Infinitesimal rigidity for unitarily invariant matrix norms

Derek Kitson

Lancaster University

IWOTA, TU Chemnitz 17th August 2017 Statement of the problem

 $(X, \|\cdot\|)$ is a finite dimensional real normed linear space.

Problem: Given a framework (G,p) in X determine whether (G,p) is infinitesimally rigid (or isostatic) in $(X,\|\cdot\|)$.

 $(X, \|\cdot\|)$ is a finite dimensional real normed linear space.

Problem: Given a framework (G,p) in X determine whether (G,p) is infinitesimally rigid (or isostatic) in $(X,\|\cdot\|)$.

Questions to consider

Which motions are considered trivial?

 $(X, \|\cdot\|)$ is a finite dimensional real normed linear space.

Problem: Given a framework (G,p) in X determine whether (G,p) is infinitesimally rigid (or isostatic) in $(X,\|\cdot\|)$.

Questions to consider

- Which motions are considered trivial?
- What form does the infinitesimal flex condition take?

 $(X, \|\cdot\|)$ is a finite dimensional real normed linear space.

Problem: Given a framework (G,p) in X determine whether (G,p) is infinitesimally rigid (or isostatic) in $(X,\|\cdot\|)$.

Questions to consider

- Which motions are considered trivial?
- What form does the infinitesimal flex condition take?
- Is infinitesimal rigidity a generic property?

discrete geometry, combinatorics, semidefinite programming, operator theory...

discrete geometry, combinatorics, semidefinite programming, operator theory...

General norms

flex condition, rigidity matrix, symmetry

discrete geometry, combinatorics, semidefinite programming, operator theory...

General norms

flex condition, rigidity matrix, symmetry

$$\ell^p$$
 norms, $p \notin \{1, 2, \infty\}$

Laman-type theorems

discrete geometry, combinatorics, semidefinite programming, operator theory...

General norms

flex condition, rigidity matrix, symmetry

$$\ell^p$$
 norms, $p \notin \{1, 2, \infty\}$

Laman-type theorems

Polyhedral norms

edge-colouring techniques

discrete geometry, combinatorics, semidefinite programming, operator theory...

General norms

flex condition, rigidity matrix, symmetry

$$\ell^p$$
 norms, $p \notin \{1, 2, \infty\}$

Laman-type theorems

Polyhedral norms

edge-colouring techniques

Let M_n denote the vector space of $n \times n$ matrices (over \mathbb{R} or \mathbb{C}).

A norm on M_n is unitarily invariant if

$$||a|| = ||uav||$$

for all $a \in M_n$ and all unitary matrices $u, v \in M_n$.

Theorem (von Neumann, 1937)

A matrix norm is unitarily invariant if and only if it is obtained by applying a symmetric norm to the vector of singular values of a matrix.

The Schatten p-norms on M_n are defined by,

$$||a||_{c_p} = \left(\sum_{i=1}^n \sigma_i^p\right)^{\frac{1}{p}}, \quad 1 \le p < \infty,$$
$$||a||_{c_\infty} = \max_i \sigma_i,$$

where σ_i are the singular values of a.

- $ightharpoonup c_1 = {\sf trace norm}$
- $ightharpoonup c_2 = ext{Frobenius norm (= Euclidean norm of matrix entries)}$
- $lacktriangledown c_\infty = {\sf spectral} \; {\sf norm} \; ig(= {\sf operator} \; {\sf norm} \; {\sf on} \; {\sf Euclidean} \; {\sf space}ig)$

A rigid motion of a normed space $(X,\|\cdot\|)$ is a collection of continuous paths $\alpha=\{\alpha_x:[-1,1]\to X\}_{x\in X}$, with the following properties:

- (a) $\alpha_x(0) = x$ for all $x \in X$;
- (b) $\alpha_x(t)$ is differentiable at t=0 for all $x \in X$; and
- (c) $\|\alpha_x(t) \alpha_y(t)\| = \|x y\|$ for all $x, y \in X$ and for all $t \in [-1, 1]$.

