Spectral Shift Functions and Dirichlet-to-Neumann Maps

Fritz Gesztesy (Baylor University, Waco, TX, USA)
Based on various joint collaborations with
J. Berndt (TU-Graz, Austria), S. Clark (Missouri S \& T, Rolla, MO, USA),
K. A. Makarov (Univ. of Missouri, Columbia, MO, USA),
S. N. Naboko (St. Petersburg State Univ, Russia),
S. Nakamura (Univ. of Tokyo, Japan), R. Nichols (UTC, TN, USA), and M. Zinchenko (UNM, Albuquerque, NM, USA)

IWOTA 2017, Technical University of Chemnitz, Germany August 14 - 18, 2017
(1) Topics discussed
(2) Notation
(3) 1d Schrödinger Operators on a Finite Interval
4) Boundary Data Maps for 1d Schrödinger Operators
(5) SSF, Boundary Triples, Abstract Weyl-Titchmarsh Fcts.
(6) Applications to PDEs

Topics discussed:

- A warm up: Self-adjoint extensions, Krein-type resolvent formulas for 1d Schrödinger operators
- Resolvent trace formulas.
- Krein-Lifshitz spectral shift (SSF) functions.
- Hints at an extension of SSF, the Spectral Shift Operator (SSO), whose trace equals SSF.
- Connect SSO with abstract Weyl-Titchmarsh M-operators.
- Sketch applications of Dirichlet-to-Neumann maps, more generally, abstract Weyl-Titchmarsh M-operators, to PDEs.

Some Literature:

In the 1d context:
F. G. and M. Zinchenko, Symmetrized perturbation determinants and applications to boundary data maps and Krein-type resolvent formulas, Proc. London Math. Soc. (3) 104, 577-612 (2012).
S. Clark, F.G., R. Nichols, and M. Zinchenko, Boundary data maps and Krein's resolvent formula for Sturm-Liouville operators on a finite interval, Operators and Matrices 8, 1-71 (2014).

In the Abstract and PDE context:
F.G., K. A. Makarov, and S. N. Naboko, The spectral shift operator, in Mathematical Results in Quantum Mechanics, J. Dittrich, P. Exner, and M. Tater (eds.), Operator Theory: Advances and Applications, Vol. 108, Birkhäuser, Basel, 1999, pp. 59-90.
J. Behrndt, F.G., and S. Nakamura, Spectral shift functions and Dirichlet--to-Neumann maps, arXiv:1609.08292, submitted to Math. Ann.

A Bit of Notation:

- \mathcal{H} denotes a (separable, complex) Hilbert space, $\mathcal{I}_{\mathcal{H}}$ represents the identity operator in \mathcal{H}.
- If A is a closed (typically, self-adjoint) operator in \mathcal{H}, then
- $\rho(A) \subseteq \mathbb{C}$ denotes the resolvent set of $A ; z \in \rho(A) \Longleftrightarrow A-z I_{\mathcal{H}}$ is a bijection.
- $\sigma(A)=\mathbb{C} \backslash \rho(A)$ denotes the spectrum of A.
- $\sigma_{p}(A)$ denotes the point spectrum (i.e., the set of eigenvalues) of A.
- $\sigma_{d}(A)$ denotes the discrete spectrum of A (i.e., isolated eigenvalues of finite (algebraic) multiplicity).
- If A is closable in \mathcal{H}, then \bar{A} denotes the operator closure of A in \mathcal{H}.

Note. All operators will be linear in the following.

A Bit of Notation (contd.):

- If A is closable in \mathcal{H}, then \bar{A} denotes the operator closure of A in \mathcal{H}.
- $\mathcal{B}(\mathcal{H})$ is the set of bounded operators defined on \mathcal{H}.
$\mathcal{B}_{p}(\mathcal{H}), 1 \leq p \leq \infty$ denotes the p th trace ideal of $\mathcal{B}(\mathcal{H})$,
(i.e., $T \in \mathcal{B}_{p}(\mathcal{H}) \Longleftrightarrow \sum_{j \in \mathcal{J}} \lambda_{j}\left(\left(T^{*} T\right)^{1 / 2}\right)^{p}<\infty$, where $\mathcal{J} \subseteq \mathbb{N}$ is an appropriate index set, and the eigenvalues $\lambda_{j}(T)$ of T are repeated according to their algebraic multiplicity),
$\mathcal{B}_{1}(\mathcal{H})$ is the set of trace class operators,
$\mathcal{B}_{2}(\mathcal{H})$ is the set of Hilbert-Schmidt operators,
$\mathcal{B}_{\infty}(\mathcal{H})$ is the set of compact operators.
- $\operatorname{tr}_{\mathcal{H}}(A)=\sum_{j \in \mathcal{J}} \lambda_{j}(A)$ denotes the trace of $A \in \mathcal{B}_{1}(\mathcal{H})$.

Maximal and Minimal Schrödinger Operators in 1d

We'll use the 1d case of Schrödinger operators as a warm up case: Let

$$
V \in L^{1}((0, R) ; d x) \text { be real-valued, } R \in(0, \infty)
$$

and introduce the Schrödinger differential expression τ via

$$
\tau=-\frac{d^{2}}{d x^{2}}+V(x), \quad x \in(0, R)
$$

and the associated maximal and minimal operators in $L^{2}((0, R) ; d x)$ associated with τ by

$$
\begin{aligned}
& H_{\max } f=\tau f, \\
& f \in \operatorname{dom}\left(H_{\max }\right)=\left\{g \in L^{2}((0, R) ; d x) \mid g, g^{\prime} \in \operatorname{AC}([0, R]) ; \tau g \in L^{2}((0, R) ; d x)\right\}, \\
& H_{\min } f=\tau f, \\
& f \in \operatorname{dom}\left(H_{\min }\right)=\left\{g \in \operatorname{dom}\left(H_{\max }\right) \mid g(0)=g^{\prime}(0)=g(R)=g^{\prime}(R)=0\right\} .
\end{aligned}
$$

$\mathrm{AC}([0, R])$ denotes the set of absolutely continuous functions on $[0, R]$.

Self-Adjoint Extensions of $H_{\text {min }}$

Introduce the following families of self-adjoint extensions $H_{\theta_{0}, \theta_{R}}$ and $H_{K, \phi}$ in $L^{2}((0, R) ; d x)$ of the minimal operator $H_{\text {min }}$,

$$
\begin{aligned}
& H_{\theta_{0}, \theta_{R}} f=\tau f, \quad \theta_{0}, \theta_{R} \in[0, \pi), \quad \text { separated b.c.'s, } \\
& f \in \operatorname{dom}\left(H_{\theta_{0}, \theta_{R}}\right)=\left\{g \in \operatorname{dom}\left(H_{\max }\right) \mid \cos \left(\theta_{0}\right) g(0)+\sin \left(\theta_{0}\right) g^{\prime}(0)=0,\right. \\
& \left.\cos \left(\theta_{R}\right) g(R)-\sin \left(\theta_{R}\right) g^{\prime}(R)=0\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& H_{K, \phi} f=\tau f, \quad \phi \in[0,2 \pi), K \in \operatorname{SL}(2, \mathbb{R}), \quad \text { coupled b.c.'s, } \\
& f \in \operatorname{dom}\left(H_{K, \phi}\right)=\left\{g \in \operatorname{dom}\left(H_{\max }\right) \left\lvert\,\binom{ g(R)}{g^{\prime}(R)}=e^{i \phi} K\binom{g(0)}{g^{\prime}(0)}\right.\right\} .
\end{aligned}
$$

$\operatorname{SL}(2, \mathbb{R})$ denotes the set of 2×2 matrices with determinant $=1$ and real entries.
Claim: There's nothing else that's self-adjoint!

Self-Adjoint Extensions of $H_{\text {min }}$ (contd.)

Indeed, one can unify separated and coupled boundary conditions as follows:

Theorem.

