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Historical Motivation

First order case

I We consider x′(t) = Ax(t) + f(t, x(t)), t ∈ (0, τ ]

x(0) = x0 ∈ D(A),
(1)

where X is a Banach space, −A : D(A)→ X is a sectorial linear
operator of angle 0 ≤ θ < π/2.

I In fact, if f is time independent, it is well known that if
f : X1 → Xα (0 < α ≤ 1) such that

‖f(x)− f(y)‖Xα ≤ C(R)‖x− y‖X1 , α > 0, ‖x‖X1 , ‖y‖X1 ≤ R,

then (1) is locally well posed.

I Xα := D((−A)α) and ‖x‖Xα := ‖(−A)αx‖.
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I Let T : K → K with

K(τ, µ) = {x ∈ C([0, τ ], X1); x(0) = x0, ‖x‖∞ ≤ ‖x0‖X1 + µ)},

where

(Tx)(t) = etAx0 +

∫ t

0

e(t−s)Af(x(s)) ds.

I

‖(Tx)(t)‖X1 ≤ ‖etAx0‖X1+M

∫ t

0

(t− s)α−1 ds(‖f(0)‖Xα

+C sup
0≤s≤t

{‖x(s))‖X1}),

‖(Tx)(t)−(Ty)(t)‖X1 ≤ CM
∫ t

0

(t−s)α−1 ds sup
0≤s≤t

{‖x(s)−y(s)‖X1},

where it is used that ‖etAx0‖X1−α≤Mtα−1‖x0‖, t > 0.
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Example  ut = ∆u+ u|u|ρ−1, in Ω ⊂ R3,
u = 0 in ∂Ω,
u(0) = u0.

∆ is an unbounded operator on X = H−1(Ω) := (E1/2)′, where E1/2

is the fractional space associated to ∆ in L2(Ω) with Dirichlet
boundary conditions, with domain X1 := H1

0 (Ω), and

Xα ↪→ H2α−1, α > 1/2,

X1/2 = L2(Ω),

Xα ←↩ H2α−1, α < 1/2.

For 1 < ρ < 5, f : X1 → Xα for some 0 < α < 1. For ρ = 5,
f : X1 → X, and we are in the critical case.

But for ρ = 5, by using the Sobolev embeddings, if ε is small then
f : X1+ε → X5ε, while A : X1+ε → Xε.
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ε-regular map For ε > 0 we say that a map g is ε-regular relative to
(X1, X) if there exist ρ > 1, γ(ε) with ρε ≤ γ(ε) < 1, and c > 0 such
that g : X1+ε → Xγ(ε) satisfying

‖g(x)−g(y)‖Xγ(ε) ≤ c(1+‖x‖ρ−1X1+ε+‖y‖ρ−1X1+ε)‖x−y‖X1+ε , x, y ∈ X1+ε.

The class F(ν) Let ε, γ(ε), ξ, ζ, c, δ′ > 0, and a real function ν such
that 0 ≤ ν(t) < δ′ and ĺımt→0+ ν(t) = 0. The class F(ε, γ(ε), c, ν, ξ, ζ)
denotes the family of functions f such that, for t ≥ 0 f(t, ·) is an
ε-regular map relative to (X1, X), satisfying for all x, y ∈ X1+ε

‖f(t, x)− f(t, y)‖Xγ(ε) ≤ c(‖x‖ρ−1X1+ε + ‖y‖ρ−1X1+ε + ν(t)t−ζ)‖x− y‖X1+ε ,

‖f(t, x)‖Xγ(ε) ≤ c(‖x‖ρX1+ε + ν(t)t−ξ).

ε-regular mild solution We say that x : [0, τ ]→ X1 is an ε-regular
mild solution to (1) if x ∈ C([0, τ ], X1) ∩ C((0, τ ], X1+ε) and

x(t) = etAx0 +

∫ t

0

eA(t−s)f(s, x(s))ds.
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Historical Motivation

Fractional case

In recent years, the study of fractional partial differential equations
has growth considerably:

I Biology

I Chemistry

I Economics

I Engineering

I Medicine

I ...

