up to arbitrary accuracy $\varepsilon>0$). [pseudo-ergodic, Davies 2001]
\Rightarrow lots of limop's: all functions $w: \mathbb{Z} \rightarrow V$

Example: Discrete Schrödinger operator

Example 3: random (actually pseudo-ergodic) potential
Take random (i.i.d.) samples $v(n)$ from a compact set $V \subset \mathbb{C}$.
$\xrightarrow{\text { a.s. }}$ The infinite "word" $(\cdots, v(-1), v(0), v(1), \cdots)$ contains every finite word over V as a subword (up to arbitrary accuracy $\varepsilon>0$). [pseudo-ergodic, Davies 2001]
\Rightarrow lots of limop's: all functions $w: \mathbb{Z} \rightarrow V$

Example 4: (almost-)periodic potential

$$
v(n)=\cos (n \alpha), \quad n \in \mathbb{Z}
$$

Case 1: $\alpha=\frac{p}{q} 2 \pi \in \pi \mathbb{Q}$ (periodic) $\Rightarrow q$ limop's:

$$
w_{k}(n)=\cos ((n+k) \alpha), \quad k=1, \ldots, q
$$

Example: Discrete Schrödinger operator

Example 3: random (actually pseudo-ergodic) potential

Take random (i.i.d.) samples $v(n)$ from a compact set $V \subset \mathbb{C}$.
$\xlongequal{\text { a.s. }}$ The infinite "word" $(\cdots, v(-1), v(0), v(1), \cdots)$ contains every finite word over V as a subword (up to arbitrary accuracy $\varepsilon>0$). [pseudo-ergodic, Davies 2001]
\Rightarrow lots of limop's: all functions $w: \mathbb{Z} \rightarrow V$

Example 4: (almost-)periodic potential

$$
v(n)=\cos (n \alpha), \quad n \in \mathbb{Z}
$$

Case 1: $\alpha=\frac{p}{q} 2 \pi \in \pi \mathbb{Q}$ (periodic) $\Rightarrow q$ limop's:

$$
w_{k}(n)=\cos ((n+k) \alpha), \quad k=1, \ldots, q
$$

Case 2: $\alpha \notin \pi \mathbb{Q}$ (almost-periodic, see Almost-Mathieu operator) $\Rightarrow \infty$-many limop's:

$$
w_{\theta}(n)=\cos (n \alpha+\theta), \quad \theta \in[0,2 \pi)
$$

For each $n \in \mathbb{Z}$, define the n-shift on $X=\ell^{p}(\mathbb{Z})$ via

$$
S_{n}: x \mapsto y \quad \text { with } \quad x_{i}=y_{i+n} .
$$

Limit operators: The definition revisited

For each $n \in \mathbb{Z}$, define the n-shift on $X=\ell^{p}(\mathbb{Z})$ via

$$
S_{n}: x \mapsto y \quad \text { with } \quad x_{i}=y_{i+n} .
$$

Then, for $h=\left(n_{1}, n_{2}, \ldots\right)$ with $\left|n_{k}\right| \rightarrow \infty$, one has

$$
\left(S_{-n_{k}} A S_{n_{k}}\right)_{i, j}=A_{i+n_{k}, j+n_{k}}, \quad i, j \in \mathbb{Z}
$$

so that the limit operator A_{h} of $A \in \operatorname{BDO}(X)$ equals

$$
A_{h}=\lim _{k \rightarrow \infty} S_{-n_{k}} A S_{n_{k}}
$$

the limit taken in the strong topology (pointwise convergence on X).

For each $n \in \mathbb{Z}$, define the n-shift on $X=\ell^{p}(\mathbb{Z})$ via

$$
S_{n}: x \mapsto y \quad \text { with } \quad x_{i}=y_{i+n} .
$$

Then, for $h=\left(n_{1}, n_{2}, \ldots\right)$ with $\left|n_{k}\right| \rightarrow \infty$, one has

$$
\left(S_{-n_{k}} A S_{n_{k}}\right)_{i, j}=A_{i+n_{k}, j+n_{k}}, \quad i, j \in \mathbb{Z}
$$

so that the limit operator A_{h} of $A \in \operatorname{BDO}(X)$ equals

$$
A_{h}=\lim _{k \rightarrow \infty} S_{-n_{k}} A S_{n_{k}}
$$

the limit taken in the strong topology (pointwise convergence on X).
In this sense, the set $\sigma^{\mathrm{op}}(A)$ of all limit operators of A is the set of all partial limits of the operator sequence

$$
\left(S_{-n} A S_{n}\right)_{n \in \mathbb{Z}}
$$

Limit operators: The definition revisited

The very same can be done with $X=\ell^{P}\left(\mathbb{Z}^{d}\right)$ and $A \in \operatorname{BDO}(X)$.
Again, the set $\sigma^{\mathrm{op}}(A)$ of all limit operators of A is the set of all partial limits of the operator "sequence"
$\left(S_{-n} A S_{n}\right)_{n \in \mathbb{Z}^{d}} \quad$ or, likewise, of the function $\quad f_{A}: n \in \mathbb{Z}^{d} \mapsto S_{-n} A S_{n} \in \operatorname{BDO}(X)$.

Limit operators: The definition revisited

The very same can be done with $X=\ell^{p}\left(\mathbb{Z}^{d}\right)$ and $A \in \operatorname{BDO}(X)$.
Again, the set $\sigma^{\mathrm{op}}(A)$ of all limit operators of A is the set of all partial limits of the operator "sequence"
$\left(S_{-n} A S_{n}\right)_{n \in \mathbb{Z}^{d}} \quad$ or, likewise, of the function $\quad f_{A}: n \in \mathbb{Z}^{d} \mapsto S_{-n} A S_{n} \in \operatorname{BDO}(X)$.

- Take a suitable compactification of \mathbb{Z}^{d}.
- Extend the function f_{A} continuously to it.
- Evaluate f_{A} at the boundary $\partial \mathbb{Z}^{d}$
$\Rightarrow \quad$ limit operators of A
One can enumerate the limit operators of A by the elements of $\partial \mathbb{Z}^{d}$ (rather than by sequences $h=\left(n_{1}, n_{2}, \ldots\right)$ for which $S_{-n_{k}} A S_{n_{k}}$ converges).

