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The study of composites is a subject with a long history, which has attracted
the interest of some of the greatest scientists. For example, Poisson (1826)
constructed a theory of induced magnetism in which the body was assumed
to be composed of conducting spheres embedded in a nonconducting mate-
rial. Faraday (1839) proposed a model for dielectric materials that consisted
of metallic globules separated by insulating material. Maxwell (1873) solved
for the conductivity of a dilute suspension of conducting spheres in a conduct-
ing matrix. Rayleigh (1892) found a system of linear equations which, when
solved, would give the effective conductivity of undilute square arrays of cylin-
ders or cubic lattices of spheres. Einstein (1905) calculated the effective shear
viscosity of a suspension of rigid spheres in a fluid.

The field of composite materials is enormous. There are many avenues of
research to explore. We are mainly interested in the relation between the mi-
crostructure of composites and the effective moduli that govern their behavior.
The respective tasks are highly interdisciplinary bringing together specialists
from mathematics, physics and engineering working with composite materials.



There exist a lot of natural and man-made composites.

Examples of natural composites:
Common metals are composites. Bone is a porous composite. Clouds, fog,
mist, and rain are composites of air and water. High-altitude clouds are com-
posites of air and ice crystals. Ceramics are composites.

A composite material (also called a composition material or shortened to com-
posite) is a material made from two or more constituent materials with signifi-
cantly different physical or chemical properties that, when combined, produce
a material with characteristics different from the individual components.

Basically, composites are materials that have inhomogeneities on length scales
that are much larger than the atomic scale (which allows us to use the equa-
tions of classical physics at the length scales of the inhomogeneities) but which
are essentially homogeneous at macroscopic length scales, or least at some
intermediate length scales.
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The doubly periodic composite with nonconstant conductivities of the matrix and inclusions.
The representative cell Q(0,0) is a unit square. Non-overlapping inclusions are disks.
They are located inside the cell Q(0,0) and periodically repeated in all cells Q(m1,m2).

On a macroscopic length scale the composite behaves exactly like a homogeneous medium
and the goal is to find its effective properties, such as, the effective conductivity based on the
conductivities of the matrix and inclusions.



Statement of the problem
z = x+ ıy, C

∼= R
2, ı2 = −1.

The representative cell Q(0,0) is a unit square. Other cells is denoted by

Q(m1,m2) = Q(0,0) +m1 + ım2 :=
{

z ∈ C : z −m1 − ım2 ∈ Q(0,0)

}

,

where m1,m2 ∈ Z.

Non-overlapping inclusions are disks

Dk := {z ∈ C : |z − ak| < rk}, (k = 1,2, . . . , N),

with boundaries

∂Dk := {z ∈ C : |z − ak| = rk}

are located inside the cell Q(0,0) and periodically repeated in all cells Q(m1,m2). The connected
domain D0 obtained by removing of the inclusions from the cell Q(0,0):

D0 := Q(0,0) \

(

N
⋃

k=1

Dk ∪ ∂Dk

)

.



Dmatrix =
⋃

m1,m2

((D0 ∪ ∂Q(0,0)) +m1 + ım2)

Dinc =
⋃

m1,m2

N
⋃

k=1

(Dk +m1 + ım2)

with thermal-sensitive conductivities

0 < λ(T) < +∞, 0 < λk(T) < +∞, k = 1, . . . , N.

We search for steady-state distribution of temperature and heat flux within such composite:

∇(λ(T)∇T) = 0, (x, y) ∈ Dmatrix,

(1)
∇(λk(T)∇T) = 0, (x, y) ∈ Dinc.

Ideal-contact conditions on the boundaries of the matrix and inclusions:

T(t) = Tk(t), t ∈
⋃

m1,m2∈Z

(∂Dk +m1 + ım2),

(2)

λ(T(t))
∂T(t)

∂n
= λk(Tk(t))

∂Tk(t)

∂n
, t ∈

⋃

m1,m2∈Z

(∂Dk +m1 + ım2).

According to the formulation, the flux and the temperature are continuous functions in the entire
structure.



Interface conditions on the horizontal boundaries of each cell when −1/2 < x < 1/2 can be
written in the following form:

λ(T)Ty|∂Q(top)
(m1,m2)

= −A sin θ + q+1 (x+m1,m1,m2),

(3)
λ(T)Ty|∂Q(bottom)

(m1,m2)
= −A sin θ + q−1 (x+m1,m1,m2).

On the vertical boundaries when −1/2 < y < 1/2, we write

λ(T)Tx|∂Q(left)

(m1,m2)
= −A cos θ + q−2 (y +m2,m1,m2),

(4)

λ(T)Tx|∂Q(right)
(m1,m2)

= −A cos θ + q+2 (y +m2,m1,m2),

where the unknown functions q±j (·,m1,m2)

∫ 1/2

−1/2

q±j (ξ +mj,m1,m2)dξ = 0.

