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The operators and their matrices

For a bounded linear operator
A : X → X

on a Banach space X , choose a basis in X and represent A as an infinite matrix.

Sometimes it is convenient to number the basis elements over the integers Z (rather than
the naturals N), leading to a bi-infinite matrix:

A =



. . .
...

...
... . .

.

· · · a-1,-1 a-1,0 a-1,1 · · ·
· · · a 0,-1 a 0, 0 a 0, 1 · · ·
· · · a 1,-1 a 1, 0 a 1, 1 · · ·

. .
. ...

...
...

. . .



We will mostly think of banded matrices A with uniformly bounded entries:
sup |aij | <∞, so A acts as a bounded linear operator on `p(Z), p ∈ [1,∞].
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Compact operators & the Calkin algebra

For a Banach space X , put

L(X ) = the set (Banach algebra) of all bounded linear operators X → X ,

K(X ) = the set of all compact operators X → X (closed ideal in L(X )).

Then one can form the factor algebra

The Calkin algebra

L(X )/K(X ) = {A +K(X ) : A ∈ L(X )}.

More specifically, for X = `p(Z), let

BO(X ) = the set (algebra) of all operators X → X with a band matrix,

BDO(X ) = the norm closure (Banach algebra) of BO(X ).
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Operator classes graphically

⊂ = BO(X )
band operators

K(X ) =
compact operators

⊂ = BDO(X )
band-dominated
operators

BDO(X )/K(X ) = / =
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The essentials

Let A ∈ L(X ).

Definition: essential norm

‖A‖ess := ‖A +K(X )‖ = inf{‖A + K‖ : K ∈ K(X )} = dist (A,K(X ))

Definition: Fredholmness

A is Fredholm (“essentially invertible”) iff A +K(X ) is invertible in L(X )/K(X ).

A is Fredholm iff its kernel and cokernel
have finite dimension.

Definition: Essential spectrum

specessA := specL(X )/K(X )(A +K(X )) = {λ ∈ C : A− λI is not Fredholm}
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Essential spectrum and norm: diagonal examples

For

A =



. . .

3
5

3
5

3
3

. . .


,

we clearly have

specA = {3, 5}, ‖A‖ = 5

but

specessA = {3}, ‖A‖ess = 3.

The spectral value 5 is not essential (“not visible at ∞”).
A− 5I is not invertible but still Fredholm (kernel and cokernel have finite dimension).
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Essential spectrum and norm: diagonal examples

For

A =



. . .

3 + ε−1

3 + ε0
3 + ε1

3 + ε2
. . .


,

with positive εn such that εn → 0 as n→ ±∞, we have

specA = {3 + εn : n ∈ Z} ∪ {3}, ‖A‖ = max{3 + εn : n ∈ Z}.

The spectral value 3 is no eigenvalue but still in the spectrum.
A− 3I is injective but has no bounded inverse (not Fredholm, range not closed).

It holds

specessA = {3}, ‖A‖ess = 3.
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Essential spectrum and norm: a general diagonal matrix

For a general (bounded) diagonal matrix

A =



. . .

a−1,−1

a0,0
a1,1

a2,2
. . .


,

it holds that

specessA = the set of all partial limits of the sequence (an,n)n∈Z.

In other words:

λ ∈ specessA ⇐⇒ ∃n1, n2, · · · → ±∞ : ank ,nk → λ.

Moreover,

‖A‖ess = the largest (in modulus) partial limit = lim sup |an,n|.
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‖A‖ess = the largest (in modulus) partial limit = lim sup |an,n|.

The whole coset A +K(X ) ∈ L(X )/K(X ) is encoded in the partial limits of (an,n)n∈Z.
Restricting consideration to diagonal matrices, the Calkin algebra is

Ldiag(X )/Kdiag(X ) ∼= `∞/c0.

TUHH Marko Lindner LimOps: Your hands on the essentials 28th IWOTA, Aug 2017, Chemnitz 15 / 44



Essential spectrum and norm: a general diagonal matrix

For a general (bounded) diagonal matrix

A =



. . .

a−1,−1

a0,0
a1,1

a2,2
. . .