Limit operators: The definition revisited

The very same can be done with $X=\ell^{p}\left(\mathbb{Z}^{d}\right)$ and $A \in \operatorname{BDO}(X)$.
Again, the set $\sigma^{\text {op }}(A)$ of all limit operators of A is the set of all partial limits of the operator "sequence"
$\left(S_{-n} A S_{n}\right)_{n \in \mathbb{Z}^{d}} \quad$ or, likewise, of the function $\quad f_{A}: n \in \mathbb{Z}^{d} \mapsto S_{-n} A S_{n} \in \operatorname{BDO}(X)$.

- Take a suitable compactification of \mathbb{Z}^{d}.
- Extend the function f_{A} continuously to it.
- Evaluate f_{A} at the boundary $\partial \mathbb{Z}^{d}$
$\Rightarrow \quad$ limit operators of A
One can enumerate the limit operators of A by the elements of $\partial \mathbb{Z}^{d}$ (rather than by sequences $h=\left(n_{1}, n_{2}, \ldots\right)$ for which $S_{-n_{k}} A S_{n_{k}}$ converges).

These ideas can be extended from $\ell^{p}\left(\mathbb{Z}^{d}\right)$ [Rabinovich, Roch, Silbermann 1998] to

- $\ell^{p}(G)$ for finitely generated discrete groups G [Roe 2005]
- $\ell^{\rho}(X)$ for strongly discrete metric spaces X [Spakula \& Willett 2014]
- $L^{p}(X, \mu)$ for fairly general metric spaces X and measures μ [Hagger \& Seifert 2017+×]

Limit operators: The definition revisited

So we have
New enumeration (independent of A) of the limit operators of A

$$
\begin{aligned}
\sigma^{\mathrm{op}}(A) & =\left\{A_{h}: h=\left(n_{1}, n_{2}, \ldots\right) \text { in } \mathbb{Z}^{d} \text { with }\left|n_{k}\right| \rightarrow \infty \text { s.t. } \lim S_{-n_{k}} A S_{n_{k}} \text { exists }\right\} \\
& =\left\{A_{g}: g \in \partial \mathbb{Z}^{d}\right\}
\end{aligned}
$$

Now one can add or multiply two instances of $\sigma^{\circ \mathrm{P}}(A)$ elementwise and get

$$
\sigma^{\mathrm{op}}(A+B)=\sigma^{\mathrm{op}}(A)+\sigma^{\mathrm{op}}(B), \quad \sigma^{\mathrm{op}}(A B)=\sigma^{\mathrm{op}}(A) \sigma^{\mathrm{op}}(B), \quad \sigma^{\mathrm{op}}(\alpha A)=\alpha \sigma^{\mathrm{op}}(A)
$$

Limit operators: The definition revisited

So we have
New enumeration (independent of A) of the limit operators of A

$$
\begin{aligned}
\sigma^{\mathrm{op}}(A) & =\left\{A_{h}: h=\left(n_{1}, n_{2}, \ldots\right) \text { in } \mathbb{Z}^{d} \text { with }\left|n_{k}\right| \rightarrow \infty \text { s.t. } \lim S_{-n_{k}} A S_{n_{k}} \text { exists }\right\} \\
& =\left\{A_{g}: g \in \partial \mathbb{Z}^{d}\right\}
\end{aligned}
$$

Now one can add or multiply two instances of $\sigma^{\circ \mathrm{P}}(A)$ elementwise and get

$$
\sigma^{\mathrm{op}}(A+B)=\sigma^{\mathrm{op}}(A)+\sigma^{\mathrm{op}}(B), \quad \sigma^{\mathrm{op}}(A B)=\sigma^{\mathrm{op}}(A) \sigma^{\mathrm{op}}(B), \quad \sigma^{\mathrm{op}}(\alpha A)=\alpha \sigma^{\mathrm{op}}(A)
$$

In short: The map

$$
\varphi: A \mapsto \sigma^{\circ \mathrm{P}}(A), \quad \mathrm{BDO}(X) \rightarrow \ell^{\infty}\left(\partial \mathbb{Z}^{d}, \mathrm{BDO}(X)\right)
$$

is an algebra homomorphism.

Limit operators: The definition revisited

So we have
New enumeration (independent of A) of the limit operators of A

$$
\begin{aligned}
\sigma^{\mathrm{op}}(A) & =\left\{A_{h}: h=\left(n_{1}, n_{2}, \ldots\right) \text { in } \mathbb{Z}^{d} \text { with }\left|n_{k}\right| \rightarrow \infty \text { s.t. } \lim S_{-n_{k}} A S_{n_{k}} \text { exists }\right\} \\
& =\left\{A_{g}: g \in \partial \mathbb{Z}^{d}\right\}
\end{aligned}
$$

Now one can add or multiply two instances of $\sigma^{\circ \mathrm{P}}(A)$ elementwise and get

$$
\sigma^{\mathrm{op}}(A+B)=\sigma^{\mathrm{op}}(A)+\sigma^{\mathrm{op}}(B), \quad \sigma^{\mathrm{op}}(A B)=\sigma^{\mathrm{op}}(A) \sigma^{\mathrm{op}}(B), \quad \sigma^{\mathrm{op}}(\alpha A)=\alpha \sigma^{\mathrm{op}}(A)
$$

In short: The map

$$
\varphi: A \mapsto \sigma^{\circ \mathrm{P}}(A), \quad \mathrm{BDO}(X) \rightarrow \ell^{\infty}\left(\partial \mathbb{Z}^{d}, \mathrm{BDO}(X)\right)
$$

is an algebra homomorphism.

Key observation

The kernel of that homomorphism $\varphi: A \mapsto \sigma^{\mathrm{op}}(A)$ is $K(X)$.
So $A+K(X) \mapsto \sigma^{\mathrm{op}}(A)$ is an isomorphism $\operatorname{BDO}(X) / \operatorname{ker} \varphi \rightarrow \operatorname{im} \varphi$.

