Semi-Fredholm theory for singular integral operators with shifts and slowly oscillating data

Alexei Karlovich
Universidade NOVA de Lisboa, Portugal

IWOTA, Chemnitz, August 14-18, 2017

Joint work with

- Yuri Karlovich (Cuernavaca, México)
- Amarino Lebre (Lisboa, Portugal)

Left and right Fredholm operators

Notation:

- X is a Banach space
- $\mathcal{B}(X)$ is the Banach algebra of all bounded linear operators on the space X
- $\mathcal{K}(X)$ is the closed two-sided ideal of all compact operators on the space X
- $\mathcal{B}^{\pi}(X):=\mathcal{B}(X) / \mathcal{K}(X)$ is the Calkin algebra of the cosets

$$
A^{\pi}:=A+\mathcal{K}(X) \quad \text { where } \quad A \in \mathcal{B}(X)
$$

An operator $A \in \mathcal{B}(X)$ is said to be
left Fredholm / right Fredholm
if the coset A^{π} is
left invertible / right invertible
in the Calkin algebra $\mathcal{B}^{\pi}(X)$.

n-normal and d-normal operators

An operator $A \in \mathcal{B}(X)$ is said to be n-normal / d-normal on X if its image $\operatorname{Im} A$ is closed and

$$
n(A):=\operatorname{dim} \operatorname{Ker} A<\infty \quad / \quad d(A):=\operatorname{dim}(X / \operatorname{Im} A)<\infty .
$$

Theorem
If X is a Banach space, then

$$
\begin{aligned}
A \text { is left Fredholm } & \Rightarrow A \text { is n-normal } \\
A \text { is right Fredholm } & \Rightarrow A \text { is } d \text {-normal }
\end{aligned}
$$

If X is a Hilbert space, then

$$
\begin{aligned}
A \text { is left Fredholm } & \Leftrightarrow A \text { is n-normal } \\
A \text { is right Fredholm } & \Leftrightarrow A \text { is } d \text {-normal }
\end{aligned}
$$

Fredholm and semi-Fredholm operators

An operator A is said to be Fredholm if it is

- left and right Fredholm,
- equivalently, n-normal and d-normal

The index of a Fredholm operator A is defined by

$$
\text { Ind } A=n(A)-d(A)
$$

An operator A is said to be semi-Fredholm if it is n-normal or d-normal.

The weighted Cauchy singular integral operator

Theorem (Boris Khvedelidze, 1956)
Let $1<p<\infty$ and $\gamma \in \mathbb{C}$ be such that

$$
0<1 / p+\Re \gamma<1
$$

Then the weighted Cauchy singular integral operator S_{γ} given by

$$
\left(S_{\gamma} f\right)(t):=\frac{1}{\pi i} \text { p.v. } \int_{\mathbb{R}_{+}}\left(\frac{t}{\tau}\right)^{\gamma} \frac{f(\tau)}{\tau-t} d \tau, \quad t \in \mathbb{R}_{+},
$$

is bounded on the Lebesgue space $L^{p}\left(\mathbb{R}_{+}\right)$.

Notation:

$$
P_{\gamma}^{ \pm}=\left(I \pm S_{\gamma}\right) / 2 .
$$

Warning:

$$
\left(P_{\gamma}^{ \pm}\right)^{2} \neq P_{\gamma}^{ \pm} .
$$

Aim of the work

Find criteria for n-normality / d-normality on $L^{p}\left(\mathbb{R}_{+}\right)$of the paired operator of the form

$$
N=A_{+} P_{\gamma}^{+}+A_{-} P_{\gamma}^{-}
$$

where $A_{ \pm}$are functional operators with shifts and slowly oscillating data.

Slowly oscillating functions (Sarason, 1977)

A bounded continuous function f on $\mathbb{R}_{+}=(0, \infty)$ is called slowly oscillating (at 0 and ∞) if for each (equivalently, for some) $\lambda \in(0,1)$,

$$
\lim _{r \rightarrow s} \underbrace{\left(\sup _{t, \tau \in[\lambda r, r]}|f(t)-f(\tau)|\right)}_{\text {oscillation }}=0 \quad \text { for } \quad s \in\{0, \infty\}
$$

The set $S O\left(\mathbb{R}_{+}\right)$of all slowly oscillating functions forms a C^{*}-algebra and

$$
C\left(\overline{\mathbb{R}}_{+}\right) \subset S O\left(\mathbb{R}_{+}\right), \quad C\left(\overline{\mathbb{R}}_{+}\right) \neq S O\left(\mathbb{R}_{+}\right)
$$

where $C\left(\overline{\mathbb{R}}_{+}\right)$is the set of all continuous functions on

$$
\overline{\mathbb{R}}_{+}=[0,+\infty]
$$

Slowly oscillating shifts

Suppose α is an orientation-preserving homeomorphism of $[0, \infty]$ itself, which has only two fixed points 0 and ∞ and suppose that its restriction to \mathbb{R}_{+}is a diffeomorphism.