Specifically, fractional models allow to describe phenomena on viscous
fluids or in special types of porous medium.
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I Let  Dα
t x(t) = Ax(t) + f(t, x(t)), t ∈ (0, τ ],

x(0) = x0

(2)

where 0 < α ≤ 1, Dα
t is the Caputo fractional derivative,

−A : D(A)→ X is a sectorial operator and f belongs to the class
F(ν).

I Let (Rα(t))t>0 and (Sα(t))t≥0 defined by

Rα(t) :=
1

2πi

∫
γ

eλt(λα −A)−1dλ, t > 0,

and

Sα(t) :=
1

2πi

∫
γ

eλtλα−1(λα −A)−1dλ, t > 0,

where γ ⊂ ρ(A) is a suitable Hankel’s path.
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ε-regular mild solution We say that x : [0, τ ]→ X1 is an ε-regular
mild solution to (2) if x ∈ C([0, τ ], X1) ∩ C((0, τ ], X1+ε) and
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∫ t
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The resolvent and integral resolvent for (2) generated by A satisfy
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‖Rα(t)x‖X1+θ ≤Mt−α(θ−β)−1‖x‖Xβ , x ∈ Xβ ,

for all 0 ≤ θ, β ≤ 1.
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I Fractional models describe problems on porous medium and
viscous fluids.

I However, in some cases, the memory of the model depends on the
operator that governs the problem, mainly on viscous fluids or in
the theory of heat conduction when inner heat sources are of
special types.

I First and second order abstract problems with memory terms.

I Moore-Gibson-Thompson with memory.
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Let 0 < α ≤ 1 and CD
α
t x(t)−Ax(t) +

∫ t
0
β(t− s)Ax(s) ds = f(t, x(t)), t ∈ (0, τ ],

x(0) = x0 ∈ X,
(3)

where −A is a sectorial linear operator of angle 0 ≤ θ < π/2 on X,
and the memory kernel β is given by

β(t) := e−δtgν(t) = e−δt
tν−1

Γ(ν)
, t > 0, 0 < ν ≤ 1, δ ≥ 0.

I The functions β are the usual memory kernels employed in linear
viscoelastic theory for the analysis of Volterra type equations.

I The convolution term
∫ t
0
β(t− s)Ax(s) ds reflects the memory

effect of viscoelastic materials.

I In the memory term
∫ t
0
β(t− s)Ax(s) ds, Ax represents the

background of deformations, β is called the relaxation function
and

∫ t
0
β(s) ds is the intensity of the memory.
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Supposing that x : [0,∞)→ X satisfies (3) and it is of subexponential
growth,

λαx̂(λ)− λα−1x0 −Ax̂(λ) +Aβ̂(λ)x̂(λ) = ̂f(·, x(·))(λ),

with β̂(λ) = 1
(λ+δ)ν .

If λα(λ+δ)ν

(λ+δ)ν−1 ∈ ρ(A), then

x̂(λ) =
λα−1(λ+ δ)ν

(λ+ δ)ν − 1

(
λα(λ+ δ)ν

(λ+ δ)ν − 1
−A

)−1
x0

+
(λ+ δ)ν

(λ+ δ)ν − 1

(
λα(λ+ δ)ν

(λ+ δ)ν − 1
−A

)−1
̂f(·, x(·))(λ).
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Theorem

(i) If δ ≥ 1 and t > 0,

S(t) =
1

2πi

∫
γ

eλt
λα−1(λ+ δ)ν

(λ+ δ)ν − 1

(
λα(λ+ δ)ν

(λ+ δ)ν − 1
−A

)−1
dλ,

R(t) =
1

2πi

∫
γ

eλt
(λ+ δ)ν

(λ+ δ)ν − 1

(
λα(λ+ δ)ν

(λ+ δ)ν − 1
−A

)−1
dλ,

where γ ⊂ ρ(A). Furthermore ‖S(t)‖ ≤M for t ≥ 0 and
‖R(t)‖ ≤Mtα−1 for t > 0.