Limit operators and our essentials

The result is an identification

$$
A+\mathcal{K}(X) \cong \sigma^{\mathrm{op}}(A)
$$

for all $A \in \mathrm{BDO}(X)$ - with the following consequences:

A	$A+\mathcal{K}(X)$	$\sigma^{\text {op }}(A)$						
essential norm								
$\\|A\\|_{\text {ess }}$	$\\|\mathcal{A}+\mathcal{K}(X)\\|_{\mathcal{L}(X) / \mathcal{K}(X)}$	$\max _{h}\left\\|A_{h}\right\\|$						

Limit operators and our essentials

The result is an identification

$$
A+\mathcal{K}(X) \cong \sigma^{\mathrm{op}}(A)
$$

for all $A \in \mathrm{BDO}(X)$ - with the following consequences:

A	$A+\mathcal{K}(X)$	$\sigma^{\text {op }}(A)$						
essential norm $\\|A\\|_{\text {ess }}$	$\\|\mathcal{A}+\mathcal{K}(X)\\|_{\mathcal{L}(X) / \mathcal{K}(X)}$	$\max _{h}\left\\|A_{h}\right\\|$						
A is Fredholm	$A+\mathcal{K}(X)$ invertible in ${ }^{\mathcal{L}(X)} / \mathcal{K}(X)$	all A_{h} are invertible						

Limit operators and our essentials

The result is an identification

$$
A+\mathcal{K}(X) \cong \sigma^{\circ \mathrm{P}}(A)
$$

for all $A \in \mathrm{BDO}(X)$ - with the following consequences:

A	$A+\mathcal{K}(X)$	$\sigma^{\text {op }}(A)$						
essential norm $\\|A\\|_{\text {ess }}$	$\\|\mathcal{A}+\mathcal{K}(X)\\|_{\mathcal{L}(X) / \mathcal{K}(X)}$	$\max _{h}\left\\|A_{h}\right\\|$						
A is Fredholm	$A+\mathcal{K}(X)$ invertible in ${ }^{\mathcal{L}(X)} / \mathcal{K}(X)$	all A_{h} are invertible						
B is a Φ-regulariser of A	$B+\mathcal{K}(X)=[A+\mathcal{K}(X)]^{-1}$	$B_{h}=A_{h}^{-1}$						

The result is an identification

$$
A+\mathcal{K}(X) \cong \sigma^{\circ P}(A)
$$

for all $A \in \operatorname{BDO}(X)$ - with the following consequences:

A	$A+\mathcal{K}(X)$	$\sigma^{\text {op }}(A)$						
essential norm $\\|A\\|_{\text {ess }}$	$\\|\mathcal{A}+\mathcal{K}(X)\\|_{\mathcal{L}(X) / \mathcal{K}(X)}$	$\max _{h}\left\\|A_{h}\right\\|$						
A is Fredholm	$A+\mathcal{K}(X)$ invertible in ${ }^{\mathcal{L}(X)} / \mathcal{K}(X)$	all A_{h} are invertible						
B is a Φ-regulariser of A	$B+\mathcal{K}(X)=[A+\mathcal{K}(X)]^{-1}$	$B_{h}=A_{h}^{-1}$						
essential spectrum $^{\text {spec }_{\text {ess }} A}$	$\operatorname{spec}_{\mathcal{L}(X) / \mathcal{K}(X)}(A+\mathcal{K}(X))$	\cup_{h} spec A_{h}						

The result is an identification

$$
A+\mathcal{K}(X) \cong \sigma^{\circ \mathrm{P}}(A)
$$

for all $A \in \mathrm{BDO}(X)$ - with the following consequences:

A	$A+\mathcal{K}(X)$	$\sigma^{\text {op }}(A)$						
essential norm $\\|A\\|_{\text {ess }}$	$\\|\mathcal{A}+\mathcal{K}(X)\\|_{\mathcal{L}(X) / \mathcal{K}(X)}$	$\max _{h}\left\\|A_{h}\right\\|$						
A is Fredholm	$A+\mathcal{K}(X)$ invertible in ${ }^{\mathcal{L}(X)} / \mathcal{K}(X)$	all A_{h} are invertible						
B is a Φ-regulariser of A	$B+\mathcal{K}(X)=[A+\mathcal{K}(X)]^{-1}$	$B_{h}=A_{h}^{-1}$						
essential spectrum $^{\text {spec }_{\text {ess }} A}$	$\operatorname{spec}_{\mathcal{L}(X) / \mathcal{K}(X)}(A+\mathcal{K}(X))$	$\cup_{h} \operatorname{spec} A_{h}$						
essential pseudospectrum spec $_{\text {ess }}^{\varepsilon} A$	$\operatorname{spec}_{\mathcal{L}(X) / \mathcal{K}(X)}^{\varepsilon}(A+\mathcal{K}(X))$	$\cup_{h} \operatorname{spec}^{\varepsilon} A_{h}$						

The result is an identification

$$
A+\mathcal{K}(X) \cong \sigma^{\circ \mathrm{P}}(A)
$$

for all $A \in \operatorname{BDO}(X)$ - with the following consequences:

A	$A+\mathcal{K}(X)$	$\sigma^{\text {op }}(A)$						
essential norm $\\|A\\|_{\text {ess }}$	$\\|\mathcal{A}+\mathcal{K}(X)\\|_{\mathcal{L}(X) / \mathcal{K}(X)}$	$\max _{h}\left\\|A_{h}\right\\|$						
A is Fredholm	$A+\mathcal{K}(X)$ invertible in ${ }^{\mathcal{L}(X)} / \mathcal{K}(X)$	all A_{h} are invertible						
B is a Φ-regulariser of A	$B+\mathcal{K}(X)=[A+\mathcal{K}(X)]^{-1}$	$B_{h}=A_{h}^{-1}$						
essential spectrum $\operatorname{spec}_{\text {ess }} A$	$\operatorname{spec}_{\mathcal{L}(X) / \mathcal{K}(X)}(A+\mathcal{K}(X))$	$\cup_{h} \operatorname{spec} A_{h}$						
essential pseudospectrum $\operatorname{spec}_{\text {ess }}^{\varepsilon} A$	$\operatorname{spec}_{\mathcal{L}(X) / \mathcal{K}(X)}^{\varepsilon}(A+\mathcal{K}(X))$	$\cup_{h} \operatorname{spec}^{\varepsilon} A_{h}$						
For $A \in \operatorname{BO}(X)$ and $d=1$: A is Fredholm spec $_{\text {ess }} A$	$\begin{gathered} A+\mathcal{K}(X) \text { invertible in } \mathcal{L}(X) / \mathcal{K}(X) \\ \operatorname{spec}_{\mathcal{L}(X) / \mathcal{K}(X)}(A+\mathcal{K}(X)) \end{gathered}$	all A_{h} injective on $\ell^{\infty}(\mathbb{Z})$ \cup_{h} spec $_{\text {point }}^{\infty} A_{h}$						

