Infinitesimal rigidity for unitarily invariant matrix norms

Derek Kitson
Lancaster University
IWOTA, TU Chemnitz
17th August 2017

$(X,\|\cdot\|)$ is a finite dimensional real normed linear space.
Problem: Given a framework (G, p) in X determine whether (G, p) is infinitesimally rigid (or isostatic) in $(X,\|\cdot\|)$.
$(X,\|\cdot\|)$ is a finite dimensional real normed linear space.
Problem: Given a framework (G, p) in X determine whether (G, p) is infinitesimally rigid (or isostatic) in $(X,\|\cdot\|)$.

Questions to consider

- Which motions are considered trivial?
$(X,\|\cdot\|)$ is a finite dimensional real normed linear space.
Problem: Given a framework (G, p) in X determine whether (G, p) is infinitesimally rigid (or isostatic) in $(X,\|\cdot\|)$.

Questions to consider

- Which motions are considered trivial?
- What form does the infinitesimal flex condition take?
$(X,\|\cdot\|)$ is a finite dimensional real normed linear space.
Problem: Given a framework (G, p) in X determine whether (G, p) is infinitesimally rigid (or isostatic) in $(X,\|\cdot\|)$.

Questions to consider

- Which motions are considered trivial?
- What form does the infinitesimal flex condition take?
- Is infinitesimal rigidity a generic property?

Euclidean norm

- discrete geometry, combinatorics, semidefinite programming, operator theory...

Euclidean norm

- discrete geometry, combinatorics, semidefinite programming, operator theory...
General norms
- flex condition, rigidity matrix, symmetry

Euclidean norm

- discrete geometry, combinatorics, semidefinite programming, operator theory...
General norms
- flex condition, rigidity matrix, symmetry
ℓ^{p} norms, $p \notin\{1,2, \infty\}$
- Laman-type theorems

Euclidean norm

- discrete geometry, combinatorics, semidefinite programming, operator theory...
General norms
- flex condition, rigidity matrix, symmetry
ℓ^{p} norms, $p \notin\{1,2, \infty\}$
- Laman-type theorems

Polyhedral norms

- edge-colouring techniques

Euclidean norm

- discrete geometry, combinatorics, semidefinite programming, operator theory...
General norms
- flex condition, rigidity matrix, symmetry
ℓ^{p} norms, $p \notin\{1,2, \infty\}$
- Laman-type theorems

Polyhedral norms

- edge-colouring techniques

Let M_{n} denote the vector space of $n \times n$ matrices (over \mathbb{R} or \mathbb{C}).
A norm on M_{n} is unitarily invariant if

$$
\|a\|=\|u a v\|
$$

for all $a \in M_{n}$ and all unitary matrices $u, v \in M_{n}$.

Theorem (von Neumann, 1937)
A matrix norm is unitarily invariant if and only if it is obtained by applying a symmetric norm to the vector of singular values of a matrix.

The Schatten p-norms on M_{n} are defined by,

$$
\begin{aligned}
\|a\|_{c_{p}}= & \left(\sum_{i=1}^{n} \sigma_{i}^{p}\right)^{\frac{1}{p}}, \quad 1 \leq p<\infty \\
& \|a\|_{c_{\infty}}=\max _{i} \sigma_{i}
\end{aligned}
$$

where σ_{i} are the singular values of a.

- $c_{1}=$ trace norm
- $c_{2}=$ Frobenius norm ($=$ Euclidean norm of matrix entries)
- $c_{\infty}=$ spectral norm (= operator norm on Euclidean space)

A rigid motion of a normed space $(X,\|\cdot\|)$ is a collection of continuous paths $\alpha=\left\{\alpha_{x}:[-1,1] \rightarrow X\right\}_{x \in X}$, with the following properties:
(a) $\alpha_{x}(0)=x$ for all $x \in X$;
(b) $\alpha_{x}(t)$ is differentiable at $t=0$ for all $x \in X$; and
(c) $\left\|\alpha_{x}(t)-\alpha_{y}(t)\right\|=\|x-y\|$ for all $x, y \in X$ and for all $t \in[-1,1]$.

We write $\mathcal{R}(X,\|\cdot\|)$ for the set of all rigid motions of $(X,\|\cdot\|)$.