(ii) If 0 ≤ δ < 1 and t > 0,

S(t) =
1

2πi

∫
1−δ+γ

eλt
λα−1(λ+ δ)ν

(λ+ δ)ν − 1

(
λα(λ+ δ)ν

(λ+ δ)ν − 1
−A

)−1
x dλ,

R(t) =
1

2πi

∫
1−δ+γ
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(
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−A

)−1
dλ,
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‖R(t)‖ ≤Mtα−1e(1−δ)t for t > 0.
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Proof
Let δ ≥ 1.

I For t > 0 we take r = 1/t, ω ∈ (π/2, π − θ), and γr,ω = {λeiω :
λ ≥ r} ∪ {reiϕ : ϕ ∈ (−ω, ω)} ∪ {λe−iω : λ ≥ r} := γ1 ∪ γ2 ∪ γ3,
oriented counterclockwise.

I If λ ∈ γr,ω,

−αω ≤ arg
(
λα(λ+ δ)ν

(λ+ δ)ν − 1

)
≤ ω, arg(λ) ≥ 0,

−ω ≤ arg
(
λα(λ+ δ)ν

(λ+ δ)ν − 1

)
≤ αω, arg(λ) ≤ 0,

so λα(λ+δ)ν

(λ+δ)ν−1 ∈ Σω ⊂ ρ(A).

I We get ‖S(t)‖ ≤M for t ≥ 0 and ‖R(t)‖ ≤Mtα−1 for t > 0,
working separately in γ1, γ2 and γ3.
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Proof
I We see that the path does not depend on r and ω, by use of the

Cauchy’s Theorem.

I Let x ∈ D(A),
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= ‖ 1
2πi
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(λ+ δ)ν

)
dλ

∣∣∣∣ ≤M‖Ax‖tα → 0,

as t→ 0+.



Proof
I We see that the path does not depend on r and ω, by use of the

Cauchy’s Theorem.

I Let x ∈ D(A),

‖S(t)x− x‖

= ‖ 1
2πi

∫
γr,ω

eλt
(
λα−1(λ+δ)ν

(λ+δ)ν−1

(
λα(λ+δ)ν

(λ+δ)ν−1 −A
)−1

− λ−1
)
x dλ‖

= ‖ 1

2πi

∫
γr,ω

eλt
(
λα(λ+ δ)ν

(λ+ δ)ν − 1
−A

)−1
λ−1Axdλ‖

≤ Mω‖Ax‖
2π

∫
γr,ω

∣∣∣∣eλtλ−1−α( (λ+ δ)ν − 1

(λ+ δ)ν

)
dλ

∣∣∣∣ ≤M‖Ax‖tα → 0,

as t→ 0+.



The operator families satisfy the Volterra integral equations

S(t)x = x+

∫ t

0

a(t− s)AS(s)x ds x ∈ D(A), t ≥ 0,

R(t)x = gα(t)x+

∫ t

0

a(t− s)AR(s)xds, x ∈ D(A), t > 0,

where a(t) := gα(t)− (gα ∗ β)(t).

It is an easy computation that

S(t)x := (g1−α ∗R)(t)x =

∫ t

0

g1−α(t− s)R(s)x ds, x ∈ X, t > 0.
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Theorem

Let 0 ≤ β ≤ 1.

(i) If δ ≥ 1,

‖S(t)x‖Xβ ≤Mt−αβ‖x‖, ‖R(t)x‖Xβ ≤Mtα(1−β)−1‖x‖,

for t > 0 and x ∈ X.

(ii) If 0 ≤ δ < 1,

‖S(t)x‖Xβ ≤Me(1−δ)tt−αβ‖x‖, ‖R(t)x‖Xβ ≤Me(1−δ)ttα(1−β)−1‖x‖,

for t > 0 and x ∈ X.
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The fractional Cauchy problem with memory effects

Linear and non-linear case

Mild solution We say that x ∈ C([0, τ ];X) is a mild solution of (3) if

x(t) = S(t)x0 +

∫ t

0

R(t− s)f(s, x(s))ds.

Strong solution Let f : R+ → X be continuous such that
f ∈W 1,1

loc (R+;X), and x0 ∈ D(A). Then, the problem (3) has a
unique global strong solution, that is, such solution
x ∈ C([0,∞);D(A)) ∩ C1([0,∞);X) and satisfies (3).