$$
A+\mathcal{K}(X) \cong \sigma^{\circ \rho}(A)
$$

A	$\sigma^{\mathrm{op}}(A)$				
essential norm $\\|A\\|_{\text {ess }}$	$\max _{h}\left\\|A_{h}\right\\|$				
A is Fredholm	all A_{h} are invertible				
B is a Φ-regulariser of A	$B_{h}=A_{h}^{-1}$				
essential spectrum $\mathrm{spec}_{\mathrm{ess}} A$	\cup_{h} spec A_{h}				
essential pseudospectrum $\operatorname{spec}_{\mathrm{ess}}^{\varepsilon} A$	$\cup_{h} \operatorname{spec}^{\varepsilon} A_{h}$				
For $A \in \mathrm{BO}(X)$ and $d=1$: A is Fredholm spec $_{\text {ess }} A$	all A_{h} injective on $\ell^{\infty}(\mathbb{Z})$ $\cup_{h} \operatorname{spec}_{\text {point }}^{\infty} A_{h}$				

[Hagger, ML, Seidel 2016]
[Lange, Rabinovich 1985+] [Rabinovich, Roch, Silbermann 1998+] [ML, Silbermann 2003], [ML 2003+]
[Chandler-Wilde, ML 2007] [Seidel, ML 2014]
[Seidel 2013]
[Seidel, ML 2014]
[Hagger, ML, Seidel 2016]
[Chandler-Wilde, ML 2008]

Self-similar operators

Definition: self-similar operator

We say that $A \in \mathrm{BDO}(X)$ is self-similar if $A \in \sigma^{\mathrm{op}}(A)$.

Roughly speaking, this means that

- A contains a copy of itself, at infinity.
- Each pattern that you see once in A, you will see infinitely often in A.

Self-similar operators

Definition: self-similar operator

We say that $A \in \operatorname{BDO}(X)$ is self-similar if $A \in \sigma^{\mathrm{op}}(A)$.

Roughly speaking, this means that

- A contains a copy of itself, at infinity.
- Each pattern that you see once in A, you will see infinitely often in A.

But then, by the above,

$$
\begin{aligned}
\|A\|_{\text {ess }} & =\|A\| \\
A \text { is Fredholm } & \Longleftrightarrow A \text { is invertible } \\
\operatorname{spec}_{\mathrm{ess}} A & =\operatorname{spec} A \\
\operatorname{spec}_{\mathrm{ess}}^{\varepsilon} A & =\operatorname{spec}^{\varepsilon} A
\end{aligned}
$$

Self-similar operators

Definition: self-similar operator

We say that $A \in \mathrm{BDO}(X)$ is self-similar if $A \in \sigma^{\mathrm{op}}(A)$.

Roughly speaking, this means that

- A contains a copy of itself, at infinity.
- Each pattern that you see once in A, you will see infinitely often in A.

But then, by the above,

$$
\begin{aligned}
\|A\|_{\text {ess }} & =\|A\| \\
A \text { is Fredholm } & \Longleftrightarrow A \text { is invertible } \\
\operatorname{spec}_{\text {ess }} A & =\operatorname{spec} A \\
\operatorname{spec}_{\text {ess }}^{\varepsilon} A & =\operatorname{spec}^{\varepsilon} A
\end{aligned}
$$

```
"essential stuff = real stuff."
```

(3) Stability of approximation methods
a The Fibonacci Hamiltonian

The finite section method

Task: Find an approximate solution of the equation

$$
A x=b
$$

Task: Find an approximate solution of the equation

$$
A x=b
$$

Idea: Approximate A by growing but finite square submatrices A_{n}

and, assuming that A is invertible, hope

- that also the inverses A_{n}^{-1} exist, at least for sufficiently large n, and
- that they converge to the inverse of A, i.e. $A_{n}^{-1} \rightarrow A^{-1}$,

Task: Find an approximate solution of the equation

$$
A x=b
$$

Idea: Approximate A by growing but finite square submatrices A_{n}

and, assuming that A is invertible, hope

- that also the inverses A_{n}^{-1} exist, at least for sufficiently large n, and
- that they converge to the inverse of A, i.e. $A_{n}^{-1} \rightarrow A^{-1}$,

It turns out: This "hope" will come true iff the sequence $\left(A_{n}\right)$ is stable, meaning that all A_{n} with sufficiently large n are invertible and $\sup _{n \geq n_{0}}\left\|A_{n}^{-1}\right\|<\infty$.

The sequence $\left(A_{n}\right)$ is stable $\Longleftrightarrow D:=\operatorname{Diag}\left(A_{1}, A_{2}, \ldots\right)$ is Fredholm.

This brings us back to limit operators of D - and hence of A.

Following the corners as they move out to infinity

In the end we have to follow the two "corners" (semi-infinite matrices)

$$
\left(\begin{array}{cc}
a l_{n}, l_{n} & \cdots \\
\vdots & \ddots
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
\ddots & \vdots \\
\cdots & a_{r_{n}, r_{n}}
\end{array}\right)
$$

of A_{n} as $n \rightarrow \infty$ and find (partial) limits of these matrix sequences:

Following the corners as they move out to infinity

In the end we have to follow the two "corners" (semi-infinite matrices)

$$
\left(\begin{array}{cc}
a l_{n}, l_{n} & \cdots \\
\vdots & \ddots
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
\ddots & \vdots \\
\cdots & a_{r_{n}, r_{n}}
\end{array}\right)
$$

of A_{n} as $n \rightarrow \infty$ and find (partial) limits of these matrix sequences:

Following the corners as they move out to infinity

In the end we have to follow the two "corners" (semi-infinite matrices)

$$
\left(\begin{array}{cc}
a l_{n}, l_{n} & \cdots \\
\vdots & \ddots
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
\ddots & \vdots \\
\cdots & a_{r_{n}, r_{n}}
\end{array}\right)
$$

of A_{n} as $n \rightarrow \infty$ and find (partial) limits of these matrix sequences:

Following the corners as they move out to infinity

In the end we have to follow the two "corners" (semi-infinite matrices)

$$
\left(\begin{array}{cc}
a l_{n}, l_{n} & \cdots \\
\vdots & \ddots
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
\ddots & \vdots \\
\cdots & a_{r_{n}, r_{n}}
\end{array}\right)
$$

of A_{n} as $n \rightarrow \infty$ and find (partial) limits of these matrix sequences:

(3) Stability of approximation methods

4 The Fibonacci Hamiltonian

The Fibonacci Hamiltonian
The Fibonacci Hamiltonian is a particular discrete Schrödinger operator in 1D:

$$
(A x)_{n}=x_{n-1}+v_{n} x_{n}+x_{n+1}, \quad n \in \mathbb{Z} .
$$

So, again, the matrix looks like this

$$
A=\left(\begin{array}{ccccccc}
\ddots & \ddots & & & & & \\
\ddots & v_{-2} & 1 & & & & \\
& 1 & v_{-1} & 1 & & & \\
& & 1 & v_{0} & 1 & & \\
1 & v_{1} & 1 & \\
& & & & 1 & v_{2} & \ddots \\
& & & & & \ddots & \ddots
\end{array}\right) .
$$

The potential v only assumes the values 0 and 1 - but in a very interesting pattern.
50 letters of the Fibonacci word ("quasiperiodic")
... 10110101101101011010110110101101101011010110110101...

Fibonacci and his rabbit population

time	population	
1		count
2		
3		
4		
5		
7		

time	population	count
1	1	1
2	10	2
3	101	3
4	10110	5
5	10110101	8
6	1011010110110	13
7	101101011011010110101	21
8	1011010110110101101011011010110110	34
9	1011010110110101101011011010110110101101011011010110101	55
\vdots	\vdots	\vdots

Three equivalent constructions of the Fibonacci word

$$
0 \mapsto 1,1 \mapsto 10 ; \quad f_{k+1}:=f_{k} f_{k-1} ; \quad v_{n}=\chi_{[1-\alpha, 1)}(n \alpha \bmod 1), \alpha=\frac{2}{1+\sqrt{5}}
$$

The last formula is also used to define v_{n} for all $n \in \mathbb{Z} .(\Rightarrow$ bi-infinite Fibonacci word $)$

$$
v_{n}=\chi_{[1-\alpha, 1)}(\quad n \alpha \bmod 1), \quad n \in \mathbb{Z}, \quad \alpha=\frac{2}{1+\sqrt{5}} \quad \text { ("golden mean") }
$$

n	\ldots	-3	-2	-1	0	1	2	3	4	5	6	7	8	\cdots
v_{n}														

$$
v_{n}=\chi_{[1-\alpha, 1)}(\quad n \alpha \bmod 1), \quad n \in \mathbb{Z}, \quad \alpha=\frac{2}{1+\sqrt{5}} \quad \text { ("golden mean") }
$$

n	\cdots	-3	-2	-1	0	1	2	3	4	5	6	7	8	\cdots
v_{n}														

$$
v_{n}=\chi_{[1-\alpha, 1)}(\quad n \alpha \bmod 1), \quad n \in \mathbb{Z}, \quad \alpha=\frac{2}{1+\sqrt{5}} \quad \text { ("golden mean") }
$$

n	\ldots	-3	-2	-1	0	1	2	3	4	5	6	7	8	\cdots
v_{n}						1								

$$
v_{n}=\chi_{[1-\alpha, 1)}(\quad n \alpha \bmod 1), \quad n \in \mathbb{Z}, \quad \alpha=\frac{2}{1+\sqrt{5}} \quad \text { ("golden mean") }
$$

n	\ldots	-3	-2	-1	0	1	2	3	4	5	6	7	8	\cdots
v_{n}						1	0							

$$
v_{n}=\chi_{[1-\alpha, 1)}(\quad n \alpha \bmod 1), \quad n \in \mathbb{Z}, \quad \alpha=\frac{2}{1+\sqrt{5}} \quad \text { ("golden mean") }
$$

n	\ldots	-3	-2	-1	0	1	2	3	4	5	6	7	8	\cdots
v_{n}						1	0	1						

$$
v_{n}=\chi_{[1-\alpha, 1)}(\quad n \alpha \bmod 1), \quad n \in \mathbb{Z}, \quad \alpha=\frac{2}{1+\sqrt{5}} \quad \text { ("golden mean") }
$$

n	\ldots	-3	-2	-1	0	1	2	3	4	5	6	7	8	\cdots
v_{n}						1	0	1	1					

$$
v_{n}=\chi_{[1-\alpha, 1)}(\quad n \alpha \bmod 1), \quad n \in \mathbb{Z}, \quad \alpha=\frac{2}{1+\sqrt{5}} \quad \text { ("golden mean") }
$$

n	\ldots	-3	-2	-1	0	1	2	3	4	5	6	7	8	\cdots
v_{n}						1	0	1	1	0				

$$
v_{n}=\chi_{[1-\alpha, 1)}(\quad n \alpha \bmod 1), \quad n \in \mathbb{Z}, \quad \alpha=\frac{2}{1+\sqrt{5}} \quad \text { ("golden mean") }
$$

n	\ldots	-3	-2	-1	0	1	2	3	4	5	6	7	8	\cdots
v_{n}						1	0	1	1	0	1			

$$
v_{n}=\chi_{[1-\alpha, 1)}(\quad n \alpha \bmod 1), \quad n \in \mathbb{Z}, \quad \alpha=\frac{2}{1+\sqrt{5}} \quad \text { ("golden mean") }
$$

n	\ldots	-3	-2	-1	0	1	2	3	4	5	6	7	8	\cdots
v_{n}						1	0	1	1	0	1	0		

$$
v_{n}=\chi_{[1-\alpha, 1)}(\quad n \alpha \bmod 1), \quad n \in \mathbb{Z}, \quad \alpha=\frac{2}{1+\sqrt{5}} \quad \text { ("golden mean") }
$$