The operator $H_{F, G}$,

$$
H_{F, G} f=\tau f, f \in \operatorname{dom}\left(H_{F, G}\right)=\left\{g \in \operatorname{dom}\left(H_{\max }\right) \left\lvert\, F\binom{g(0)}{g^{\prime}(0)}=G\binom{g(R)}{g^{\prime}(R)}\right.\right\}
$$

is a self-adjoint extension of $H_{\min }$ if and only if there exist matrices $F, G \in \mathbb{C}^{2 \times 2}$ satisfying $\operatorname{rank}\left(\begin{array}{ll}F & G\end{array}\right)=2, F J F^{*}=G J G^{*}, J=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.
In particular, the case of separated boundary conditions corresponds to

$$
F=\left(\begin{array}{cc}
\cos \left(\theta_{0}\right) & \sin \left(\theta_{0}\right) \\
0 & 0
\end{array}\right), \quad G=\left(\begin{array}{cc}
0 & 0 \\
-\cos \left(\theta_{R}\right) & \sin \left(\theta_{R}\right)
\end{array}\right), \quad \theta_{0}, \theta_{R} \in[0, \pi) .
$$

The case of coupled (i.e., non-separated) boundary conditions corresponds to

$$
F=e^{i \phi} K, \quad G=I_{2}, \quad K \in \operatorname{SL}(2, \mathbb{R}), \phi \in[0,2 \pi) .
$$

The Basics of Boundary Data Maps

Boundary Data Maps:

Define the boundary trace map, $\gamma_{F, G}$, associated with the boundary $\{0, R\}$ of $(0, R)$ and the 2×2 parameter matrices F, G satisfying $\operatorname{rank}(F \quad G)=2$, $F J F^{*}=G J G^{*}, J=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, by

$$
\gamma_{F, G}:\left\{\begin{array}{l}
C^{1}([0, R]) \rightarrow \mathbb{C}^{2}, \\
u \mapsto F\binom{u(0)}{u^{\prime}(0)}-G\binom{u(R)}{u^{\prime}(R)} .
\end{array}\right.
$$

Then,

$$
\gamma_{F, G}=D_{F, G} \gamma_{D}+N_{F, G} \gamma_{N}, \quad D_{F, G}=\left(\begin{array}{ll}
F_{1,1} & -G_{1,1} \\
F_{2,1} & -G_{2,1}
\end{array}\right), N_{F, G}=\left(\begin{array}{ll}
F_{1,2} & G_{1,2} \\
F_{2,2} & G_{2,2}
\end{array}\right),
$$

where γ_{D} and γ_{N} represent Dirichlet and Neumann traces,

$$
\gamma_{D} u=\binom{u(0)}{u(R)}, \quad \gamma_{N} u=\binom{-u^{\prime}(0)}{u^{\prime}(R)} .
$$

Moreover, define

$$
S_{F^{\prime}, G^{\prime}, F, G}=N_{F^{\prime}, G^{\prime}} D_{F, G}^{*}-D_{F^{\prime}, G^{\prime}} N_{F, G}^{*} .
$$

The Basics of Boundary Data Maps (contd.)

Let $F, G \in \mathbb{C}^{2 \times 2}$ be such that $\operatorname{rank}(F \quad G)=2$, and assume that $z \in \rho\left(H_{F, G}\right)$. Then the boundary value problem

$$
-u^{\prime \prime}+V u=z u, \quad u, u^{\prime} \in A C([0, R]), \quad \gamma_{F, G} u=\binom{c_{1}}{c_{2}} \in \mathbb{C}^{2}
$$

has a unique solution $u(z, \cdot)=u_{F, G}\left(z, \cdot ; c_{1}, c_{2}\right)$ for each $c_{1}, c_{2} \in \mathbb{C}$.
Let $F, G, F^{\prime}, G^{\prime} \in \mathbb{C}^{2 \times 2}$ with F, G satisfying $\operatorname{rank}(F \quad G)=2, F J F^{*}=G J G^{*}$, $J=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, and similarly for F^{\prime}, G^{\prime}. Assuming $z \in \rho\left(H_{F, G}\right)$, we introduce the boundary data map (an extension of Dirichlet-to Neumann and Robin-to-Robin maps) by

$$
\begin{aligned}
\Lambda_{F, G}^{F^{\prime}, G^{\prime}}(z): \mathbb{C}^{2} & \rightarrow \mathbb{C}^{2}, \\
\Lambda_{F, G}^{F^{\prime}, G^{\prime}}(z)\binom{c_{1}}{c_{2}} & =\Lambda_{F, G}^{F^{\prime}, G^{\prime}}(z) \gamma_{F, G} u_{F, G}\left(z, \cdot ; c_{1}, c_{2}\right) \\
& =\gamma_{F^{\prime}, G^{\prime}} u_{F, G}\left(z, \cdot ; c_{1}, c_{2}\right),
\end{aligned}
$$

where $u_{F, G}\left(z, \cdot ; c_{1}, c_{2}\right)$ satisfies the above boundary value problem.

The Basics of Boundary Data Maps (contd.)

Basic Properties of $\Lambda_{F, G}^{F^{\prime}, G^{\prime}}(z)$:

$$
\begin{aligned}
& \Lambda_{F, G}^{F^{\prime}, G^{\prime}}(z)=D_{F^{\prime}, G^{\prime}} \Lambda_{F, G}^{D}(z)+\Lambda_{F^{\prime}, G^{\prime}} \Lambda_{F, G}^{N}(z), \quad z \in \rho\left(H_{F, G}\right) \\
& \Lambda_{F, G}^{F, G}(z)=I_{2}, \quad z \in \rho\left(H_{F, G}\right) \\
& \Lambda_{F^{\prime}, G^{\prime}}^{F^{\prime \prime}}(z) \Lambda_{F, G}^{F^{\prime}, G^{\prime}}(z)=\Lambda_{F, G}^{F^{\prime \prime}, G^{\prime \prime}}(z), \quad z \in \rho\left(H_{F, G}\right) \cap \rho\left(H_{F^{\prime}, G^{\prime}}\right) \\
& \Lambda_{F, G}^{F^{\prime}, G^{\prime}}(z)=\left[\Lambda_{F^{\prime}, G^{\prime}}^{F, G}(z)\right]^{-1}, \quad z \in \rho\left(H_{F, G}\right) \cap \rho\left(H_{F^{\prime}, G^{\prime}}\right)
\end{aligned}
$$

Resolvent Connection:

Theorem.

Let $F, G, F^{\prime}, G^{\prime} \in \mathbb{C}^{2 \times 2}$ with F, G satisfying $\operatorname{rank}(F \quad G)=2, F J F^{*}=G J G^{*}$, $J=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, and similarly for F^{\prime}, G^{\prime}.

$$
\Lambda_{F, G}^{F^{\prime}, G^{\prime}}(z) S_{F^{\prime}, G^{\prime}, F, G}^{*}=\gamma_{F^{\prime}, G^{\prime}}\left[\gamma_{F^{\prime}, G^{\prime}}\left(H_{F, G}-\bar{z}\right)^{-1}\right]^{*}, \quad z \in \rho\left(H_{F, G}\right)
$$

In particular, $\Lambda_{F, G}^{F^{\prime}, G^{\prime}}(\cdot) S_{F^{\prime}, G^{\prime}, F, G}^{*}$ is a Nevanlinna-Herglotz matrix (i.e., analytic on \mathbb{C}_{+}with nonnegative imaginary part on \mathbb{C}_{+}).

BD Maps and Krein's Resolvent Formula Revisited

Theorem.