,

it holds that

specessA = the set of all partial limits of the sequence (an,n)n∈Z

‖A‖ess = the largest (in modulus) partial limit = lim sup |an,n|.

The whole coset A +K(X ) ∈ L(X )/K(X ) is encoded in the partial limits of (an,n)n∈Z.

Restricting consideration to diagonal matrices, the Calkin algebra is

Ldiag(X )/Kdiag(X ) ∼= `∞/c0.

TUHH Marko Lindner LimOps: Your hands on the essentials 28th IWOTA, Aug 2017, Chemnitz 15 / 44



Essential spectrum and norm: a general diagonal matrix

For a general (bounded) diagonal matrix

A =



. . .

a−1,−1

a0,0
a1,1

a2,2
. . .


,

it holds that

specessA = the set of all partial limits of the sequence (an,n)n∈Z

‖A‖ess = the largest (in modulus) partial limit = lim sup |an,n|.

The whole coset A +K(X ) ∈ L(X )/K(X ) is encoded in the partial limits of (an,n)n∈Z.
Restricting consideration to diagonal matrices, the Calkin algebra is

Ldiag(X )/Kdiag(X ) ∼= `∞/c0.

TUHH Marko Lindner LimOps: Your hands on the essentials 28th IWOTA, Aug 2017, Chemnitz 15 / 44



Table of Contents

1 The essentials

2 Limit operators

3 Stability of approximation methods

4 The Fibonacci Hamiltonian

TUHH Marko Lindner LimOps: Your hands on the essentials 28th IWOTA, Aug 2017, Chemnitz 16 / 44



From diagonal to band-dominated matrices

For A ∈ BDO(X ), the coset A + K(X ) is still determined by
the asymptotics of A = (ai,j) at infinity. Again, take a sequence
n1, n2, · · · → ±∞ and

follow the entries ank ,nk as k →∞. (1)

New: Now also the context of the entries (1) is important.

Not only the sequence (1) itself shall converge but
also its neighbour entries:

ank+i,nk+j →: bi,j ∀i , j ∈ Z.

The existence of such sequences h = (nk) is gua-
ranteed by the Bolzano-Weierstrass theorem.

Definition: limit operator

The operator with matrix B = (bi,j)i,j∈Z is called
limit operator of A w.r.t. the sequence h.

We write Ah for B and σop(A) for the set of all Ah.
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Limit operators: Time for examples

A periodic matrix:

σop
( )

=
{

all shifts of
}

Simple but non-periodic:

σop
( )

=
{

all shifts of ,
}
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Limit operators: Time for examples

Discrete Schrödinger operator in 1D

(Ax)n = xn−1 + v(n)xn + xn+1, n ∈ Z

with a bounded potential v ∈ `∞(Z). The matrix looks like this

A =



. . .
. . .

. . . v−2 1
1 v−1 1

1 v0 1
1 v1 1

1 v2
. . .

. . .
. . .



Limit op’s of A:
(Bx)n = xn−1 + w(n)xn + xn+1, n ∈ Z

with a potential w “locally representing v at infinity”.
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Example: Discrete Schrödinger operator

So it is enough to look at the potential v :

Example 1: locally constant potential

v = (· · · , β, β, β, β︸ ︷︷ ︸
4

, α, α, α︸ ︷︷ ︸
3

, β, β︸︷︷︸
2

, α︸︷︷︸
1

, β, β︸︷︷︸
2

, α, α, α︸ ︷︷ ︸
3

, β, β, β, β︸ ︷︷ ︸
4

, · · · ), α 6= β

⇒ 4 limop’s:
w = (· · · , α, α, α, α, α, α, · · · )
w = (· · · , β, β, β, β, β, β, · · · )
w = (· · · , α, α, α, β, β, β, · · · )
w = (· · · , β, β, β, α, α, α, · · · )

...and shifts of the latter two.

Example 2: slowly oscillating potential

v(n + 1)− v(n) → 0, n→∞

e.g. v(n) = cos
√
|n|.