The average flux vector of intensity A is directed at an angle θ to axis Ox which does not
coincide, in general, with the orientation of the periodic cell:



Linear composite
The problem for the linear composite can be completely solved by various methods. Here, we
present only some results important for the nonlinear composite considered by us.

Theorem: For any given data θ and A the linear boundary value problem (1)-(4) (i.e., λ(T) =
λ = const, λk(T) = λk = const) with ideal (perfect) contact conditions has a unique (modulo
real constants) real analytic solution.

Note that an additional condition on the temperature T such as

T(x0, y0) = t0, (x0, y0) ∈ Dmatrix ∪Dinc, (5)

where t0 is a given value of the temperature at any point (x0, y0), will give us a unique solv-
ability result. Specifically, the following corollary holds true.

Corollary: The boundary value problem (1)-(5) has a unique real analytic solution.



Note that the calculation of the effective conductivity tensor Λ defined by the formula

〈λl∇T 〉 = Λ〈∇T 〉, (6)

where

λl = λl(z) =







λ, z ∈ Dmatrix,

λk, z ∈ Dinc,

does not depend on the chosen cell. Moreover, since the constants disappear in the expres-
sion ∇T , the effective properties of the linear composites are independent of the additional
condition (5) and, crucially, of the applied flux A.



Nonlinear composite with proportional component conductivities
λ(T)

λk(T)
= Ck

We use the Baiocchi (Kirchhoff) transformation and introduce continuous increasing monotonic
functions f : R → R, fk : R → R, k = 1, . . . , N,

f(T) =

T
∫

0

λ(ξ) dξ, fk(T) =

T
∫

0

λk(ξ) dξ,

u(x, y) = f(T(x, y)), uk(x, y) = fk(Tk(x, y)).

∆u = 0, (x, y) ∈ Dmatrix,

∆uk = 0, (x, y) ∈
⋃

m1,m2∈Z

Dk +m1 + ım2.

uy|∂Q(top)

(m1,m2)
= −A sin θ + q+1 (x+m1,m1,m2),

uy|∂Q(bottom)

(m1,m2)
= −A sin θ + q−1 (x+m1,m1,m2),



ux|∂Q(left)

(m1,m2)
= −A cos θ + q−2 (y +m2,m1,m2),

ux|∂Q(right)
(m1,m2)

= −A cos θ + q+2 (y +m2,m1,m2).

u = Fk(uk),

∂u

∂n
=

∂uk

∂n
, (x, y) ∈

⋃

m1,m2∈Z

(∂Dk +m1 + ım2),

where the functions Fk(ξ) := f(f−1
k (ξ)) are defined for an arbitrary ξ ∈ R.

Differentiating the function Fk, we get

F ′
k(ξ) =

f ′(f−1
k (ξ))

f ′
k(f

−1
k (ξ))

=
λ(Tk)

λk(Tk)
,

λ(T)

λk(T)
= Ck

D. Kapanadze, G. Mishuris, E. Pesetskaya: Exact solution of a nonlinear heat conduction
problem in a doubly periodic 2D composite material, Archives of Mechanics, 67(2), 157–178,
2015



Theorem: The boundary value problem (1)–(4), (5) with proportional component conductivities
has a unique real analytic solution.

In fact we have established a bijection between solutions of the linear and nonlinear boundary
value problems via the Kirchhoff transformation which allows us to describe a solution of the
boundary value problem (1)–(4) complemented by the condition (5), and to prove the effective-
ness of the numerical algorithm for evaluation of the effective properties of the composite.

Let us denote by Tn a solution to our nonlinear boundary value problem, and

λn(Tn(z)) =







λ(Tn(z)), z ∈ Dmatrix,

λk(Tn(z)), z ∈ Dinc.
(7)

We define the effective conductivity tensor Λn of the representative cell of a nonlinear compos-
ite by the same formula (6):

〈λn(Tn)∇Tn〉 = Λn〈∇Tn〉. (8)



Effective conductivity tensor
It was shown that, in contrast to the linear composites, the effective conductivity tensor Λn

varies from cell to cell and thus represents a function of the problem solution. The question
arises: what would be a minimal set of variables that defines this function uniquely?

Hypothesis : Λn(〈T 〉) !

For a chosen example of the nonlinear composite and the averaged flux flowing through it,
we have shown that the effective properties of the composite can be attributed to the average
temperature:

Λn = Λn(〈Tn〉). (9)

〈λ(T)∇T 〉 = Λn(〈T 〉)〈∇T 〉.

We have shown that the tensor of the effective properties, Λn, defined according to (7), may
depend not only on the average temperature, 〈Tn〉, but also the flux intensity, A,

Λn = Λn(〈Tn〉, |A|). (10)

The natural question may then be asked of whether such a periodic structure can be rep-
resented as a composite material possessing average properties, or whether it is only the
nonlinear periodic structure and the respective physical problems that should be considered in
the original formulation, without reference to its effective properties.