Let $F, G \in \mathbb{C}^{2 \times 2}$ and $F^{\prime}, G^{\prime} \in \mathbb{C}^{2 \times 2}$ satisfy $\operatorname{rank}(F \quad G)=2, F J F^{*}=G J G^{*}$, $J=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, and similarly for F^{\prime}, G^{\prime}, and let $z \in \rho\left(H_{F, G}\right) \cap \rho\left(H_{F^{\prime}, G^{\prime}}\right)$.
(i) If $S_{F^{\prime}, G^{\prime}, F, G}$ is invertible (i.e., $\operatorname{rank}\left(S_{F^{\prime}, G^{\prime}, F, G}\right)=2$), then

$$
\begin{aligned}
& \left(H_{F^{\prime}, G^{\prime}}-z\right)^{-1}=\left(H_{F, G}-z\right)^{-1} \\
& \quad-\left[\gamma_{F^{\prime}, G^{\prime}}\left(H_{F, G}-\bar{z}\right)^{-1}\right]^{*}\left[\Lambda_{F, G}^{F^{\prime}, G^{\prime}}(z) S_{F^{\prime}, G^{\prime}, F, G}^{*}\right]^{-1}\left[\gamma_{F^{\prime}, G^{\prime}}\left(H_{F, G}-z\right)^{-1}\right] .
\end{aligned}
$$

(ii) If $S_{F^{\prime}, G^{\prime}, F, G}$ is not invertible and nonzero (i.e., $\operatorname{rank}\left(S_{F^{\prime}, G^{\prime}, F, G}\right)=1$), then

$$
\begin{aligned}
& \left(H_{F^{\prime}, G^{\prime}}-z\right)^{-1}=\left(H_{F, G}-z\right)^{-1} \\
& \quad-\left[\gamma_{F^{\prime}, G^{\prime}}\left(H_{F, G}-\bar{z}\right)^{-1}\right]^{*}\left[\lambda_{F, G}^{F^{\prime}, G^{\prime}}(z)\right]^{-1}\left[\gamma_{F^{\prime}, G^{\prime}}\left(H_{F, G}-z\right)^{-1}\right]
\end{aligned}
$$

where

$$
\lambda_{F, G}^{F^{\prime}, G^{\prime}}(z)=\left.P_{\operatorname{ran}\left(S_{F^{\prime}, G^{\prime}, F, G}\right)} \wedge_{F, G}^{F^{\prime}, G^{\prime}}(z) S_{F^{\prime}, G^{\prime}, F, G}^{*} P_{\operatorname{ran}\left(S_{F^{\prime}, G^{\prime}, F, G}\right)}\right|_{\operatorname{ran}\left(S_{F^{\prime}, G^{\prime}, F, G}\right)} .
$$

BD Maps, Fredholm Dets., and Trace Formulas

The connection between BD maps and trace formulas:
Let $e_{0}=\inf \left(\sigma\left(H_{F, G}\right) \cup \sigma\left(H_{F^{\prime}, G^{\prime}}\right)\right)$.

Theorem.

Let $F, G \in \mathbb{C}^{2 \times 2}$ and $F^{\prime}, G^{\prime} \in \mathbb{C}^{2 \times 2}$ satisfy $\operatorname{rank}(F \quad G)=2, F J F^{*}=G J G^{*}$, $J=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, and similarly for F^{\prime}, G^{\prime}. Then, for $z \in \mathbb{C} \backslash\left[e_{0}, \infty\right)$,

$$
\operatorname{tr}_{L^{2}((0, R) ; d x)}\left(\left(H_{F^{\prime}, G^{\prime}}-z\right)^{-1}-\left(H_{F, G}-z\right)^{-1}\right)=-\frac{d}{d z} \ln \left(\operatorname{det}_{\mathbb{C}^{2}}\left(\Lambda_{F, G}^{F^{\prime}, G^{\prime}}(z)\right)\right) .
$$

Perhaps, one of the most compelling reasons to study $\Lambda_{\mathrm{F}, \mathrm{G}}^{\mathrm{F}^{\prime}, \mathrm{G}^{\prime}}(\mathrm{z}) \ldots \ldots$.

Note. $\boldsymbol{\Lambda}_{\mathrm{F}, \mathrm{G}}^{\mathrm{F}^{\prime}, \mathrm{G}^{\prime}}(\mathrm{z})$ is quite different from the underlying 2×2 matrix-valued Weyl-Titchmarsh function, though, both are Nevanlinna-Herglotz functions.

BD Maps and Spectral Shift Functions

Since $\left[\left(H_{F^{\prime}, G^{\prime}}-z\right)^{-1}-\left(H_{F, G}-z\right)^{-1}\right]$ is at most of rank-two, the spectral shift function, $\xi\left(\cdot ; H_{F^{\prime}, G^{\prime}}, H_{F, G}\right)$, associated with the pair $\left(H_{F^{\prime}, G^{\prime}}, H_{F, G}\right)$ is well-defined.

We will soon review basic properties of spectral shift functions!

Using the standard normalization,

$$
\xi\left(\cdot ; H_{F^{\prime}, G^{\prime}}, H_{F, G}\right)=0, \quad \lambda<e_{0}=\inf \left(\sigma\left(H_{F, G}\right) \cup \sigma\left(H_{F^{\prime}, G^{\prime}}\right)\right)
$$

Krein's trace formula reads

$$
\begin{aligned}
& \operatorname{tr}_{L^{2}((0, R) ; d x)}\left(\left(H_{F^{\prime}, G^{\prime}}-z\right)^{-1}-\left(H_{F, G}-z\right)^{-1}\right) \\
& \quad=-\int_{\left[e_{0}, \infty\right)} \frac{\xi\left(\lambda ; H_{F^{\prime}, G^{\prime}}, H_{F, G}\right) d \lambda}{(\lambda-z)^{2}}, \quad z \in \rho\left(H_{F, G}\right) \cap \rho\left(H_{F^{\prime}, G^{\prime}}\right)
\end{aligned}
$$

where

$$
\begin{equation*}
\xi\left(\cdot ; H_{F^{\prime}, G^{\prime}}, H_{F, G}\right) \in L^{1}\left(\mathbb{R} ;\left(\lambda^{2}+1\right)^{-1} d \lambda\right) \tag{5.1}
\end{equation*}
$$

BD Maps and Spectral Shift Functions (contd.)

Since the spectra of $H_{F, G}$ and $H_{F^{\prime}, G^{\prime}}$ are purely discrete, $\xi\left(\cdot ; H_{F^{\prime}, G^{\prime}}, H_{F, G}\right)$ is an integer-valued piecewise constant function on \mathbb{R} with jumps precisely at the eigenvalues of $H_{F, G}$ and $H_{F^{\prime}, G^{\prime}}$. In particular, $\xi\left(\cdot ; H_{F^{\prime}, G^{\prime}}, H_{F, G}\right)$ represents the difference of the eigenvalue counting functions of $H_{F^{\prime}, G^{\prime}}$ and $H_{F, G}$.

Theorem.

Let $F, G \in \mathbb{C}^{2 \times 2}$ and $F^{\prime}, G^{\prime} \in \mathbb{C}^{2 \times 2}$ satisfy $\operatorname{rank}\left(\begin{array}{ll}F & G\end{array}\right)=2, F J F^{*}=G J G^{*}$, $J=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, and similarly for F^{\prime}, G^{\prime}. Then, for a.e. $\lambda \in \mathbb{R}$,

$$
\xi\left(\lambda ; H_{F^{\prime}, G^{\prime}}, H_{F, G}\right)=\pi^{-1} \lim _{\varepsilon \downarrow 0} \operatorname{lm}\left(\ln \left(\eta_{F^{\prime}, G^{\prime}, F, G} \operatorname{det}_{\mathbb{C}^{2}}\left(\Lambda_{F, G}^{F^{\prime}, G^{\prime}}(\lambda+i \varepsilon)\right)\right)\right),
$$

where $\eta_{F^{\prime}, G^{\prime}, F, G}=e^{i \theta_{F^{\prime}, G^{\prime}, F, G}}$ for some $\theta_{F^{\prime}, G^{\prime}, F, G} \in[0,2 \pi)$.

A quick SSF Summary:

Here comes the promised summary on basic properties of Spectral Shift Functions (SSF):

General Hypothesis.

\mathcal{H} a complex, separable Hilbert space, A, B self-adjoint (generally, unbounded) operators in \mathcal{H}.

I. M. Lifshitz, 1952.

Let $(B-A)$ be a finite-rank operator. Then there exists $\xi(\cdot ; B, A): \mathbb{R} \rightarrow \mathbb{R}$ such that formally,

$$
\operatorname{tr}_{\mathcal{H}}(\varphi(B)-\varphi(A))=\int_{\mathbb{R}} \varphi^{\prime}(\lambda) \xi(\lambda ; B, A) d \lambda
$$

Mark Krein and SSF, 1953-1962:

Theorem.