Lemma

Let $(X,\|\cdot\|)$ be a normed space and let $\alpha \in \mathcal{R}(X,\|\cdot\|)$. Then,
(i) for each $t \in[-1,1]$ there exists a real-linear isometry $A_{t}: X \rightarrow X$ and a vector $c(t) \in X$ such that

$$
\alpha_{x}(t)=A_{t}(x)+c(t), \quad \forall x \in X
$$

(ii) the map $c:[-1,1] \rightarrow X$ is continuous on $[-1,1]$ and differentiable at $t=0$,
(iii) for every $x \in X$, the map $A_{*}(x):[-1,1] \rightarrow X, t \mapsto A_{t}(x)$, is continuous on $[-1,1]$ and differentiable at $t=0$, and,
(iv) $A_{0}=I$ and $c(0)=0$.

Proposition

For any $\alpha \in \mathcal{R}\left(M_{n},\|\cdot\|\right)$, there is a neighbourhood T of 0 in $[-1,1]$, and matrices $u_{t}, w_{t} \in U_{n}$ and $c(t) \in M_{n}$ for each $t \in T$, so that
(i) $\alpha_{x}(t)=u_{t} x w_{t}+c(t), \quad \forall x \in M_{n}, t \in T$;
(ii) $c(0)=0$ and $u_{0}=w_{0}=I$;
(iii) the maps $t \mapsto c(t)$ and $t \mapsto u_{t} x w_{t}$ are both differentiable at $t=0$, for any $x \in M_{n}$; and
(iv) the maps $t \mapsto u_{t}$ and $t \mapsto w_{t}$ are continuous at $t=0$.

A vector field $\eta: X \rightarrow X$ of the form $\eta(x)=\alpha_{x}^{\prime}(0)$ where $\alpha \in \mathcal{R}(X,\|\cdot\|)$ is referred to as an infinitesimal rigid motion of $(X,\|\cdot\|)$.

Lemma
Let $(X,\|\cdot\|)$ be a normed space and let $\eta \in \mathcal{T}(X,\|\cdot\|)$. Then η is an affine map.

Theorem
If $\eta \in \mathcal{T}\left(M_{n},\|\cdot\|\right)$, then there exist unique matrices $a, b, c \in M_{n}$ with $a \in \operatorname{Skew}_{n}^{0}, b \in \mathrm{Skew}_{n}$ and $c \in M_{n}$ so that

$$
\eta(x)=a x+x b+c, \quad \forall x \in M_{n} .
$$

Define $\Psi: \mathcal{T}\left(M_{n},\|\cdot\|\right) \rightarrow \operatorname{Skew}_{n}^{0} \oplus \mathrm{Skew}_{n} \oplus M_{n}$ by setting $\Psi_{X}(\eta)=(a, b, c)$ if and only if $\eta(x)=a x+x b+c$ for all $x \in X$.

Lemma

Ψ is a linear isomorphism.

Proof.

Let (a, b, c) be in the codomain of Ψ, and for each $x \in M_{n}$ define

$$
\alpha_{x}:[-1,1] \rightarrow M_{n}, \quad \alpha_{x}(t)=e^{t a} x e^{t b}+t c
$$

Since a and b are skew-hermitian, $e^{t a}$ and $e^{t b}$ are unitary for every $t \in \mathbb{R}$, so $\left\{\alpha_{x}\right\}_{x \in \mathcal{M}_{n}}$ is a rigid motion. The induced infinitesimal rigid motion is the vector field

$$
\eta: M_{n} \rightarrow M_{n}, \quad x \mapsto a x+x b+c .
$$

Thus $\Psi(\eta)=(a, b, c)$ and so Ψ is surjective.

Proposition

$$
\operatorname{dim} \mathcal{T}\left(M_{n},\|\cdot\|\right)= \begin{cases}2 n^{2}-n & \text { if } \mathbb{K}=\mathbb{R} \\ 4 n^{2}-1 & \text { if } \mathbb{K}=\mathbb{C}\end{cases}
$$

A support functional for a unit vector $x_{0} \in X$ is a linear functional $f: X \rightarrow \mathbb{R}$ with $\|f\|:=\sup \{|f(x)|: x \in X,\|x\|=1\} \leq 1$, and $f\left(x_{0}\right)=1$.