n	\ldots	-3	-2	-1	0	1	2	3	4	5	6	7	8	\cdots
v_{n}						1	0	1	1	0	1	0	1	

$$
v_{n}=\chi_{[1-\alpha, 1)}(\quad n \alpha \bmod 1), \quad n \in \mathbb{Z}, \quad \alpha=\frac{2}{1+\sqrt{5}} \quad \text { ("golden mean") }
$$

n	\ldots	-3	-2	-1	0	1	2	3	4	5	6	7	8	\cdots
v_{n}						1	0	1	1	0	1	0	1	\cdots

$$
v_{n}=\chi_{[1-\alpha, 1)}(\quad n \alpha \bmod 1), \quad n \in \mathbb{Z}, \quad \alpha=\frac{2}{1+\sqrt{5}} \quad \text { ("golden mean") }
$$

n	\ldots	-3	-2	-1	0	1	2	3	4	5	6	7	8	\cdots
v_{n}						1	0	1	1	0	1	0	1	\cdots

Fibonacci word: subword complexity

In an infinite random word over the alphabet $\{0,1\}$ you can find (almost surely) all 2^{n} subwords of length n.

In contrast: How many can you find in the Fibonacci word

$$
v=\cdots 1011010110110101101011011010110110101101011011010110101 \cdots ?
$$

List of subwords of length n

length	subwords	count
1	0,1	2

Fibonacci word: subword complexity

In an infinite random word over the alphabet $\{0,1\}$ you can find (almost surely) all 2^{n} subwords of length n.

In contrast: How many can you find in the Fibonacci word

$$
v=\cdots 1011010110110101101011011010110110101101011011010110101 \cdots ?
$$

List of subwords of length n

length	subwords	count
1	0,1	2
2	$01,10,11$	3

Fibonacci word: subword complexity

In an infinite random word over the alphabet $\{0,1\}$ you can find (almost surely) all 2^{n} subwords of length n.

In contrast: How many can you find in the Fibonacci word

$$
v=\cdots 1011010110110101101011011010110110101101011011010110101 \cdots ?
$$

List of subwords of length n

length	subwords	count
1	0,1	2
2	$01,10,11$	3
3	$010,011,101,110$	4

Fibonacci word: subword complexity

In an infinite random word over the alphabet $\{0,1\}$ you can find (almost surely) all 2^{n} subwords of length n.

In contrast: How many can you find in the Fibonacci word

$$
v=\cdots 1011010110110101101011011010110110101101011011010110101 \cdots ?
$$

List of subwords of length n

length	subwords	count
1	0,1	2
2	$01,10,11$	3
3	$010,011,101,110$	4
4	$0101,0110,1010,1011,1101$	5

Fibonacci word: subword complexity

In an infinite random word over the alphabet $\{0,1\}$ you can find (almost surely) all 2^{n} subwords of length n.

In contrast: How many can you find in the Fibonacci word

$$
v=\cdots 1011010110110101101011011010110110101101011011010110101 \cdots ?
$$

List of subwords of length n

length	subwords	count
1	0,1	2
2	$01,10,11$	3
3	$010,011,101,110$	4
4	$0101,0110,1010,1011,1101$	5
\vdots		\vdots
n	\cdots	$n+1$

Interesting feature: Very moderate (in fact: minimal) growth, compared to 2^{n}.

In an infinite random word over the alphabet $\{0,1\}$ you can find (almost surely) all 2^{n} subwords of length n.

In contrast: How many can you find in the Fibonacci word

$$
v=\cdots 1011010110110101101011011010110110101101011011010110101 \cdots \text { ? }
$$

List of subwords of length n

length	subwords	count
1	0,1	2
2	$01,10,11$	3
3	$010,011,101,110$	4
4	$0101,0110,1010,1011,1101$	5
\vdots		\vdots
n	\cdots	$n+1$

Interesting feature: Very moderate (in fact: minimal) growth, compared to 2^{n}.
One can show:
The main diagonal of every limit operator of A has the same list of subwords!

Limit operators and their subwords

Let

- $v=\cdots 10110101101101011010110110101101101011 \cdots$ be the Fibonacci word,
- $A=S_{-1}+M_{v}+S_{1}$ be the Fibonacci Hamiltonian,

Limit operators and their subwords

Let

- $v=\cdots 10110101101101011010110110101101101011 \cdots$ be the Fibonacci word,
- $A=S_{-1}+M_{v}+S_{1}$ be the Fibonacci Hamiltonian,
- $h=\left(n_{1}, n_{2}, \ldots\right)$ be a sequence in \mathbb{Z} with $n_{k} \rightarrow \pm \infty$ and limit operator
- $A_{h}=S_{-1}+M_{v_{h}}+S_{1}$ with $v_{h}=\lim _{k \rightarrow \infty} S_{-n_{k}} v$ (pointwise).

Limit operators and their subwords

Let

- $v=\cdots 10110101101101011010110110101101101011 \cdots$ be the Fibonacci word,
- $A=S_{-1}+M_{v}+S_{1}$ be the Fibonacci Hamiltonian,
- $h=\left(n_{1}, n_{2}, \ldots\right)$ be a sequence in \mathbb{Z} with $n_{k} \rightarrow \pm \infty$ and limit operator
- $A_{h}=S_{-1}+M_{v_{h}}+S_{1}$ with $v_{h}=\lim _{k \rightarrow \infty} S_{-n_{k}} v$ (pointwise).

The main diagonal of the limit operator A_{h} has the same subwords as that of A.

$$
w \prec v \quad \Longleftrightarrow \quad w \prec v_{h}
$$

Limit operators and their subwords

Let

- $v=\cdots 10110101101101011010110110101101101011 \cdots$ be the Fibonacci word,
- $A=S_{-1}+M_{v}+S_{1}$ be the Fibonacci Hamiltonian,
- $h=\left(n_{1}, n_{2}, \ldots\right)$ be a sequence in \mathbb{Z} with $n_{k} \rightarrow \pm \infty$ and limit operator
- $A_{h}=S_{-1}+M_{v_{h}}+S_{1}$ with $v_{h}=\lim _{k \rightarrow \infty} S_{-n_{k}} v$ (pointwise).