Assume $(B-A)$ is a trace class operator, i.e., $(B-A) \in \mathcal{B}_{1}(\mathcal{H})$. Then there exists a real-valued $\xi(\cdot ; B, A) \in L^{1}(\mathbb{R})$ such that

$$
\operatorname{tr}_{\mathcal{H}}\left(\left(B-z \mathcal{I}_{\mathcal{H}}\right)^{-1}-\left(A-z \mathcal{I}_{\mathcal{H}}\right)^{-1}\right)=-\int_{\mathbb{R}} \frac{\xi(\lambda ; B, A) d \lambda}{(\lambda-z)^{2}}, \quad z \in \rho(A) \cap \rho(B),
$$

and $\int_{\mathbb{R}} \xi(\lambda ; B, A) d \lambda=\operatorname{tr}_{\mathcal{H}}(B-A)$.

- $\operatorname{tr}_{\mathcal{H}}(\varphi(B)-\varphi(A))=\int_{\mathbb{R}} \varphi^{\prime}(\lambda) \xi(\lambda ; B, A) d \lambda$ for $\varphi(\lambda)=(\lambda-z)^{-1}$.
- Extends to Wiener class $W_{1}(\mathbb{R}): \varphi^{\prime}(\lambda)=\int e^{-i \lambda \mu} d \sigma(\mu)$.

Corollary.

If $\delta=(a, b)$ and $\bar{\delta} \cap \sigma_{\text {ess }}(A)=\emptyset$ then

$$
\xi\left(b_{-} ; B, A\right)-\xi\left(a_{+} ; B, A\right)=\operatorname{dim}\left(\operatorname{ran}\left(E_{B}(\delta)\right)\right)-\operatorname{dim}\left(\operatorname{ran}\left(E_{A}(\delta)\right)\right) .
$$

- There is also a Spectral Shift Function for U, V unitary, $(V-U) \in \mathcal{B}_{1}(\mathcal{H})$.

Mark Krein and SSF, 1953-1962 (contd.):

Theorem.

Assume

$$
\left[\left(B-z \mathcal{l}_{\mathcal{H}}\right)^{-1}-\left(A-z \mathcal{I}_{\mathcal{H}}\right)^{-1}\right] \in \mathcal{B}_{1}(\mathcal{H}), \quad z \in \rho(A) \cap \rho(B) .
$$

Then there exists $\xi(\cdot ; B, A) \in L_{\mathrm{loc}}^{1}(\mathbb{R})$ such that
$\int_{\mathbb{R}}|\xi(\lambda ; B, A)|\left(1+\lambda^{2}\right)^{-1} d \lambda<\infty$ and

$$
\operatorname{tr}_{\mathcal{H}}\left(\left(B-z \mathcal{I}_{\mathcal{H}}\right)^{-1}-\left(A-z \mathcal{I}_{\mathcal{H}}\right)^{-1}\right)=-\int_{\mathbb{R}} \frac{\xi(\lambda ; B, A) d \lambda}{(\lambda-z)^{2}}, \quad z \in \rho(A) \cap \rho(B) .
$$

The function $\xi(\cdot ; B, A)$ is unique up to a real constant.

- Trace formula for $\varphi(\lambda)=(\lambda-z)^{-1}$ and $\varphi(\lambda)=(\lambda-z)^{-k}$.
- Large class of φ^{\prime} 's are discussed in V. Peller '85 (he employs Besov spaces).

Birman-Krein formula.

Assume (*). The scattering matrix $\{S(\lambda ; B, A)\}_{\lambda \in \sigma_{a c}(A)}$ for the pair (B, A) satisfies

$$
\operatorname{det}(S(\lambda ; B, A))=e^{-2 \pi i \xi(\lambda ; B, A)} \quad \text { for a.e. } \lambda \in \sigma_{\text {ac }}(A) .
$$

The Krein-Lifshitz spectral shift function :

"On the shoulders of giants":
Ilya Mikhailovich Lifshitz (January 13, 1917 - October 23, 1982):

Well-known Theoretical Physicist: Worked in solid state physics, electron theory of metals, disordered systems, Lifshitz tails, Lifshitz singularity, the theory of polymers; introduced the concept of the spectral shift function for finite-rank perturbations in 1952.

Mark Grigorievich Krein (April 3, 1907 - October 17, 1989):

Mathematician Extraordinaire: One of the giants of 20th century mathematics, Wolf Prize in Mathematics in 1982; introduced the theory of the spectral shift function in the period of 1953-1963.

SSF: Generalizations

L. S. Koplienko '71.

Assume $\rho(A) \cap \rho(B) \cap \mathbb{R} \neq \emptyset$ and for some $m \in \mathbb{N}$,

$$
\begin{equation*}
\left[\left(B-z \mathcal{I}_{\mathcal{H}}\right)^{-m}-\left(A-z l_{\mathcal{H}}\right)^{-m}\right] \in \mathcal{B}_{1}(\mathcal{H}) . \tag{**}
\end{equation*}
$$

Then there exists $\xi(\cdot ; B, A) \in L_{\mathrm{loc}}^{1}(\mathbb{R})$ such that
$\int_{\mathbb{R}}|\xi(\lambda ; B, A)|(1+|\lambda|)^{-(m+1)} d \lambda<\infty$ and

$$
\begin{array}{r}
\operatorname{tr}_{\mathcal{H}}\left(\left(B-z \mathcal{I}_{\mathcal{H}}\right)^{-m}-\left(A-z l_{\mathcal{H}}\right)^{-m}\right)=\int_{\mathbb{R}} \frac{-m}{(\lambda-z)^{m+1}} \xi(\lambda ; B, A) d \lambda \\
z \in \rho(A) \cap \rho(B)
\end{array}
$$

SSF: Generalizations contd.

D. R. Yafaev '05.

Assume that for some odd, $m \in \mathbb{N}$,

$$
\begin{equation*}
\left[\left(B-z \mathcal{I}_{\mathcal{H}}\right)^{-m}-\left(A-z l_{\mathcal{H}}\right)^{-m}\right] \in \mathcal{B}_{1}(\mathcal{H}) . \tag{**}
\end{equation*}
$$

Then there exists $\xi(\cdot ; B, A) \in L_{\mathrm{loc}}^{1}(\mathbb{R})$ such that
$\int_{\mathbb{R}}|\xi(\lambda ; B, A)|(1+|\lambda|)^{-(m+1)} d \lambda<\infty$ and

$$
\begin{array}{r}
\operatorname{tr}_{\mathcal{H}}\left(\left(B-z \mathcal{I}_{\mathcal{H}}\right)^{-m}-\left(A-z \mathcal{H}_{\mathcal{H}}\right)^{-m}\right)=\int_{\mathbb{R}} \frac{-m}{(\lambda-z)^{m+1}} \xi(\lambda ; B, A) d \lambda, \\
z \in \rho(A) \cap \rho(B) .
\end{array}
$$

Note. Yafaev assumes no spectral gaps of $A(\longrightarrow$ applicable to massless Dirac-type operators, prime examples of non-Fredholm model operators, with applications to graphene).

SSF and Quasi Boundary Triples: A Quick Overview

Assume A, B self-adjoint in \mathcal{H} and $S=A \cap B$, i.e.,

$$
S f:=A f=B f, \quad \operatorname{dom}(S)=\{f \in \operatorname{dom}(A) \cap \operatorname{dom}(B) \mid A f=B f\} .
$$

Next, introduce T such that

$$
S \varsubsetneqq A, B \varsubsetneqq T \subseteq S^{*}, \text { s.t. } \bar{T}=S^{*},
$$

and boundary maps $\Gamma_{0}, \Gamma_{1}: \operatorname{dom}(T) \rightarrow \mathcal{G}$ (\mathcal{G} an auxiliary Hilbert space) such that

$$
A=T \upharpoonright \operatorname{ker}\left(\Gamma_{0}\right) \text { and } B=T \upharpoonright \operatorname{ker}\left(\Gamma_{1}\right) .
$$

The triple, $\left(\mathcal{G}, \Gamma_{0}, \Gamma_{1}\right)$, is called a Quasi Boundary Triple (QBT).
In addition we need the γ-field and abstract Weyl-Titchmarsh fct. $M(\cdot)$: Let $f_{z} \in \operatorname{ker}\left(T-z \mathcal{H}_{\mathcal{H}}\right), \quad z \in \mathbb{C} \backslash \mathbb{R}$,

$$
\begin{aligned}
& \gamma(z): \mathcal{G} \rightarrow \mathcal{H}, \quad \Gamma_{0} f_{z} \mapsto f_{z}, \quad z \in \mathbb{C} \backslash \mathbb{R}, \quad \text { (bounded closure), } \\
& M(z): \operatorname{ran}\left(\Gamma_{0}\right) \rightarrow \operatorname{ran}\left(\Gamma_{1}\right), \quad \Gamma_{0} f_{z} \mapsto \Gamma_{1} f_{z}, \quad z \in \mathbb{C} \backslash \mathbb{R}, \quad \text { (closable). }
\end{aligned}
$$

Then a Krein-type resolvent formula holds

$$
\left(B-z \mathcal{l}_{\mathcal{H}}\right)^{-1}-\left(A-z \mathcal{l}_{\mathcal{H}}\right)^{-1}=-\gamma(z) M(z)^{-1} \gamma(\bar{z})^{*}, \quad z \in \rho(A) \cap \rho(B) .
$$

SSF and QBT: A Quick Overview (contd.)