⇒ Limop’s (all constant):
w(n) ≡ a, a ∈ v(∞)
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Example: Discrete Schrödinger operator

Example 3: random (actually pseudo-ergodic) potential

Take random (i.i.d.) samples v(n) from a compact set V ⊂ C.

a.s.
=⇒ The infinite “word” (· · · , v(−1), v(0), v(1), · · · ) contains every finite word over V
as a subword (up to arbitrary accuracy ε > 0). [pseudo-ergodic, Davies 2001]

⇒ lots of limop’s: all functions w : Z→ V

Example 4: (almost-)periodic potential

v(n) = cos(nα), n ∈ Z

Case 1: α = p
q

2π ∈ πQ (periodic)
⇒ q limop’s:

wk(n) = cos((n + k)α), k = 1, ..., q

Case 2: α 6∈ πQ (almost-periodic, see Almost-Mathieu operator)
⇒ ∞-many limop’s:

wθ(n) = cos(nα + θ), θ ∈ [0, 2π)
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Example: Discrete Schrödinger operator

Example 3: random (actually pseudo-ergodic) potential

Take random (i.i.d.) samples v(n) from a compact set V ⊂ C.

a.s.
=⇒ The infinite “word” (· · · , v(−1), v(0), v(1), · · · ) contains every finite word over V
as a subword (up to arbitrary accuracy ε > 0). [pseudo-ergodic, Davies 2001]

⇒ lots of limop’s: all functions w : Z→ V
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v(n) = cos(nα), n ∈ Z

Case 1: α = p
q

2π ∈ πQ (periodic)
⇒ q limop’s:

wk(n) = cos((n + k)α), k = 1, ..., q

Case 2: α 6∈ πQ (almost-periodic, see Almost-Mathieu operator)
⇒ ∞-many limop’s:

wθ(n) = cos(nα + θ), θ ∈ [0, 2π)

TUHH Marko Lindner LimOps: Your hands on the essentials 28th IWOTA, Aug 2017, Chemnitz 21 / 44



Limit operators: The definition revisited

For each n ∈ Z, define the n-shift on X = `p(Z) via

Sn : x 7→ y with xi = yi+n.

Then, for h = (n1, n2, ...) with |nk | → ∞, one has

(S−nkASnk )i,j = Ai+nk ,j+nk , i , j ∈ Z,

so that the limit operator Ah of A ∈ BDO(X ) equals

Ah = lim
k→∞

S−nkASnk ,

the limit taken in the strong topology (pointwise convergence on X ).

In this sense, the set σop(A) of all limit operators of A is the set of all partial limits of the
operator sequence

(S−nASn)n∈Z.
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Limit operators: The definition revisited

The very same can be done with X = `p(Zd) and A ∈ BDO(X ).

Again, the set σop(A) of all limit operators of A is the set of all partial limits of the
operator “sequence”

(S−nASn)n∈Zd or, likewise, of the function fA : n ∈ Zd 7→ S−nASn ∈ BDO(X ).

Take a suitable compactification of Zd .

Extend the function fA continuously to it.

Evaluate fA at the boundary ∂Zd

⇒ limit operators of A

One can enumerate the limit operators of A by
the elements of ∂Zd (rather than by sequences
h = (n1, n2, . . . ) for which S−nkASnk converges).

These ideas can be extended from `p(Zd) [Rabinovich, Roch, Silbermann 1998] to

`p(G) for finitely generated discrete groups G [Roe 2005]

`p(X ) for strongly discrete metric spaces X [Spakula & Willett 2014]

Lp(X , µ) for fairly general metric spaces X and measures µ [Hagger & Seifert 2017+x]
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Limit operators: The definition revisited

So we have

New enumeration (independent of A) of the limit operators of A

σop(A) = {Ah : h = (n1, n2, . . . ) in Zd with |nk | → ∞ s.t. limS−nkASnk exists}

= {Ag : g ∈ ∂Zd}

Now one can add or multiply two instances of σop(A) elementwise and get

σop(A + B) = σop(A) + σop(B), σop(AB) = σop(A)σop(B), σop(αA) = ασop(A).

In short: The map

ϕ : A 7→ σop(A), BDO(X )→ `∞(∂Zd ,BDO(X ))

is an algebra homomorphism.