Relationship between the effective conductivity tensors of nonlin-
ear and respective linear models
Note that in some practical problems we may have sufficiently small |λm(Tn(z))−λm(〈Tn(z)〉)|
for all z ∈ Q(0,0). In this case we have

Λn ≈ λ(〈Tn(z)〉)Λl(C
−1,1) (11)

Here, Λl(λk, λ) denotes the effective conductivity tensor for the respective linear problem and

λ(T)

λk(T)
= C.



Theorem: Let the functions f defined as

f(T) =

T
∫

0

λ(ξ) dξ,

and λ be Lipschitz continuous with Lipschitz constants Cf and Cλ, respectively. Then for any
arbitrarily small value ε > 0, there exists A∗ > 0, (A∗ = A∗(ε)) such that for any intensity
satisfying an equality |A| < A∗ the following estimate holds,

∣

∣(Λn)ij − λm(〈Tn(z)〉)Λl(C
−1,1)ij

∣

∣ < ε, (12)

for all i, j = 1,2.

Note, that |A| ≤ A∗ = εa∗, where

a∗ :=
λ2
min

2λmaxΛmaxCλCfM
, Λmax := max{λmax, λk,max}

the constant M depends on the contrast parameter C as well as the specific distribution of the
inclusions within the unit cell for the respective linear composite.



Numerical example
a1 = −0.18+ 0.2ı, a2 = 0.33− 0.34ı,

a3 = 0.33+ 0.35ı, a4 = −0.18− 0.2ı,

rk = R = 0.145, θ = 0, A = −1.



The conductivities of the matrix and inclusions:

For computations, we use the algorithm described in

D. Kapanadze, G. Mishuris, E. Pesetskaya, Improved algorithm for analytical solution of the
heat conduction problem in composites. Complex Variables and Elliptic Equations, 60(1), 1–
23, 2015

where a solution found in a form of the Taylor series. For the chosen configuration, we take
M = 4 first items in the Taylor series giving us a computational error less than 10−6.



Effective conductivity tensor



Hashin-Shtrikman bounds

tr
[

(Λe(T)− λ(T)I)−1
]

≤
1

Λ2(T)− λ(T)
+

1

Λ1(T)− λ(T)
,

tr
[

(λk(T)I − Λe(T))−1
]

≤
1

λk(T)− Λ2(T)
+

1

λk(T)− Λ1(T)
,

Galka A., Telega, J.J., Tokarzewski, S.: Heat equation with temperature-dependent conductiv-
ity coefficients and macroscopic properties of microheterogeneous media, Mathematical and
Computer Modelling, 33, 927–942, 2001.



Comparison with the results for a random composite
Sevostianov, I., Mishuris, G.: Effective thermal conductivity of a composite with thermo-sensitive
constituents and related problems. International Journal of Engineering Science 80, 124-135,
2014.

The thermal effective conductivity λe of an isotropic composite with temperature dependent
and proportional conductivities of the components may be computed by the standard homog-
enization techniques in the following form:

Λe(T) = λ(T) · Λe, (13)

where Λe is the effective conductivity tensor of a linear problem with unit conductivity of the
matrix and the same ratio Ck between the conductivities of the matrix and inclusions.

Thus, in order to find the effective conductivity for a such kind of composites it is sufficient to
find only the effective conductivity of corresponding linear problem. In this particular case we
found

Λe =

(

1.524131 0.000027
0.000027 1.650632

)

(14)

with the same accuracy 10−6 as discussed above.



Comparison of the diagonal components of the tensor



Comparison of the antidiagonal components of the tensor



We should make accurate analysis how the flux intensity may impact on the obtained results.

For a high flux intensity, the temperature may change dramatically within one cell, and many
unexpected complications appear in non-linear analysis. For instance, comparison of results
for periodic and random models shows a large divergence.

The main diagonal components ([1,1] and [2,2]) of the tensors Λe(T) and λ(T) · Λe.
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Comparison of the diagonal components of the tensor λ(〈Tn〉) · Λl(C
−1,1) corresponding to

the respective linear composite to the diagonal components of the effective conductivity tensors
Λn of the nonlinear model, for different intensities of the flux.



Conclusions

In the special case of proportional conductivities, we have shown that the effective properties
of the representative cell of a nonlinear temperature dependent composite computed by the
standard definition (8) may essentially depend on the intensity of the flux penetrating the com-
posite. We have proved that, for a sufficiently small flux intensity, the result for such a nonlinear
composite is indistinguishable from another obtained in paper of Sevostianov, I. and Mishuris,
G. But this is not the case when the flux intensity becomes sufficiently large. In other words,
it is of crucial importance to analyse at the postprocessing stage the level of heat flux locally
developed in different parts of the nonlinear composite. In those parts of the composite where
the flux is high enough, the average properties cannot be assumed without taking into account
a specific structure of the composite and the flux level.



Thank you for attention!