Fact. If $M(\cdot) \in \mathcal{B}(\mathcal{G})$ is a bounded Nevanlinna-Herglotz fct. (i.e., $M(\cdot)$ is analytic on \mathbb{C}_{+}and $\left.\operatorname{Im}(M(z)) \geq 0, z \in \mathbb{C}_{+}\right)$s.t. $M(\cdot)^{-1} \in \mathcal{B}(\mathcal{G})$ is bounded, then also $\log (M(\cdot))$ is a bounded Nevanlinna-Herglotz fct. with representation

$$
\log (\overline{M(z)})=\operatorname{Re}(\log (\overline{M(i)}))+\int_{\mathbb{R}}\left(\frac{1}{\lambda-z}-\frac{\lambda}{1+\lambda^{2}}\right) \equiv(\lambda ; B, A) d \lambda, \quad z \in \mathbb{C}_{+},
$$

with $0 \leq \equiv(\lambda ; B, A) \leq I_{\mathcal{G}}$. Next, suppose that for some $k \in \mathbb{N}_{0}$,

$$
\left[\left(B-z \mathcal{I}_{\mathcal{H}}\right)^{-(2 k+1)}-\left(A-z \mathcal{I}_{\mathcal{H}}\right)^{-(2 k+1)}\right] \in \mathcal{B}_{1}(\mathcal{H}), \quad z \in \mathbb{C} \backslash \mathbb{R},
$$

then

$$
\operatorname{tr}_{\mathcal{H}}\left(\left(B-z \mathcal{l}_{\mathcal{H}}\right)^{-(2 k+1)}-\left(A-z \mathcal{F}_{\mathcal{H}}\right)^{-(2 k+1)}\right)=-\int_{\mathbb{R}} \frac{2 k+1}{(\lambda-z)^{2 k+2}} \xi(\lambda ; B, A) d \lambda,
$$

where, for a.e. $\lambda \in \mathbb{R}, \xi(\cdot, B, A)$ is the Spectral Shift Function (SSF)

$$
\xi(\lambda ; B, A)=\operatorname{tr}_{\mathcal{G}}(\equiv(\lambda ; B, A))=\pi^{-1} \sum_{j \in J} \lim _{\varepsilon \nless 0}\left(\operatorname{lm}\left(\log (M(\lambda+i \varepsilon)) \varphi_{j}, \varphi_{j}\right)_{\mathcal{G}}\right.
$$

Here $\left\{\varphi_{j}\right\}_{j \in J}$ is an ONB in \mathcal{G}. For $k=0$ this simplifies to

$$
\xi(\lambda ; B, A)=\operatorname{tr}_{\mathcal{G}}(\equiv(\lambda ; B, A))=\pi^{-1} \lim _{\varepsilon \downarrow 0} \operatorname{tr}_{\mathcal{G}}(\operatorname{lm}(\log (M(\lambda+i \varepsilon))) .
$$

Quasi Boundary Triples:

$S \subset S^{*}$ closed symmetric operator in $\mathcal{H}, n_{+}(S)=n_{-}(S)=\infty$.

Def. (Bruk '76, Kochubei '75; Derkach-Malamud '95; Behrndt-Langer '07)

$\left\{\mathcal{G}, \Gamma_{0}, \Gamma_{1}\right\}$ quasi boundary triple for S^{*} if \mathcal{G} Hilbert space and
$S \subset T \subset \bar{T}=S^{*}$ and $\Gamma_{0}, \Gamma_{1}: \operatorname{dom}(T) \rightarrow \mathcal{G}$ such that
(i) $(T f, g)-(f, T g)=\left(\Gamma_{1} f, \Gamma_{0} g\right)-\left(\Gamma_{0} f, \Gamma_{1} g\right), f, g \in \operatorname{dom}(T)$.
(ii) $\Gamma:=\binom{\Gamma_{0}}{\Gamma_{1}}: \operatorname{dom}(T) \rightarrow \mathcal{G} \times \mathcal{G}$ dense range.
(iii) $A_{0}=T \upharpoonright \operatorname{ker}\left(\Gamma_{0}\right)$ self-adjoint.

Example. ($-\Delta+V$ on domain $\Omega, \partial \Omega$ of class $C^{2}, V \in L^{\infty}(\Omega)$ real-valued)
$S f=-\Delta f+V f \upharpoonright\left\{f \in H^{2}(\Omega)|f|_{\partial \Omega}=\left.\partial_{\nu} f\right|_{\partial \Omega}=0\right\}$,
$S^{*} f=-\Delta f+V f \upharpoonright\left\{f \in L^{2}(\Omega) \mid \Delta f \in L^{2}(\Omega)\right\}$,
$T f=-\Delta f+V f \upharpoonright H^{2}(\Omega)$.
Here $(T f, g)-(f, T g)=\left(\left.f\right|_{\partial \Omega},\left.\partial_{\nu} g\right|_{\partial \Omega}\right)-\left(\left.\partial_{\nu} f\right|_{\partial \Omega},\left.g\right|_{\partial \Omega}\right)$.
Choose $\mathcal{G}=L^{2}(\partial \Omega), \Gamma_{0} f:=\left.\partial_{\nu} f\right|_{\partial \Omega}, \Gamma_{1} f:=\left.f\right|_{\partial \Omega}$.

γ-Field and Weyl-Titchmarsh Function:

$S \subset T \subset \bar{T}=S^{*},\left\{\mathcal{G}, \Gamma_{0}, \Gamma_{1}\right\}$ a quasi boundary triple (QBT).

Definition.

Let $f_{z} \in \operatorname{ker}\left(T-z \mathcal{I}_{\mathcal{H}}\right), z \in \mathbb{C} \backslash \mathbb{R}$. γ-field and Weyl-Titchmarsh M-function:

$$
\begin{aligned}
& \gamma(z): \mathcal{G} \rightarrow \mathcal{H}, \quad \Gamma_{0} f_{z} \mapsto f_{z}, \quad z \in \mathbb{C} \backslash \mathbb{R}, \\
& M(z): \mathcal{G} \rightarrow \mathcal{G}, \quad \Gamma_{0} f_{z} \mapsto \Gamma_{1} f_{z}, \quad z \in \mathbb{C} \backslash \mathbb{R} .
\end{aligned}
$$

- $\gamma(z)$ solves boundary value problem in PDE.
- $M(z)$ Dirichlet-to-Neumann in PDE.

Example. ($-\Delta+V$, QBT $\left.\left\{L^{2}(\partial \Omega),\left.\partial_{\nu} f\right|_{\partial \Omega},\left.f\right|_{\partial \Omega}\right\}\right)$
Here $\operatorname{ker}\left(T-z \mathcal{H}_{\mathcal{H}}\right)=\left\{f \in H^{2}(\Omega) \mid-\Delta f+V f=z f\right\}$ and

$$
\gamma(z): L^{2}(\partial \Omega) \supset H^{1 / 2}(\partial \Omega) \rightarrow L^{2}(\Omega), \quad \varphi \mapsto f_{z},
$$

where $(-\Delta+V) f_{z}=z f_{z}$ and $\left.\partial_{\nu} f_{z}\right|_{\partial \Omega}=\varphi$, and

$$
M(z): L^{2}(\partial \Omega) \supset H^{1 / 2}(\partial \Omega) \rightarrow L^{2}(\partial \Omega), \quad \varphi=\left.\left.\partial_{\nu} f_{z}\right|_{\partial \Omega} \mapsto f_{z}\right|_{\partial \Omega} .
$$

Quasi Boundary Triples and Self-Adjoint Extensions:

Perturbation problems for self-adjoint operators in the QBT scheme:

Lemma.