The main diagonal of the limit operator A_{h} has the same subwords as that of A.

$$
w \prec v \quad \Longleftrightarrow \quad w \prec v_{h}
$$

$\Leftarrow w \prec v_{h} \quad \Longrightarrow \quad w \prec S_{-n_{k}} v$ for large $k \quad \Longrightarrow \quad w \prec v$.

Limit operators and their subwords

Let

- $v=\cdots 10110101101101011010110110101101101011 \cdots$ be the Fibonacci word,
- $A=S_{-1}+M_{v}+S_{1}$ be the Fibonacci Hamiltonian,
- $h=\left(n_{1}, n_{2}, \ldots\right)$ be a sequence in \mathbb{Z} with $n_{k} \rightarrow \pm \infty$ and limit operator
- $A_{h}=S_{-1}+M_{v_{h}}+S_{1}$ with $v_{h}=\lim _{k \rightarrow \infty} S_{-n_{k}} v$ (pointwise).

The main diagonal of the limit operator A_{h} has the same subwords as that of A.

$$
w \prec v \quad \Longleftrightarrow \quad w \prec v_{h}
$$

$\Leftarrow w \prec v_{h} \quad \Longrightarrow \quad w \prec S_{-n_{k}} v$ for large $k \quad \Longrightarrow \quad w \prec v$.
\Rightarrow Let $w \prec v$, say (w.l.o.g.) $w \prec v_{+}$.
$\Longrightarrow \quad$ Every $S_{-n_{k}} v$ contains w in a F_{n+1}-neighbourhood of zero.
$\Longrightarrow \quad$ Every limit potential v_{h} contains w in a F_{n+1}-neighbourhood of zero.

Limit operators and the "mod 1" rotation formula

For the Fibonacci Hamiltonian $A=S_{-1}+M_{v}+S_{1}$, one gets

$$
\sigma^{o p}(A)=\left\{S_{-1}+M_{v^{\theta}}+S_{1}, S_{-1}+M_{w^{\theta}}+S_{1}: \theta \in[0,1)\right\}
$$

where

$$
v_{n}^{\theta}:=\chi_{[1-\alpha, 1)}(\theta+n \alpha \bmod 1), \quad w_{n}^{\theta}:=\chi_{(1-\alpha, 1]}(\theta+n \alpha \bmod 1), \quad n \in \mathbb{Z}
$$

In particular, $A \in \sigma^{\mathrm{op}}(A)$; so A is self-similar.

What do we want from the Fibonacci Hamiltonian?

A lot is known of the spectrum of A; it is

- a Cantor set on the real line
- of Lebesgue measure zero,
- there is no point spectrum (w.r.t. ℓ^{2})
- in fact, the spectrum is purely singular continuous...

A lot is known of the spectrum of A; it is

- a Cantor set on the real line
- of Lebesgue measure zero,
- there is no point spectrum (w.r.t. ℓ^{2})
- in fact, the spectrum is purely singular continuous...

Our focus: Applicability of the FSM with arbitrary cut-off points.

We show this via invertibility of B, B_{+}and B_{-}for all $B \in \sigma^{\mathrm{op}}(A)$, including $B=A$ (i.e. 0 is not in the spectrum of any of these operators).

To show that A is invertible on ℓ^{2} (hence on any ℓ^{p}), we show that

- A is Fredholm (\Rightarrow closed range)
- A is injective on ℓ^{2}
- A^{*} is injective on ℓ^{2}

To show that A is invertible on ℓ^{2} (hence on any ℓ^{ρ}), we show that

- A is Fredholm (\Rightarrow closed range) \Longleftrightarrow all $B \in \sigma^{o p}(A)$ are invertible on ℓ^{2}
- A is injective on ℓ^{2}
- A^{*} is injective on ℓ^{2}

To show that A is invertible on ℓ^{2} (hence on any ℓ^{ρ}), we show that

- A is Fredholm (\Rightarrow closed range) \Longleftrightarrow all $B \in \sigma^{o p}(A)$ are injective on ℓ^{∞}
- A is injective on ℓ^{2}
- A^{*} is injective on ℓ^{2}

To show that A is invertible on ℓ^{2} (hence on any ℓ^{P}), we show that

- A is Fredholm (\Rightarrow closed range) \Longleftrightarrow all $B \in \sigma^{\text {op }}(A)$ are injective on ℓ^{∞}
- A is injective on $\ell^{2} \Longleftarrow A$ is injective on ℓ^{∞}
- A^{*} is injective on $\ell^{2} \Longleftarrow A=A^{*}$ is injective on ℓ^{∞}

To show that A is invertible on ℓ^{2} (hence on any ℓ^{p}), we show that

- A is Fredholm (\Rightarrow closed range) \Longleftrightarrow all $B \in \sigma^{\text {op }}(A)$ are injective on ℓ^{∞}
- A is injective on $\ell^{2} \Longleftarrow A$ is injective on ℓ^{∞}
- A^{*} is injective on $\ell^{2} \Longleftarrow A=A^{*}$ is injective on ℓ^{∞}

Similarly: For invertibility of all B_{+}and B_{-}it is enough to show their injectivity on ℓ^{∞} (since all are Fredholm and self-adjoint).

To show that A is invertible on ℓ^{2} (hence on any ℓ^{p}), we show that

- A is Fredholm (\Rightarrow closed range) $\quad \Longleftrightarrow \quad$ all $B \in \sigma^{\circ p}(A)$ are injective on ℓ^{∞}
- A is injective on $\ell^{2} \Longleftarrow A$ is injective on ℓ^{∞}
- A^{*} is injective on $\ell^{2} \Longleftarrow A=A^{*}$ is injective on ℓ^{∞}

Similarly: For invertibility of all B_{+}and B_{-}it is enough to show their injectivity on ℓ^{∞} (since all are Fredholm and self-adjoint).

We demonstrate this for $B=A$ (so that $B_{+}=A_{+}$):
Let $A_{+} x=0, \quad$ i.e. $\quad\left(\begin{array}{cccccccc}1 & 1 & & & & & & \\ 1 & 0 & 1 & & & & \\ & 1 & 1 & 1 & & & \\ & & 1 & 1 & 1 & & \\ & & & 1 & 0 & 1 & \\ & & & & 1 & 1 & \ddots \\ & & & & & \ddots & \ddots\end{array}\right)\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6} \\ \vdots\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right)$.