We say that α is a slowly oscillating shift if

- $\log \alpha^{\prime}$ is bounded,
- $\alpha^{\prime} \in S O\left(\mathbb{R}_{+}\right)$.

The set of all slowly oscillating shifts is denoted by $\operatorname{SOS}\left(\mathbb{R}_{+}\right)$.

Trivial example:
Let $c \in \mathbb{R}_{+} \backslash\{1\}$ and $\alpha(t)=c t$. Then $\alpha \in \operatorname{SOS}\left(\mathbb{R}_{+}\right)$.

Non-trivial examples of slowly oscillating shifts can be constructed with the aid of the following lemma.

Exponent function of a slowly oscillating shift

Lemma (KKL, 2011)

Suppose α is an orientation-preserving homeomorphism of $[0, \infty]$ itself, which has only two fixed points 0 and ∞ and suppose that its restriction to \mathbb{R}_{+}is a diffeomorphism. Then $\alpha \in \operatorname{SOS}\left(\mathbb{R}_{+}\right)$if and only if

$$
\alpha(t)=t e^{\omega(t)}, \quad t \in \mathbb{R}_{+},
$$

for some real-valued function $\omega \in S O\left(\mathbb{R}_{+}\right) \cap C^{1}\left(\mathbb{R}_{+}\right)$such that the function $t \mapsto t \omega^{\prime}(t)$ also belongs to $S O\left(\mathbb{R}_{+}\right)$and

$$
\inf _{t \in \mathbb{R}_{+}}\left(1+t \omega^{\prime}(t)\right)>0
$$

The real-valued slowly oscillating function

$$
\omega(t)=\log [\alpha(t) / t]
$$

is called the exponent function of $\alpha \in \operatorname{SOS}\left(\mathbb{R}_{+}\right)$.

Shift operator

We suppose that $1<p<\infty$ and consider the shift operator U_{α} defined by

$$
U_{\alpha} f=\left(\alpha^{\prime}\right)^{1 / p} f \circ \alpha
$$

It is easy to see that $U_{\alpha} \in \mathcal{B}\left(L^{P}\left(\mathbb{R}_{+}\right)\right)$and U_{α} is an isometry whenever $\alpha \in \operatorname{SOS}\left(\mathbb{R}_{+}\right)$.

Wiener algebra of functional operators

Let $\alpha \in \operatorname{SOS}\left(\mathbb{R}_{+}\right)$. For $k \in \mathbb{N}$, put

$$
U_{\alpha}^{-k}:=\left(U_{\alpha}^{-1}\right)^{k}
$$

Denote by $W_{\alpha, p}^{S O}$ the collection of all operators of the form

$$
A=\sum_{k \in \mathbb{Z}} a_{k} U_{\alpha}^{k}
$$

where $a_{k} \in S O\left(\mathbb{R}_{+}\right)$for all $k \in \mathbb{Z}$ and

$$
\begin{equation*}
\|A\| w:=\sum_{k \in \mathbb{Z}}\left\|a_{k}\right\|_{C_{b}\left(\mathbb{R}_{+}\right)}<+\infty \tag{1}
\end{equation*}
$$

The set $W_{\alpha, p}^{S O}$ is a Banach algebra with respect to the usual operations and the norm (1).
By analogy with the Wiener algebra of absolutely convergent Fourier series, we will call $W_{\alpha, p}^{S O}$ the Wiener algebra.

Brief history of the study of $A_{+} P_{\gamma}^{+}+A_{-} P_{\gamma}^{-}$:

1. no shifts, continuous data, Fredholm and semi-Fredholm theory
Israel Gohberg, Naum Krupnik, 1970's
2. continuous data, Fredholm theory Yuri Karlovich, Viktor Kravchenko, 1981
3. continuous data, semi-Fredholm theory Yuri Karlovich, Rasul Mardiev, 1985
4. no shifts, slowly oscillating data, Fredholm theory Albrecht Böttcher, Yuri Karlovich, Vladimir Rabinovich, 1990-2000
5. binomial functional operators A_{+}and A_{-}with shifts and slowly oscillating data, Fredholm theory
KKL, Fredholm criteria - 2011, an index formula - 2017
6. functional operators A_{+}and A_{-}of Wiener type with shifts and slowly oscillating data, Fredholm criteria
Gustavo Fernandéz-Torres and Yuri Karlovich, 2016