Assume A, B self-adjoint in \mathcal{H} and $S=A \cap B$, i.e.,

$$
S f:=A f=B f, \quad \operatorname{dom}(S)=\{f \in \operatorname{dom}(A) \cap \operatorname{dom}(B) \mid A f=B f\}
$$

densely defined. Then there exists $T \subset \bar{T}=S^{*}$ and QBT $\left\{\mathcal{G}, \Gamma_{0}, \Gamma_{1}\right\}$ such that

$$
A=T \upharpoonright \operatorname{ker}\left(\Gamma_{0}\right) \text { and } B=T \upharpoonright \operatorname{ker}\left(\Gamma_{1}\right),
$$

and

$$
\left(B-z \mathcal{I}_{\mathcal{H}}\right)^{-1}-\left(A-z \mathcal{I}_{\mathcal{H}}\right)^{-1}=-\gamma(z) M(z)^{-1} \gamma(\bar{z})^{*}
$$

where γ and M are the γ-field and Weyl-Titchmarsh function of $\left\{\mathcal{G}, \Gamma_{0}, \Gamma_{1}\right\}$.

Note. In this scheme, $S=T \upharpoonright\left\{\operatorname{ker}\left(\Gamma_{0}\right) \cap \operatorname{ker}\left(\Gamma_{1}\right)\right\}$.

Main Abstract Result: First-Order Case

Theorem.

A, B self-adjoint, $S=A \cap B$ densely defined, and $\left\{\mathcal{G}, \Gamma_{0}, \Gamma_{1}\right\}$ a QBT, $A=T \upharpoonright \operatorname{ker}\left(\Gamma_{0}\right)$, and $B=T \upharpoonright \operatorname{ker}\left(\Gamma_{1}\right)$. Assume
$\left(A-\mu I_{\mathcal{H}}\right)^{-1} \geq\left(B-\mu \mathcal{H}_{\mathcal{H}}\right)^{-1}$ for some $\mu \in \rho(A) \cap \rho(B) \cap \mathbb{R}$, $\overline{\gamma\left(z_{0}\right)} \in \mathcal{B}_{2}(\mathcal{G}, \mathcal{H}), M\left(z_{1}\right)^{-1}, M\left(z_{2}\right)$ bounded in \mathcal{G} for some $z_{0}, z_{1}, z_{2} \in \mathbb{C} \backslash \mathbb{R}$.

Then,

- $\left(B-z \mathcal{I}_{\mathcal{H}}\right)^{-1}-\left(A-z \mathcal{I}_{\mathcal{H}}\right)^{-1}=-\gamma(z) M(z)^{-1} \gamma(\bar{z})^{*} \in \mathcal{B}_{1}(\mathcal{H})$,
- $\operatorname{Im}\left(\log (\overline{M(z)}) \in \mathcal{B}_{1}(\mathcal{G})\right.$ for all $z \in \mathbb{C} \backslash \mathbb{R}$, and for a.e. $\lambda \in \mathbb{R}$,

$$
\xi(\lambda ; B, A)=\operatorname{tr}_{\mathcal{G}}(\equiv(\lambda ; B, A))=\pi^{-1} \lim _{\varepsilon \downarrow 0} \operatorname{tr}_{\mathcal{G}}(\operatorname{lm}(\log (\overline{M(\lambda+i \varepsilon)}))),
$$

is the spectral shift function for the pair (B, A). In particular,

$$
\operatorname{tr}_{\mathcal{H}}\left(\left(B-z \mathcal{l}_{\mathcal{H}}\right)^{-1}-\left(A-z \mathcal{l}_{\mathcal{H}}\right)^{-1}\right)=-\int_{\mathbb{R}} \frac{\xi(\lambda ; B, A) d \lambda}{(\lambda-z)^{2}} .
$$

Main Abstract Result: Higher-Order Case

Theorem.

A, B self-adjoint, $S=A \cap B$ densely defined, and $\left\{\mathcal{G}, \Gamma_{0}, \Gamma_{1}\right\}$ a QBT,

$$
A=T \upharpoonright \operatorname{ker}\left(\Gamma_{0}\right) \text { and } B=T \upharpoonright \operatorname{ker}\left(\Gamma_{1}\right) .
$$

Assume

$$
\begin{aligned}
& \left(A-\mu l_{\mathcal{H}}\right)^{-1} \geq\left(B-\mu l_{\mathcal{H}}\right)^{-1} \quad \text { for some } \mu \in \rho(A) \cap \rho(B) \cap \mathbb{R}, \\
& M\left(z_{1}\right)^{-1}, M\left(z_{2}\right) \text { bounded for some } z_{1}, z_{2} \in \mathbb{C} \backslash \mathbb{R},
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{d^{p}}{d z^{p}} \overline{\gamma(z)} \frac{d^{q}}{d z^{q}}\left(M(z)^{-1} \gamma(\bar{z})^{*}\right) \in \mathcal{B}_{1}(\mathcal{H}), \quad p+q=2 k, \\
& \frac{d^{q}}{d z^{q}}\left(M(z)^{-1} \gamma(\bar{z})^{*}\right) \frac{d^{p}}{d z^{p}} \overline{\gamma(z)} \in \mathcal{B}_{1}(\mathcal{G}), \quad p+q=2 k, \\
& \frac{d^{j}}{d z^{j}} \overline{M(z)} \in \mathcal{B}_{\frac{2 k+1}{j}}(\mathcal{G}), \quad j=1, \ldots, 2 k+1,
\end{aligned}
$$

for some $k \in \mathbb{N}$.

Main Abstract Result: Higher-Order Case (contd.)

Theorem (cont.).
A, B self-adjoint, $S=A \cap B$ densely defined and $\left\{\mathcal{G}, \Gamma_{0}, \Gamma_{1}\right\}$ a QBT, $A=T \upharpoonright \operatorname{ker}\left(\Gamma_{0}\right)$ and $B=T \upharpoonright \operatorname{ker}\left(\Gamma_{1}\right)$. Assume

$$
\left(A-\mu /_{\mathcal{H}}\right)^{-1} \geq\left(B-\mu I_{\mathcal{H}}\right)^{-1} \quad \text { for some } \mu \in \rho(A) \cap \rho(B) \cap \mathbb{R},
$$

$M\left(z_{1}\right)^{-1}, M\left(z_{2}\right)$ bounded for $z_{1}, z_{2} \in \mathbb{C} \backslash \mathbb{R}$, and all these \mathcal{B}_{p}-conditions
Then,

$$
\text { - }\left[\left(B-z \mathcal{I}_{\mathcal{H}}\right)^{-(2 k+1)}-\left(A-z \mathcal{H}_{\mathcal{H}}\right)^{-(2 k+1)}\right] \in \mathcal{B}_{1}(\mathcal{H}) \text {, }
$$

- $\operatorname{Im}(\log (\overline{M(\lambda)})) \in \mathcal{B}_{1}(\mathcal{G})$ for all $z \in \mathbb{C} \backslash \mathbb{R}$, and for a.e. $\lambda \in \mathbb{R}$ (and with $\left\{\varphi_{j}\right\}_{j \in J}$ an ONB in \mathcal{G}),

$$
\xi(\lambda ; B, A)=\operatorname{tr}_{\mathcal{G}}(\equiv(\lambda ; B, A))=\pi^{-1} \sum_{j \in J} \lim _{\varepsilon \downarrow 0}\left(\operatorname { l m } \left(\log \left(\overline{M(\lambda+i \varepsilon)} \varphi_{j}, \varphi_{j}\right)_{\mathcal{G}}\right.\right.
$$

is the spectral shift function for the pair (B, A). In particular,

$$
\operatorname{tr}_{\mathcal{H}}\left(\left(B-z l_{\mathcal{H}}\right)^{-(2 k+1)}-\left(A-z \mathcal{I}_{\mathcal{H}}\right)^{-(2 k+1)}\right)=-\int_{\mathbb{R}} \frac{2 k+1}{(\lambda-z)^{2 k+2}} \xi(\lambda ; B, A) d \lambda .
$$

Remarks:

- If A, B semibounded, $\mu<\inf (\sigma(A) \cup \sigma(B))$, then

$$
\left(A-\mu I_{\mathcal{H}}\right)^{-1} \geq\left(B-\mu I_{\mathcal{H}}\right)^{-1} \Longleftrightarrow A \leq B
$$

in accordance with $\xi(\lambda ; B, A)=\pi^{-1} \operatorname{tr}_{\mathcal{G}}(\operatorname{lm}(\log (\overline{M(\lambda+i 0)}))) \geq 0$.