We write $\mathcal{R}(X, \|\cdot\|)$ for the set of all rigid motions of $(X, \|\cdot\|)$.

Lemma

Let $(X, \|\cdot\|)$ be a normed space and let $\alpha \in \mathcal{R}(X, \|\cdot\|)$. Then,

(i) for each $t \in [-1,1]$ there exists a real-linear isometry $A_t: X \to X$ and a vector $c(t) \in X$ such that

$$\alpha_x(t) = A_t(x) + c(t), \quad \forall x \in X.$$

- (ii) the map $c:[-1,1]\to X$ is continuous on [-1,1] and differentiable at t=0,
- (iii) for every $x \in X$, the map $A_*(x): [-1,1] \to X$, $t \mapsto A_t(x)$, is continuous on [-1,1] and differentiable at t=0, and,
- (iv) $A_0 = I$ and c(0) = 0.

Proposition

For any $\alpha \in \mathcal{R}(M_n, \|\cdot\|)$, there is a neighbourhood T of 0 in [-1,1], and matrices $u_t, w_t \in U_n$ and $c(t) \in M_n$ for each $t \in T$, so that

- (i) $\alpha_x(t) = u_t x w_t + c(t), \quad \forall x \in M_n, \ t \in T;$
- (ii) c(0) = 0 and $u_0 = w_0 = I$;
- (iii) the maps $t\mapsto c(t)$ and $t\mapsto u_txw_t$ are both differentiable at t=0, for any $x\in M_n$; and
- (iv) the maps $t \mapsto u_t$ and $t \mapsto w_t$ are continuous at t = 0.

A vector field $\eta: X \to X$ of the form $\eta(x) = \alpha_x'(0)$ where $\alpha \in \mathcal{R}(X, \|\cdot\|)$ is referred to as an infinitesimal rigid motion of $(X, \|\cdot\|)$.

Lemma

Let $(X, \|\cdot\|)$ be a normed space and let $\eta \in \mathcal{T}(X, \|\cdot\|)$. Then η is an affine map.

Theorem

If $\eta \in \mathcal{T}(M_n, \|\cdot\|)$, then there exist unique matrices $a, b, c \in M_n$ with $a \in \operatorname{Skew}_n^0$, $b \in \operatorname{Skew}_n$ and $c \in M_n$ so that

$$\eta(x) = ax + xb + c, \quad \forall x \in M_n.$$

Define $\Psi: \mathcal{T}(M_n, \|\cdot\|) \to \operatorname{Skew}_n^0 \oplus \operatorname{Skew}_n \oplus M_n$ by setting $\Psi_X(\eta) = (a, b, c)$ if and only if $\eta(x) = ax + xb + c$ for all $x \in X$.

Lemma

 Ψ is a linear isomorphism.

Proof.

Let (a,b,c) be in the codomain of Ψ , and for each $x \in M_n$ define

$$\alpha_x : [-1,1] \to M_n, \quad \alpha_x(t) = e^{ta} x e^{tb} + tc.$$

Since a and b are skew-hermitian, e^{ta} and e^{tb} are unitary for every $t \in \mathbb{R}$, so $\{\alpha_x\}_{x \in \mathcal{M}_n}$ is a rigid motion. The induced infinitesimal rigid motion is the vector field

$$\eta: M_n \to M_n, \quad x \mapsto ax + xb + c.$$

Thus $\Psi(\eta) = (a, b, c)$ and so Ψ is surjective.

Proposition

$$\dim \mathcal{T}(M_n, \|\cdot\|) = \begin{cases} 2n^2 - n & \text{if } \mathbb{K} = \mathbb{R}, \\ 4n^2 - 1 & \text{if } \mathbb{K} = \mathbb{C}. \end{cases}$$

Support functionals

A support functional for a unit vector $x_0 \in X$ is a linear functional $f: X \to \mathbb{R}$ with $\|f\| := \sup\{|f(x)| \colon x \in X, \|x\| = 1\} \le 1$, and $f(x_0) = 1$.