Example

Let (G, p) be a bar-joint framework in $\left(M_{n},\|\cdot\|_{c_{q}}\right)$. Let $v w \in E$, suppose the norm is smooth at $p_{v}-p_{w}$ and let $p_{0}=\frac{p_{v}-p_{w}}{\left\|p_{v}-p_{w}\right\|_{c_{q}}}$.
(a) If $q<\infty$, then for all $x \in M_{n}$,

$$
\varphi_{v, w}(x)=\operatorname{trace}\left(x\left|p_{0}\right|^{q-1} u^{*}\right)
$$

where $p_{0}=u\left|p_{0}\right|$ is the polar decomposition of p_{0}.
(b) If $q=\infty$, then the largest singular value of the matrix p_{0} has multiplicity one. Thus p_{0} attains its norm at a unit vector $\zeta \in \mathbb{K}^{n}$ which is unique (up to scalar multiples). For all $x \in \mathcal{M}_{n}$, we have

$$
\varphi_{v, w}(x)=\left\langle x \zeta, p_{0} \zeta\right\rangle
$$

where $\langle\cdot, \cdot\rangle$ is the usual Euclidean inner product on \mathbb{K}^{n}.

The norm $\|\cdot\|$ is said to be smooth at $x \in X \backslash\{0\}$ if there exists exactly one support functional at $\frac{x}{\|x\|}$.

Lemma

Let $\|\cdot\|$ be a unitarily invariant norm on M_{n}, with corresponding symmetric norm $\|\cdot\|_{s}$ on \mathbb{R}^{n}, and let $x \in M_{n}$. Then $\|\cdot\|$ is smooth at x if and only if $\|\cdot\|_{s}$ is smooth at $\sigma(x)$.

A bar-joint framework (G, p) is said to be well-positioned in $(X,\|\cdot\|)$ if the norm $\|\cdot\|$ is smooth at $p_{v}-p_{w}$ for every edge $v w \in E$.

Proposition

Let (G, p) be a bar-joint framework in $\left(M_{n},\|\cdot\|_{c_{q}}\right)$.
(i) If $q \notin\{1, \infty\}$, then (G, p) is well-positioned.
(ii) If $q=1$ then (G, p) is well-positioned if and only if $p_{v}-p_{w}$ is invertible for all $v w \in E$.
(iii) If $q=\infty$ then (G, p) is well-positioned if and only if $\sigma_{1}\left(p_{v}-p_{w}\right)>\sigma_{2}\left(p_{v}-p_{w}\right)$ for all $v w \in E$.

The rigidity map for $G=(V, E)$ and $(X,\|\cdot\|)$ is,

$$
f_{G}: X^{V} \rightarrow \mathbb{R}^{E}, \quad\left(x_{v}\right)_{v \in V} \mapsto\left(\left\|x_{v}-x_{w}\right\|\right)_{v w \in E}
$$

Lemma

Let (G, p) be a bar-joint framework in a normed linear space $(X,\|\cdot\|)$.
(i) (G, p) is well-positioned in $(X,\|\cdot\|)$ if and only if the rigidity $\operatorname{map} f_{G}$ is differentiable at p.
(ii) If (G, p) is well-positioned in $(X,\|\cdot\|)$ then the differential of the rigidity map is given by

$$
d f_{G}(p): X^{V} \rightarrow \mathbb{R}^{E}, \quad\left(z_{v}\right)_{v \in V} \mapsto\left(\varphi_{v, w}\left(z_{v}-z_{w}\right)\right)_{v w \in E}
$$

An infinitesimal flex for (G, p) is a vector $u \in X^{V}$ such that

$$
\lim _{t \rightarrow 0} \frac{1}{t}\left(f_{G}(p+t u)-f_{G}(p)\right)=0
$$

$\mathcal{F}(G, p):=$ vector space of all infinitesimal flexes of (G, p).
Note that if (G, p) is well-positioned then $\mathcal{F}(G, p)=\operatorname{ker} d f_{G}(p)$.

A non-empty subset $S \subseteq X$ is full in $(X,\|\cdot\|)$ if the restriction map

$$
\rho_{S}: \mathcal{T}(X,\|\cdot\|) \rightarrow X^{S}, \quad \eta \mapsto(\eta(x))_{x \in S}
$$

is injective.

Lemma
Let $(X,\|\cdot\|)$ be a normed space and let $\emptyset \neq S \subseteq X$. If S has full affine span in X, then S is full in $(X,\|\cdot\|)$.