In short:

$$
x_{n-1}+v_{n} x_{n}+x_{n+1}=0 \quad \text { for all } n \in \mathbb{N} .
$$

To show that A is invertible on ℓ^{2} (hence on any ℓ^{p}), we show that

- A is Fredholm (\Rightarrow closed range) $\quad \Longleftrightarrow \quad$ all $B \in \sigma^{\text {op }}(A)$ are injective on ℓ^{∞}
- A is injective on $\ell^{2} \Longleftarrow A$ is injective on ℓ^{∞}
- A^{*} is injective on $\ell^{2} \Longleftarrow A=A^{*}$ is injective on ℓ^{∞}

Similarly: For invertibility of all B_{+}and B_{-}it is enough to show their injectivity on ℓ^{∞} (since all are Fredholm and self-adjoint).

We demonstrate this for $B=A$ (so that $B_{+}=A_{+}$):
Let $A_{+} x=0, \quad$ i.e. $\quad\left(\begin{array}{cccccccc}1 & 1 & & & & & & \\ 1 & 0 & 1 & & & & \\ & 1 & 1 & 1 & & & \\ & & 1 & 1 & 1 & & \\ & & & 1 & 0 & 1 & \\ & & & & 1 & 1 & \ddots \\ & & & & & \ddots & \ddots\end{array}\right)\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6} \\ \vdots\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots\end{array}\right)$.

In short:

$$
x_{n-1}+v_{n} x_{n}+x_{n+1}=0 \quad \text { for all } n \in \mathbb{N} .
$$

Starting with $x_{0}=0$ and $x_{1}=1$ (w.l.o.g.) this is a 2 -term recurrence for x_{2}, x_{3}, \ldots,

Sketch of proof

In short:

$$
x_{n-1}+v_{n} x_{n}+x_{n+1}=0 \quad \text { for all } n \in \mathbb{N} .
$$

Starting with $x_{0}=0$ and $x_{1}=1$ (w.l.o.g.) this is a 2 -term recurrence for x_{2}, x_{3}, \ldots

In short:

$$
x_{n-1}+v_{n} x_{n}+x_{n+1}=0 \quad \text { for all } n \in \mathbb{N}
$$

Starting with $x_{0}=0$ and $x_{1}=1$ (w.l.o.g.) this is a 2-term recurrence for x_{2}, x_{3}, \ldots

| n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :---: |
| v_{n} | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
| x_{n} | 1 | -1 | -1 | 2 | -1 | -2 | 3 | 2 | -5 | 3 | 5 | -8 | 3 | 8 | -11 | -8 | 19 | -11 | -19 | 30 |

In short:

$$
x_{n-1}+v_{n} x_{n}+x_{n+1}=0 \quad \text { for all } n \in \mathbb{N}
$$

Starting with $x_{0}=0$ and $x_{1}=1$ (w.l.o.g.) this is a 2-term recurrence for x_{2}, x_{3}, \ldots

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
v_{n}	1	0	1	1	0	1	0	1	1	0	1	1	0	1	0	1	1	0	1	0
x_{n}	1	-1	-1	2	-1	-2	3	2	-5	3	5	-8	3	8	-11	-8	19	-11	-19	30

$\cdots \quad \Longrightarrow x \notin \ell^{\infty} \Longrightarrow A_{+}$is injective on ℓ^{∞}

In short:

$$
x_{n-1}+v_{n} x_{n}+x_{n+1}=0 \quad \text { for all } n \in \mathbb{N}
$$

Starting with $x_{0}=0$ and $x_{1}=1$ (w.l.o.g.) this is a 2-term recurrence for x_{2}, x_{3}, \ldots

| n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :---: |
| v_{n} | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
| x_{n} | 1 | -1 | -1 | 2 | -1 | -2 | 3 | 2 | -5 | 3 | 5 | -8 | 3 | 8 | -11 | -8 | 19 | -11 | -19 | 30 |

$\cdots \Longrightarrow x \notin \ell^{\infty} \Longrightarrow A_{+}$is injective on ℓ^{∞}
Similarly: B_{+}and B_{-}are injective on ℓ^{∞} for all $B \in \sigma^{\circ \rho}(A)$.
$\Longrightarrow \quad B_{+}$and B_{-}are invertible for all $B \in \sigma^{\mathrm{op}}(A)$.

In short:

$$
x_{n-1}+v_{n} x_{n}+x_{n+1}=0 \quad \text { for all } n \in \mathbb{N}
$$

Starting with $x_{0}=0$ and $x_{1}=1$ (w.l.o.g.) this is a 2-term recurrence for x_{2}, x_{3}, \ldots

| n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :---: |
| v_{n} | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
| x_{n} | 1 | -1 | -1 | 2 | -1 | -2 | 3 | 2 | -5 | 3 | 5 | -8 | 3 | 8 | -11 | -8 | 19 | -11 | -19 | 30 |

$\cdots \quad \Longrightarrow x \notin \ell^{\infty} \quad \Longrightarrow A_{+}$is injective on ℓ^{∞}
Similarly: B_{+}and B_{-}are injective on ℓ^{∞} for all $B \in \sigma^{\circ \rho}(A)$.
$\Longrightarrow \quad B_{+}$and B_{-}are invertible for all $B \in \sigma^{\mathrm{op}}(A)$.

Theorem (ML, Söding 2016)

The FSM is applicable, with arbirtrary cut-off points, to A and also to A_{+}.

Thank you!

S.N. Chandler-Wilde and M. Lindner:

Sufficiency of Favards condition for a class of band-dominated operators..., J. Functional Analysis, 254 (2008).

M. Lindner and M. Seidel:

An affirmative answer to a core issue on limit operators,
J. Functional Analysis, 267 (2014).
R. Hagger, M. Lindner and M. Seidel:

Essential pseudospectra and essential norms of band-dominated operators, J. Mathematical Analysis and Applications, 437 (2016).
V. Rabinovich, S. Roch and B. Silbermann:

Limit Operators and Their Applications in Operator Theory, Birkhäuser 2004.
M. Lindner:

Infinite Matrices and their Finite Sections, Birkhäuser 2006.