Key observation

The kernel of that homomorphism ϕ : A 7→ σop(A) is K(X ).
So A + K(X ) 7→ σop(A) is an isomorphism BDO(X )/ kerϕ→ imϕ.

TUHH Marko Lindner LimOps: Your hands on the essentials 28th IWOTA, Aug 2017, Chemnitz 24 / 44



Limit operators: The definition revisited

So we have

New enumeration (independent of A) of the limit operators of A

σop(A) = {Ah : h = (n1, n2, . . . ) in Zd with |nk | → ∞ s.t. limS−nkASnk exists}

= {Ag : g ∈ ∂Zd}

Now one can add or multiply two instances of σop(A) elementwise and get

σop(A + B) = σop(A) + σop(B), σop(AB) = σop(A)σop(B), σop(αA) = ασop(A).

In short: The map

ϕ : A 7→ σop(A), BDO(X )→ `∞(∂Zd ,BDO(X ))

is an algebra homomorphism.

Key observation

The kernel of that homomorphism ϕ : A 7→ σop(A) is K(X ).
So A + K(X ) 7→ σop(A) is an isomorphism BDO(X )/ kerϕ→ imϕ.

TUHH Marko Lindner LimOps: Your hands on the essentials 28th IWOTA, Aug 2017, Chemnitz 24 / 44



Limit operators: The definition revisited

So we have

New enumeration (independent of A) of the limit operators of A

σop(A) = {Ah : h = (n1, n2, . . . ) in Zd with |nk | → ∞ s.t. limS−nkASnk exists}

= {Ag : g ∈ ∂Zd}

Now one can add or multiply two instances of σop(A) elementwise and get

σop(A + B) = σop(A) + σop(B), σop(AB) = σop(A)σop(B), σop(αA) = ασop(A).

In short: The map

ϕ : A 7→ σop(A), BDO(X )→ `∞(∂Zd ,BDO(X ))

is an algebra homomorphism.

Key observation

The kernel of that homomorphism ϕ : A 7→ σop(A) is K(X ).
So A + K(X ) 7→ σop(A) is an isomorphism BDO(X )/ kerϕ→ imϕ.

TUHH Marko Lindner LimOps: Your hands on the essentials 28th IWOTA, Aug 2017, Chemnitz 24 / 44



Limit operators and our essentials

The result is an identification

A +K(X ) ∼= σop(A)

for all A ∈ BDO(X ) – with the following consequences:

A A +K(X ) σop(A)

essential norm

‖A‖ess ‖A+K(X )‖L(X )/K(X ) maxh ‖Ah‖

A is Fredholm A +K(X ) invertible in L(X )/K(X ) all Ah are invertible

B is a Φ-regulariser of A B +K(X ) = [A +K(X )]−1 Bh = A−1
h

essential spectrum

specessA specL(X )/K(X )(A +K(X )) ∪h specAh

essential pseudospectrum

specεessA specεL(X )/K(X )(A +K(X )) ∪h specεAh

For A ∈ BO(X ) and d = 1:

A is Fredholm A +K(X ) invertible in L(X )/K(X ) all Ah injective on `∞(Z)

specessA specL(X )/K(X )(A +K(X )) ∪h spec∞pointAh
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Limit operators and our essentials

A +K(X ) ∼= σop(A)

A σop(A)

essential norm

‖A‖ess maxh ‖Ah‖ [Hagger, ML, Seidel 2016]

[Lange, Rabinovich 1985+]

[Rabinovich, Roch, Silbermann 1998+]

A is Fredholm all Ah are invertible [ML, Silbermann 2003], [ML 2003+]

[Chandler-Wilde, ML 2007]

[Seidel, ML 2014]

B is a Φ-regulariser of A Bh = A−1
h [Seidel 2013]

essential spectrum

specessA ∪h specAh [Seidel, ML 2014]

essential pseudospectrum

specεessA ∪h specεAh [Hagger, ML, Seidel 2016]

For A ∈ BO(X ) and d = 1:

A is Fredholm all Ah injective on `∞(Z) [Chandler-Wilde, ML 2008]

specessA ∪h spec∞pointAh
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Self-similar operators

Definition: self-similar operator

We say that A ∈ BDO(X ) is self-similar if A ∈ σop(A).