Example

Let (G,p) be a bar-joint framework in $(M_n, \|\cdot\|_{c_q})$. Let $vw \in E$, suppose the norm is smooth at $p_v - p_w$ and let $p_0 = \frac{p_v - p_w}{\|p_v - p_m\|_{c_q}}$.

(a) If $q < \infty$, then for all $x \in M_n$,

$$\varphi_{v,w}(x) = \operatorname{trace}(x|p_0|^{q-1}u^*)$$

where $p_0 = u|p_0|$ is the polar decomposition of p_0 .

(b) If $q=\infty$, then the largest singular value of the matrix p_0 has multiplicity one. Thus p_0 attains its norm at a unit vector $\zeta \in \mathbb{K}^n$ which is unique (up to scalar multiples). For all $x \in \mathcal{M}_n$, we have

$$\varphi_{v,w}(x) = \langle x\zeta, p_0\zeta\rangle$$

where $\langle \cdot, \cdot \rangle$ is the usual Euclidean inner product on \mathbb{K}^n .

The norm $\|\cdot\|$ is said to be smooth at $x \in X \setminus \{0\}$ if there exists exactly one support functional at $\frac{x}{\|x\|}$.

Lemma

Let $\|\cdot\|$ be a unitarily invariant norm on M_n , with corresponding symmetric norm $\|\cdot\|_s$ on \mathbb{R}^n , and let $x \in M_n$. Then $\|\cdot\|$ is smooth at x if and only if $\|\cdot\|_s$ is smooth at $\sigma(x)$.

A bar-joint framework (G,p) is said to be *well-positioned* in $(X,\|\cdot\|)$ if the norm $\|\cdot\|$ is smooth at p_v-p_w for every edge $vw\in E$.

Proposition

Let (G,p) be a bar-joint framework in $(M_n, \|\cdot\|_{c_q})$.

- (i) If $q \notin \{1, \infty\}$, then (G, p) is well-positioned.
- (ii) If q = 1 then (G, p) is well-positioned if and only if $p_v p_w$ is invertible for all $vw \in E$.
- (iii) If $q=\infty$ then (G,p) is well-positioned if and only if $\sigma_1(p_v-p_w)>\sigma_2(p_v-p_w)$ for all $vw\in E$.

The rigidity map

The rigidity map for G = (V, E) and $(X, \|\cdot\|)$ is,

$$f_G: X^V \to \mathbb{R}^E, \quad (x_v)_{v \in V} \mapsto (\|x_v - x_w\|)_{vw \in E}.$$

Lemma

Let (G,p) be a bar-joint framework in a normed linear space $(X,\|\cdot\|)$.

- (i) (G,p) is well-positioned in $(X,\|\cdot\|)$ if and only if the rigidity map f_G is differentiable at p.
- (ii) If (G,p) is well-positioned in $(X,\|\cdot\|)$ then the differential of the rigidity map is given by

$$df_G(p): X^V \to \mathbb{R}^E, \quad (z_v)_{v \in V} \mapsto (\varphi_{v,w}(z_v - z_w))_{vw \in E}.$$

The rigidity map

An infinitesimal flex for (G,p) is a vector $u \in X^V$ such that

$$\lim_{t \to 0} \frac{1}{t} (f_G(p + tu) - f_G(p)) = 0.$$

 $\mathcal{F}(G,p) \coloneqq \text{vector space of all infinitesimal flexes of } (G,p).$

Note that if (G,p) is well-positioned then $\mathcal{F}(G,p) = \ker df_G(p)$.

A non-empty subset $S \subseteq X$ is full in $(X, \|\cdot\|)$ if the restriction map

$$\rho_S: \mathcal{T}(X, \|\cdot\|) \to X^S, \quad \eta \mapsto (\eta(x))_{x \in S}$$

is injective.

Lemma

Full sets

Let $(X, \|\cdot\|)$ be a normed space and let $\emptyset \neq S \subseteq X$. If S has full affine span in X, then S is full in $(X, \|\cdot\|)$.