- Key difficulty: For $z \in \mathbb{C}_{+}$prove that imaginary part of

$$
\log (\overline{M(z)}):=-i \int_{0}^{\infty}\left[\left(\overline{M(z)}+i \lambda /_{\mathcal{G}}\right)^{-1}-(1+i \lambda)^{-1} I_{\mathcal{G}}\right] d \lambda
$$

is a trace class operator, Birman-Entina '67, Naboko '87, Carey '76, G.-Makarov-Naboko '99, and G.-Makarov '00.

Exploit the exponential Nevanlinna-Herglotz representation

$$
\log (\overline{M(z)})=C+\int_{\mathbb{R}}\left(\frac{1}{\lambda-z}-\frac{\lambda}{1+\lambda^{2}}\right) \equiv(\lambda ; B, A) d \lambda, \quad z \in \mathbb{C}_{+}
$$

with $C=C^{*} \in \mathcal{B}(\mathcal{G}), \quad 0 \leq \equiv(\lambda ; B, A) \leq I_{\mathcal{G}}, \quad \xi(\lambda ; B, A)=\operatorname{tr}_{\mathcal{G}}(\equiv(\lambda ; B, A))$, etc.

Remarks (contd.):

- In Behrndt-Langer-Lotoreichik '13 for self-adjoint elliptic PDOs

$$
\left[\left(B-z l_{\mathcal{H}}\right)^{-(2 k+1)}-\left(A-z \mathcal{l}_{\mathcal{H}}\right)^{-(2 k+1)}\right] \in \mathcal{B}_{1}(\mathcal{H}), \quad z \in \rho(A) \cap \rho(B) .
$$

Representation of SSF via M-function:

- Rank 1, $k=0$: Langer-de Snoo-Yavrian '01.
- Rank $n<\infty, k=0$: Behrndt-Malamud-Neidhardt '08.
- Other representation via modified perturbation determinant for M for $k=0$: Malamud-Neidhardt ' 15.

Representation of scattering matrix via M-function:

- Rank $n<\infty$: Adamyan-Pavlov '86, Albeverio-Kurasov '00, Behrndt-Malamud-Neidhardt '08.
- $k=0$: Behrndt-Malamud-Neidhardt '15, Mantile-Posilicano-Sini '15.

Closely connected are

- Mikhailova-Pavlov-Prokhorov, Intermediate Hamiltonian via Glazman's splitting and analytic perturbation for meromorphic matrix-functions, Math. Nachr. 280, 1376-1416 (2007).

An Extension of the Abstract Result

The condition

$$
\left(A-\mu /_{\mathcal{H}}\right)^{-1} \geq\left(B-\mu I_{\mathcal{H}}\right)^{-1} \quad \text { for some } \mu \in \rho(A) \cap \rho(B) \cap \mathbb{R},
$$

can be inconvenient for certain PDE applications. Here is a slight variant of this: Suppose that there exists a self-adjoint operator C in \mathcal{H} such that

$$
\left(C-\zeta_{A} l_{\mathcal{H}}\right)^{-1} \geq\left(A-\zeta_{A} l_{\mathcal{H}}\right)^{-1} \text { and }\left(C-\zeta_{B} l_{\mathcal{H}}\right)^{-1} \geq\left(B-\zeta_{B} l_{\mathcal{H}}\right)^{-1}
$$

for some $\zeta_{A} \in \rho(A) \cap \rho(C) \cap \mathbb{R}$ and some $\zeta_{B} \in \rho(B) \cap \rho(C) \cap \mathbb{R}$. In addition, assume that the closed symmetric operators $S_{A}=A \cap C$ and $S_{B}=B \cap C$ are both densely defined and choose quasi boundary triples $\left\{\mathcal{G}_{A}, \Gamma_{0}^{A}, \Gamma_{1}^{A}\right\}$ and $\left\{\mathcal{G}_{B}, \Gamma_{0}^{B}, \Gamma_{1}^{B}\right\}$ with γ-fields γ_{A}, γ_{B} and Weyl functions M_{A}, M_{B} for

$$
T_{A}=S_{A}{ }^{*} \upharpoonright(\operatorname{dom}(A)+\operatorname{dom}(C)) \text { and } T_{B}=S_{B}{ }^{*} \upharpoonright(\operatorname{dom}(B)+\operatorname{dom}(C))
$$

such that

$$
C=T_{A} \upharpoonright \operatorname{ker}\left(\Gamma_{0}^{A}\right)=T_{B} \upharpoonright \operatorname{ker}\left(\Gamma_{0}^{B}\right),
$$

and

$$
A=T_{A} \upharpoonright \operatorname{ker}\left(\Gamma_{1}^{A}\right) \text { and } B=T_{B} \upharpoonright \operatorname{ker}\left(\Gamma_{1}^{B}\right),
$$

An Extension of the Abstract Result (contd.)

Finally, assume that for some $k \in \mathbb{N}_{0}$, all the previous \mathcal{B}_{p}-conditions are satisfied for the γ-fields γ_{A}, γ_{B} and the Weyl functions M_{A}, M_{B}. Then the difference of the $2 k+1$-th powers of the resolvents of A and C, and the difference of the $2 k+1$-th powers of the resolvents of B and C are trace class operators, and for orthonormal bases $\left(\varphi_{j}\right)_{j \in J}$ in \mathcal{G}_{A} and $\left(\psi_{\ell}\right)_{\ell \in L}$ in $\mathcal{G}_{B}(J, L \subseteq \mathbb{N}$ appropriate index sets),

$$
\xi_{A}(\lambda ; C, A)=\pi^{-1} \sum_{j \in J} \lim _{\varepsilon \downarrow 0}\left(\operatorname{lm}\left(\log \left(\overline{M_{A}(\lambda+i \varepsilon)}\right)\right) \varphi_{j}, \varphi_{j}\right)_{\mathcal{G}_{A}} \text { for a.e. } \lambda \in \mathbb{R},
$$

and

$$
\xi_{B}(\lambda ; C, B)=\pi^{-1} \sum_{\ell \in L} \lim _{\varepsilon \downarrow 0}\left(\operatorname{lm}\left(\log \left(\overline{M_{B}(\lambda+i \varepsilon)}\right)\right) \psi_{\ell}, \psi_{\ell}\right)_{\mathcal{G}_{B}} \text { for a.e. } \lambda \in \mathbb{R},
$$

are spectral shift functions for the pairs $\{C, A\}$ and $\{C, B\}$.

An Extension of the Abstract Result (contd.)

It follows that for $z \in \rho(A) \cap \rho(B) \cap \rho(C)$,

$$
\begin{aligned}
\operatorname{tr}_{\mathcal{H}} & \left(\left(B-z l_{\mathcal{H}}\right)^{-(2 k+1)}-\left(A-z l_{\mathcal{H}}\right)^{-(2 k+1)}\right) \\
= & \operatorname{tr}_{\mathcal{H}}\left(\left(B-z l_{\mathcal{H}}\right)^{-(2 k+1)}-\left(C-z l_{\mathcal{H}}\right)^{-(2 k+1)}\right) \\
& -\operatorname{tr}_{\mathcal{H}}\left(\left(A-z \mathcal{I}_{\mathcal{H}}\right)^{-(2 k+1)}-\left(C-z l_{\mathcal{H}}\right)^{-(2 k+1)}\right) \\
= & -(2 k+1) \int_{\mathbb{R}} \frac{\left[\xi_{B}(\lambda: C, B)-\xi_{A}(\lambda ; C, A)\right] d \lambda}{(\lambda-z)^{2 k+2}}
\end{aligned}
$$

and

$$
\int_{\mathbb{R}} \frac{\left|\xi_{B}(\lambda ; C, B)-\xi_{A}(\lambda ; C, A)\right| d \lambda}{(1+|\lambda|)^{2 m+2}}<\infty
$$

Therefore,

$$
\xi(\lambda ; A, B)=\xi_{B}(\lambda ; C, B)-\xi_{A}(\lambda ; C, A) \text { for a.e. } \lambda \in \mathbb{R},
$$

is a spectral shift function for the pair $\{A, B\}$.