Roughly speaking, this means that

A contains a copy of itself, at infinity.

Each pattern that you see once in A, you will see infinitely often in A.

But then, by the above,

‖A‖ess = ‖A‖
A is Fredholm ⇐⇒ A is invertible

specessA = specA

specεessA = specεA

“essential stuff = real stuff.”
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The finite section method

Task: Find an approximate solution of the equation

Ax = b.

Idea: Approximate A by growing but finite square submatrices An

and, assuming that A is invertible, hope

that also the inverses A−1
n exist, at least for sufficiently large n, and

that they converge to the inverse of A, i.e. A−1
n → A−1,

It turns out: This “hope” will come true iff the sequence (An) is stable, meaning that

all An with sufficiently large n are invertible and supn≥n0
‖A−1

n ‖ <∞.
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Stability is just another “essential”

The sequence (An) is stable ⇐⇒ D := Diag(A1,A2, . . . ) is Fredholm.

This brings us back to limit operators of D – and hence of A.
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Following the corners as they move out to infinity

In the end we have to follow the two “corners” (semi-infinite matrices)(
aln,ln · · ·

...
. . .

)
and

(
. . .

...
· · · arn,rn

)

of An as n→∞ and find (partial) limits of these matrix sequences:
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The Fibonacci Hamiltonian

The Fibonacci Hamiltonian is a particular discrete Schrödinger operator in 1D:

(Ax)n = xn−1 + vnxn + xn+1, n ∈ Z.

So, again, the matrix looks like this

A =



. . .
. . .

. . . v−2 1
1 v−1 1

1 v0 1
1 v1 1

1 v2
. . .

. . .
. . .


.

The potential v only assumes the values 0 and 1 – but in a very interesting pattern.

50 letters of the Fibonacci word (“quasiperiodic”)

. . . 10110101101101011010110110101101101011010110110101 . . .
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Fibonacci and his rabbit population

time population count

1

2

3

4

5

6

7
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When rabbits become numbers

time population count

1 1 1
2 10 2
3 101 3
4 10110 5
5 10110101 8
6 1011010110110 13
7 101101011011010110101 21
8 1011010110110101101011011010110110 34
9 1011010110110101101011011010110110101101011011010110101 55
...

...
...

Three equivalent constructions of the Fibonacci word

0 7→ 1, 1 7→ 10; fk+1 := fk fk−1; vn = χ[1−α,1)(nαmod 1), α = 2

1+
√

5

The last formula is also used to define vn for all n ∈ Z. (⇒ bi-infinite Fibonacci word)
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The “mod 1” rotation formula and limit operators

vn = χ[1−α,1)( nα mod 1 ), n ∈ Z, α = 2

1+
√
5

(“golden mean”)

n . . . −3 −2 −1 0 1 2 3 4 5 6 7 8 · · ·
vn

1 0 1 1 0 1 0 1 · · ·
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The “mod 1” rotation formula and limit operators

vn = χ[1−α,1)( nα mod 1 ), n ∈ Z, α = 2

1+
√
5

(“golden mean”)

n . . . −3 −2 −1 0 1 2 3 4 5 6 7 8 · · ·
vn 1

0 1 1 0 1 0 1 · · ·
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Fibonacci word: subword complexity

In an infinite random word over the alphabet {0, 1} you can find (almost surely) all 2n

subwords of length n.

In contrast: How many can you find in the Fibonacci word

v = · · · 1011010110110101101011011010110110101101011011010110101 · · · ?

List of subwords of length n

length subwords count
1 0, 1 2

2 01, 10, 11 3
3 010, 011, 101, 110 4
4 0101, 0110, 1010, 1011, 1101 5
...

...
n · · · n + 1

Interesting feature: Very moderate (in fact: minimal) growth, compared to 2n.