A non-empty subset $S\subseteq X$ is full in $(X,\|\cdot\|)$ if the restriction map

$$\rho_S: \mathcal{T}(X, \|\cdot\|) \to X^S, \quad \eta \mapsto (\eta(x))_{x \in S}$$

is injective.

Lemma

Let $(X, \|\cdot\|)$ be a normed space and let $\emptyset \neq S \subseteq X$. If S has full affine span in X, then S is full in $(X, \|\cdot\|)$.

We say that a bar-joint framework (G, p) is,

- (a) full if $\{p_v \colon v \in V\}$ is full in $(X, \|\cdot\|)$.
- (b) completely full if (G,p), and every subframework (H,p_H) of (G,p) with $|V(H)| \geq 2\dim(X)$, is full in $(X,\|\cdot\|)$.

Given a bar-joint framework (G, p), we define

$$\mathcal{T}(G,p) = \{\zeta \colon V \to X \mid \zeta = \eta \circ p \text{ for some } \eta \in \mathcal{T}(X,\|\cdot\|)\} \subseteq X^V.$$

The elements of $\mathcal{T}(G,p)$ are referred to as the trivial infinitesimal flexes of (G,p).

Lemma

If (G,p) is a full bar-joint framework in $(X,\|\cdot\|)$, then

$$\dim \mathcal{T}(G,p) = \dim \mathcal{T}(X,\|\cdot\|).$$

X	k(X)	l(X)
$\mathcal{H}_n(\mathbb{R})$	$\frac{1}{2}n(n+1)$	n^2
$\mathcal{M}_n(\mathbb{R})$	n^2	$2n^2-n$
$\mathcal{H}_n(\mathbb{C})$	n^2	$2n^2 - 1$
$\mathcal{M}_n(\mathbb{C})$	$2n^2$	$4n^2 - 1$

Table: k and l values for admissible matrix spaces.

X	k(X)	l(X)
$\mathcal{H}_2(\mathbb{R})$	3	4
$\mathcal{M}_2(\mathbb{R})$	4	6
$\mathcal{H}_2(\mathbb{C})$	4	7
$\mathcal{M}_2(\mathbb{C})$	8	15

X	k(X)	l(X)
$\mathcal{H}_3(\mathbb{R})$	6	9
$\mathcal{M}_3(\mathbb{R})$	9	15
$\mathcal{H}_3(\mathbb{C})$	9	17
$\mathcal{M}_3(\mathbb{C})$	18	35

Table: k and l values for admissible matrix spaces when n=2 and n=3.

A framework (G, p) is infinitesimally rigid if $\mathcal{F}(G, p) = \mathcal{T}(G, p)$.

Theorem

Let (G,p) be a full and well-positioned bar-joint framework in $(M_n, \|\cdot\|)$.

- (i) If (G, p) is infinitesimally rigid, then $|E| \ge k|V| l$.
- (ii) If (G,p) is minimally infinitesimally rigid, then |E|=k|V|-l.
- (iii) If (G,p) is minimally infinitesimally rigid and (H,p_H) is a full subframework of (G,p), then $|E(H)| \leq k|V(H)| l$.

(k, l)-sparsity

Theorem

Let (G,p) be a completely full and well-positioned bar-joint framework in $(M_n, \|\cdot\|)$. If (G,p) is minimally infinitesimally rigid then G is (k,l)-tight.

Let $\|\cdot\|$ be a unitarily invariant norm on $X \in \{M_n(\mathbb{K}), H_n(\mathbb{K})\}$ and let $k = \dim X$.

- (i) If $\mathbb{K}=\mathbb{R}$, then there exists $p\in X^V$ such that (K_m,p) is full, well-positioned and infinitesimally rigid in $(X,\|\cdot\|)$ for all $m\geq 2k$.
- (ii) If $\mathbb{K}=\mathbb{C}$, then there exists $p\in X^V$ such that (K_m,p) is full, well-positioned and infinitesimally rigid in $(X,\|\cdot\|)$ for all $m\geq 2k-1$.

Conjectures

Thank you