Blow up Theorem Let f : [0,∞)×X → X under suitable locally
Lipschitz conditions. Then either (3) has a global mild solution or
there exists ω > 0 such that x : [0, ω)→ X is a maximal local mild
solution with ĺımt→ω− ‖x(t)‖ =∞.



The fractional Cauchy problem with memory effects

Linear and non-linear case

Mild solution We say that x ∈ C([0, τ ];X) is a mild solution of (3) if

x(t) = S(t)x0 +

∫ t

0

R(t− s)f(s, x(s))ds.

Strong solution Let f : R+ → X be continuous such that
f ∈W 1,1

loc (R+;X), and x0 ∈ D(A). Then, the problem (3) has a
unique global strong solution, that is, such solution
x ∈ C([0,∞);D(A)) ∩ C1([0,∞);X) and satisfies (3).

Blow up Theorem Let f : [0,∞)×X → X under suitable locally
Lipschitz conditions. Then either (3) has a global mild solution or
there exists ω > 0 such that x : [0, ω)→ X is a maximal local mild
solution with ĺımt→ω− ‖x(t)‖ =∞.



The fractional Cauchy problem with memory effects

Linear and non-linear case

Mild solution We say that x ∈ C([0, τ ];X) is a mild solution of (3) if

x(t) = S(t)x0 +

∫ t

0

R(t− s)f(s, x(s))ds.

Strong solution Let f : R+ → X be continuous such that
f ∈W 1,1

loc (R+;X), and x0 ∈ D(A). Then, the problem (3) has a
unique global strong solution, that is, such solution
x ∈ C([0,∞);D(A)) ∩ C1([0,∞);X) and satisfies (3).

Blow up Theorem Let f : [0,∞)×X → X under suitable locally
Lipschitz conditions. Then either (3) has a global mild solution or
there exists ω > 0 such that x : [0, ω)→ X is a maximal local mild
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Theorem

Let f ∈ F(ν) and y0 ∈ X1. There exist r, τ > 0 such that for any
x0 ∈ BX1(y0, r) there is x(·, x0) ∈ C([0, τ ];X1) with x(0, x0) = x0
which is an ε-regular mild solution to (3). This solution satisfies

x(·, x0) ∈ C((0, τ ], X1+θ), 0 ≤ θ < γ(ε),

and for 0 < θ < γ(ε),

ĺım
t→0+

tαθ‖x(t, x0)‖X1+θ = 0, δ ≥ 1,

ĺım
t→0+

tαθe(δ−1)t‖x(t, x0)‖X1+θ = 0, 0 ≤ δ < 1.

Moreover, for each θ0 < γ(ε) + ε− ρε there exists C > 0 such that if
x0, z0 ∈ BX1(y0, r), then

tαθ‖x(t, x0)− x(t, z0)‖X1+θ ≤ C‖x0 − z0‖X1 , δ ≥ 1,

tαθe(δ−1)t‖x(t, x0)− x(t, z0)‖X1+θ ≤ C‖x0 − z0‖X1 , 0 ≤ δ < 1,

for t ∈ [0, τ ], and 0 ≤ θ ≤ θ0.



1 Historical Motivation

2 The fractional Cauchy problem with memory effects

3 Uniform Stability



Theorem

Let −A be a −a-sectorial of angle ϑ ∈ [0, π/2) with a > 0, and
0 ≤ β < 1. For x ∈ X it follows

(i) ‖Sα(t)x‖Xβ ≤Me1−βα,1−αβ(t, a)‖x‖, t > 0.

(ii) ‖Rα(t)x‖Xβ ≤Me1−βα,α(1−β)(t, a)‖x‖, t > 0.
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Birkhäuser Classics. Birkhäuser/Springer, Basel, 2012.

S. G. Samko, A. A. Kilbas and O. I. Marichev. Fractional integrals and
derivatives. Theory and applications. Gordon and Breach Science
Publications, Minsk, 1987.

K. Yosida. Functional Analysis. Fifth edition, A Series of Comprehensive
Studies in Mathematics. 123, Springer (1978).



Thank you for your attention



Questions?


	Historical Motivation
	The fractional Cauchy problem with memory effects
	Uniform Stability