Example 1: Robin boundary conditions

$$
\begin{array}{ll}
A_{\beta_{0}} f=-\Delta f+V f, & \operatorname{dom}\left(A_{\beta_{0}}\right)=\left\{f \in H^{2}(\Omega):\left.\beta_{0} f\right|_{\partial \Omega}=\left.\partial_{\nu} f\right|_{\partial \Omega}\right\}, \\
A_{\beta_{1}} f=-\Delta f+V f, & \operatorname{dom}\left(A_{\beta_{1}}\right)=\left\{f \in H^{2}(\Omega):\left.\beta_{1} f\right|_{\partial \Omega}=\left.\partial_{\nu} f\right|_{\partial \Omega}\right\} .
\end{array}
$$

- Ω domain in $\mathbb{R}^{n}, \partial \Omega$ smooth and compact;
- $V \in L^{\infty}(\Omega)$ real and $\beta_{0}, \beta_{1} \in C^{2}(\partial \Omega)$ real, $\beta_{0} \neq \beta_{1}$;
- Neumann-to-Dirichlet map: $\left.\mathcal{N}(z) \partial_{\nu} f_{z}\right|_{\partial \Omega}=\left.f_{z}\right|_{\partial \Omega}$ in $L^{2}(\partial \Omega)$.

Theorem.

For $k \geq(n-3) / 4$ one has

- $\left(A_{\beta_{1}}-z I_{L^{2}(\Omega)}\right)^{-(2 k+1)}-\left(A_{\beta_{0}}-z I_{L^{2}(\Omega)}\right)^{-(2 k+1)} \in \mathcal{B}_{1}\left(L^{2}(\Omega)\right)$.
- Spectral shift function for the pair $\left(A_{\beta_{1}}, A_{\beta_{0}}\right)$,

$$
\xi\left(\lambda ; A_{\beta_{1}}, A_{\beta_{0}}\right)=\pi^{-1} \lim _{\varepsilon \downarrow 0} \operatorname{tr}_{L^{2}(\partial \Omega)}\left(\operatorname{lm}\left(\log \left(\mathcal{M}_{0}(\lambda+i \varepsilon)\right)-\log \left(\mathcal{M}_{1}(\lambda+i \varepsilon)\right)\right)\right),
$$

where $\mathcal{M}_{j}(z)=\frac{1}{\beta-\beta_{j}}\left(\beta_{j} \overline{\mathcal{N}(z)}-I_{L^{2}(\partial \Omega)}\right)\left(\beta \overline{\mathcal{N}(z)}-I_{L^{2}(\partial \Omega)}\right)^{-1}$, and $\beta \in \mathbb{R}$ such that $\beta_{j}(x)<\beta$ for all $x \in \partial \Omega$ and $j=0,1$.

Example 2: Compactly supported potentials in \mathbb{R}^{n}

- $A=-\Delta$ and $B=-\Delta+V$ with $\operatorname{dom}(A)=\operatorname{dom}(B)=H^{2}\left(\mathbb{R}^{n}\right)$
- $V \in L^{\infty}\left(\mathbb{R}^{n}\right)$ real-valued with compact support in \mathcal{B}_{+}

Multi-dimensional Glazman splitting: Instead of $\{A, B\}$ consider

$$
\left\{A,\left(\begin{array}{cc}
A_{+} & 0 \\
0 & C
\end{array}\right)\right\},\left\{\left(\begin{array}{cc}
A_{+} & 0 \\
0 & C
\end{array}\right),\left(\begin{array}{cc}
B_{+} & 0 \\
0 & C
\end{array}\right)\right\},\left\{\left(\begin{array}{cc}
B_{+} & 0 \\
0 & C
\end{array}\right), B\right\},
$$

where

$$
L^{2}\left(\mathbb{R}^{n}\right)=L^{2}\left(\mathcal{B}_{+}\right) \oplus L^{2}\left(\mathcal{B}_{+}^{c}\right),
$$

with $\mathcal{B}_{+} \subset \mathbb{R}^{n}$ a fixed open ball and $\mathcal{S}=\partial \mathcal{B}_{+}$the ($n-1$)-dimensional sphere, and

- $A_{+}=-\Delta$ with $\operatorname{dom}\left(A_{+}\right)=H^{2}\left(\mathcal{B}_{+}\right) \cap H_{0}^{1}\left(\mathcal{B}_{+}\right)$in $L^{2}\left(\mathcal{B}_{+}\right)$;
- $B_{+}=-\Delta+V$ with $\operatorname{dom}\left(B_{+}\right)=H^{2}\left(\mathcal{B}_{+}\right) \cap H_{0}^{1}\left(\mathcal{B}_{+}\right)$in $L^{2}\left(\mathcal{B}_{+}\right)$;
- $C=-\Delta$ with $\operatorname{dom}(C)=H^{2}\left(\mathcal{B}_{+}^{c}\right) \cap H_{0}^{1}\left(\mathcal{B}_{+}^{c}\right)$ in $L^{2}\left(\mathcal{B}_{+}^{c}\right)$.

We recall: SSF for the pair $\left(B_{+}, A_{+}\right)$is $\xi\left(\lambda ; B_{+}, A_{+}\right)=N_{A_{+}}(\lambda)-N_{B_{+}}(\lambda), \lambda \in \mathbb{R}$, i.e., a difference of eigenvalue counting functions.

Example 2: Compactly supported potentials in \mathbb{R}^{n} (contd.)

Theorem.

For $k>(n-2) / 4$ one has

- $\left[\left(B-z I_{L^{2}\left(\mathbb{R}^{n}\right)}\right)^{-(2 k+1)}-\left(A-z I_{L^{2}\left(\mathbb{R}^{n}\right)}\right)^{-(2 k+1)}\right] \in \mathcal{B}_{1}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)$.
- Spectral shift function for the pair $(B=-\Delta+V, A=-\Delta)$,

$$
\begin{aligned}
\xi(\lambda ; B, A)= & \pi^{-1} \lim _{\varepsilon \downarrow 0} \operatorname{tr}_{L^{2}\left(\mathcal{B}_{+}\right)}(\operatorname{lm}(\log (\mathfrak{N}(\lambda+i 0))-\log (\mathfrak{N} V(\lambda+i 0)))) \\
& +N_{A_{+}}(\lambda)-N_{B_{+}}(\lambda),
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathfrak{N}(z)=\imath\left(\mathcal{D}_{+}(z)+\mathcal{D}_{-}(z)\right)^{-1} \tilde{\imath}: L^{2}\left(\partial \mathcal{B}_{+}\right) \rightarrow L^{2}\left(\partial \mathcal{B}_{+}\right) \\
& \mathfrak{N}_{V}(z)=\imath\left(\mathcal{D}_{+}^{V}(z)+\mathcal{D}_{-}(z)\right)^{-1} \tilde{\imath}: L^{2}\left(\partial \mathcal{B}_{+}\right) \rightarrow L^{2}\left(\partial \mathcal{B}_{+}\right)
\end{aligned}
$$

and $\mathcal{D}_{ \pm}(z)$ and $\mathcal{D}_{+}^{V}(z)$ Dirichlet-to-Neumann maps for $-\Delta-z l$ and $-\Delta+V-z l$ on \mathcal{B}_{+}and $\mathcal{B}_{+}^{c} ; \imath, \tau$ are appropriate isomorphisms, e.g., $\imath=\left(-\Delta_{\mathcal{S}}+I_{L^{2}(\mathcal{S})}\right)^{1 / 4}$, with $-\Delta_{\mathcal{S}}$ the Laplace-Beltrami operator on the sphere $\mathcal{S}=\partial \mathcal{B}_{+} \ldots$.

Note. $\xi(\cdot ; B, A)$ is continuous for $\lambda \geq 0$, although $N_{A_{+}}-N_{B_{+}}$is a step function.