A non-empty subset $S \subseteq X$ is full in $(X,\|\cdot\|)$ if the restriction map

$$
\rho_{S}: \mathcal{T}(X,\|\cdot\|) \rightarrow X^{S}, \quad \eta \mapsto(\eta(x))_{x \in S}
$$

is injective.

Lemma

Let $(X,\|\cdot\|)$ be a normed space and let $\emptyset \neq S \subseteq X$. If S has full affine span in X, then S is full in $(X,\|\cdot\|)$.

We say that a bar-joint framework (G, p) is,
(a) full if $\left\{p_{v}: v \in V\right\}$ is full in $(X,\|\cdot\|)$.
(b) completely full if (G, p), and every subframework $\left(H, p_{H}\right)$ of (G, p) with $|V(H)| \geq 2 \operatorname{dim}(X)$, is full in $(X,\|\cdot\|)$.

Given a bar-joint framework (G, p), we define
$\mathcal{T}(G, p)=\{\zeta: V \rightarrow X \mid \zeta=\eta \circ p$ for some $\eta \in \mathcal{T}(X,\|\cdot\|)\} \subseteq X^{V}$.
The elements of $\mathcal{T}(G, p)$ are referred to as the trivial infinitesimal flexes of (G, p).

Lemma
If (G, p) is a full bar-joint framework in $(X,\|\cdot\|)$, then

$$
\operatorname{dim} \mathcal{T}(G, p)=\operatorname{dim} \mathcal{T}(X,\|\cdot\|)
$$

X	$k(X)$	$l(X)$
$\mathcal{H}_{n}(\mathbb{R})$	$\frac{1}{2} n(n+1)$	n^{2}
$\mathcal{M}_{n}(\mathbb{R})$	n^{2}	$2 n^{2}-n$
$\mathcal{H}_{n}(\mathbb{C})$	n^{2}	$2 n^{2}-1$
$\mathcal{M}_{n}(\mathbb{C})$	$2 n^{2}$	$4 n^{2}-1$

Table: k and l values for admissible matrix spaces.

X	$k(X)$	$l(X)$
$\mathcal{H}_{2}(\mathbb{R})$	3	4
$\mathcal{M}_{2}(\mathbb{R})$	4	6
$\mathcal{H}_{2}(\mathbb{C})$	4	7
$\mathcal{M}_{2}(\mathbb{C})$	8	15

X	$k(X)$	$l(X)$
$\mathcal{H}_{3}(\mathbb{R})$	6	9
$\mathcal{M}_{3}(\mathbb{R})$	9	15
$\mathcal{H}_{3}(\mathbb{C})$	9	17
$\mathcal{M}_{3}(\mathbb{C})$	18	35

Table: k and l values for admissible matrix spaces when $n=2$ and $n=3$.

A framework (G, p) is infinitesimally rigid if $\mathcal{F}(G, p)=\mathcal{T}(G, p)$.

Theorem

Let (G, p) be a full and well-positioned bar-joint framework in
$\left(M_{n},\|\cdot\|\right)$.
(i) If (G, p) is infinitesimally rigid, then $|E| \geq k|V|-l$.
(ii) If (G, p) is minimally infinitesimally rigid, then $|E|=k|V|-l$.
(iii) If (G, p) is minimally infinitesimally rigid and $\left(H, p_{H}\right)$ is a full subframework of (G, p), then $|E(H)| \leq k|V(H)|-l$.

Theorem
Let (G, p) be a completely full and well-positioned bar-joint framework in $\left(M_{n},\|\cdot\|\right)$. If (G, p) is minimally infinitesimally rigid then G is (k, l)-tight.

Let $\|\cdot\|$ be a unitarily invariant norm on $X \in\left\{M_{n}(\mathbb{K}), H_{n}(\mathbb{K})\right\}$ and let $k=\operatorname{dim} X$.
(i) If $\mathbb{K}=\mathbb{R}$, then there exists $p \in X^{V}$ such that $\left(K_{m}, p\right)$ is full, well-positioned and infinitesimally rigid in $(X,\|\cdot\|)$ for all $m \geq 2 k$.
(ii) If $\mathbb{K}=\mathbb{C}$, then there exists $p \in X^{V}$ such that $\left(K_{m}, p\right)$ is full, well-positioned and infinitesimally rigid in $(X,\|\cdot\|)$ for all $m \geq 2 k-1$.

Thank you