One can show:
The main diagonal of every limit operator of A has the same list of subwords!
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Limit operators and their subwords

Let
v = · · · 10110101101101011010110110101101101011 · · · be the Fibonacci word,

A = S−1 + Mv + S1 be the Fibonacci Hamiltonian,

h = (n1, n2, . . . ) be a sequence in Z with nk → ±∞ and limit operator

Ah = S−1 + Mvh + S1 with vh = limk→∞ S−nk v (pointwise).

The main diagonal of the limit operator Ah has the same subwords as that of A.

w ≺ v ⇐⇒ w ≺ vh

⇐ w ≺ vh =⇒ w ≺ S−nk v for large k =⇒ w ≺ v .

⇒ Let w ≺ v , say (w.l.o.g.) w ≺ v+.

=⇒ Every S−nk v contains w in a Fn+1-neighbourhood of zero.
=⇒ Every limit potential vh contains w in a Fn+1-neighbourhood of zero.
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Limit operators and the “mod 1” rotation formula

For the Fibonacci Hamiltonian A = S−1 + Mv + S1, one gets

σop(A) =
{
S−1 + Mvθ + S1, S−1 + Mwθ + S1 : θ ∈ [0, 1)

}
,

where

vθn := χ[1−α,1)(θ + nα mod 1), wθ
n := χ(1−α,1](θ + nα mod 1), n ∈ Z.

In particular, A ∈ σop(A); so A is self-similar.
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What do we want from the Fibonacci Hamiltonian?

A lot is known of the spectrum of A; it is

a Cantor set on the real line

of Lebesgue measure zero,

there is no point spectrum (w.r.t. `2)

in fact, the spectrum is purely singular continuous...

Our focus: Applicability of the FSM with arbitrary cut-off points.

We show this via invertibility of B, B+ and B− for all B ∈ σop(A), including B = A
(i.e. 0 is not in the spectrum of any of these operators).
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Sketch of proof

To show that A is invertible on `2 (hence on any `p), we show that

A is Fredholm (⇒ closed range)

A is injective on `2

A∗ is injective on `2

Similarly: For invertibility of all B+ and B− it is enough to show their injectivity on `∞

(since all are Fredholm and self-adjoint).

We demonstrate this for B = A (so that B+ = A+):

Let A+x = o, i.e.



1 1
1 0 1

1 1 1
1 1 1

1 0 1

1 1
. . .

. . .
. . .





x1
x2
x3
x4
x5
x6
...


=



0
0
0
0
0
0
...


.

In short:
xn−1 + vnxn + xn+1 = 0 for all n ∈ N.

Starting with x0 = 0 and x1 = 1 (w.l.o.g.) this is a 2-term recurrence for x2, x3, . . .
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Sketch of proof

In short:
xn−1 + vnxn + xn+1 = 0 for all n ∈ N.

Starting with x0 = 0 and x1 = 1 (w.l.o.g.) this is a 2-term recurrence for x2, x3, . . .

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

vn 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0

xn 1 −1 −1 2 −1 −2 3 2 −5 3 5 −8 3 8 −11 −8 19 −11 −19 30

· · · =⇒ x 6∈ `∞ =⇒ A+ is injective on `∞

Similarly: B+ and B− are injective on `∞ for all B ∈ σop(A).
=⇒ B+ and B− are invertible for all B ∈ σop(A).

Theorem (ML, Söding 2016)

The FSM is applicable, with arbirtrary cut-off points, to A and also to A+.

A−1
n → A−1 A−1

+,n → A−1
+
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Sketch of proof

In short:
xn−1 + vnxn + xn+1 = 0 for all n ∈ N.

Starting with x0 = 0 and x1 = 1 (w.l.o.g.) this is a 2-term recurrence for x2, x3, . . .

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

vn 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0

xn 1 −1 −1 2 −1 −2 3 2 −5 3 5 −8 3 8 −11 −8 19 −11 −19 30

· · · =⇒ x 6∈ `∞ =⇒ A+ is injective on `∞

Similarly: B+ and B− are injective on `∞ for all B ∈ σop(A).
=⇒ B+ and B− are invertible for all B ∈ σop(A).

Theorem (ML, Söding 2016)

The FSM is applicable, with arbirtrary cut-off points, to A and also to A+.
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+,n → A−1
+
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Thank you!
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