Theorem (Main result: incomplete form, 2017)
Let $1<p<\infty$ and let $\gamma \in \mathbb{C}$ satisfy $0<1 / p+\Re \gamma<1$. Suppose

$$
\begin{aligned}
& a_{k}, b_{k} \in \operatorname{SO}\left(\mathbb{R}_{+}\right) \text {for all } k \in \mathbb{Z}, \quad \alpha, \beta \in \operatorname{SOS}\left(\mathbb{R}_{+}\right), \\
& A_{+}=\sum_{k \in \mathbb{Z}} a_{k} U_{\alpha}^{k} \in W_{\alpha, p}^{S O}, \quad A_{-}=\sum_{k \in \mathbb{Z}} b_{k} U_{\beta}^{k} \in W_{\beta, p}^{S O} .
\end{aligned}
$$

For the operator

$$
N=A_{+} P_{\gamma}^{+}+A_{-} P_{\gamma}^{-},
$$

the following assertions are equivalent:
(a) the operator N is n-normal / d-normal on the space $L^{p}\left(\mathbb{R}_{+}\right)$,
(b) the operator N is left Fredholm / right Fredholm on $L^{p}\left(\mathbb{R}_{+}\right)$,
(c) the following two conditions are fulfilled:
(c-i) the operators A_{+}and A_{-}are left invertible / right invertible on the space $L^{p}\left(\mathbb{R}_{+}\right)$;
(c-ii) the function n (will be defined later) associated to the operator N does not vanish in a certain sense.

Corollary (Fredholm criterion, 2016)
Let $1<p<\infty$ and let $\gamma \in \mathbb{C}$ satisfy $0<1 / p+\Re \gamma<1$. Suppose

$$
\begin{aligned}
& a_{k}, b_{k} \in \operatorname{SO}\left(\mathbb{R}_{+}\right) \text {for all } k \in \mathbb{Z}, \quad \alpha, \beta \in \operatorname{SOS}\left(\mathbb{R}_{+}\right), \\
& A_{+}=\sum_{k \in \mathbb{Z}} a_{k} U_{\alpha}^{k} \in W_{\alpha, p}^{S O}, \quad A_{-}=\sum_{k \in \mathbb{Z}} b_{k} U_{\beta}^{k} \in W_{\beta, p}^{S O} .
\end{aligned}
$$

For the operator

$$
N=A_{+} P_{\gamma}^{+}+A_{-} P_{\gamma}^{-}
$$

the following assertions are equivalent:
(a) $(=(\mathrm{b}))$ the operator N is Fredholm on the space $L^{p}\left(\mathbb{R}_{+}\right)$,
(c) the following two conditions are fulfilled:
(c-i) the operators A_{+}and A_{-}are invertible on the space $L^{p}\left(\mathbb{R}_{+}\right)$;
(c-ii) the same as in the main theorem.
An index formula is available for the case

$$
A_{+}=a_{0} I+a_{1} U_{\alpha}, \quad A_{-}=b_{0} I+b_{1} U_{\beta}
$$

Invertibility of binomial functional operators

Let $a, b \in S O\left(\mathbb{R}_{+}\right)$. We say that a dominates b and write $a \gg b$ if

$$
\inf _{t \in \mathbb{R}_{+}}|a(t)|>0, \quad \liminf _{t \rightarrow s}(|a(t)|-|b(t)|)>0, \quad s \in\{0, \infty\}
$$

Theorem (KKL, 2011, 2016
for continuous data - Viktor Kravchenko, 1974)
Suppose $a, b \in S O\left(\mathbb{R}_{+}\right)$and $\alpha \in \operatorname{SOS}\left(\mathbb{R}_{+}\right)$. The binomial functional operator al $-b U_{\alpha}$ is invertible on the Lebesgue space $L^{p}\left(\mathbb{R}_{+}\right)$if and only if either $a \gg b$ or $b \gg a$.
(a) If $a \gg b$, then $\left(a I-b U_{\alpha}\right)^{-1}=\sum_{n=0}^{\infty}\left(a^{-1} b U_{\alpha}\right)^{n} a^{-1} I$.
(b) If $b \gg a$, then $\left(a I-b U_{\alpha}\right)^{-1}=-U_{\alpha}^{-1} \sum_{n=0}^{\infty}\left(b^{-1} a U_{\alpha}^{-1}\right)^{n} b^{-1} I$.

Attracting and repelling points of the shift

Suppose

$$
\alpha_{0}(t):=t, \quad \alpha_{n}(t):=\alpha\left[\alpha_{n-1}(t)\right] \quad \text { for } \quad n \in \mathbb{Z} \quad \text { and } \quad t \in \mathbb{R}_{+} .
$$

Fix a point $\tau \in \mathbb{R}_{+}$and put

$$
\tau_{-}:=\lim _{n \rightarrow-\infty} \alpha_{n}(\tau), \quad \tau_{+}:=\lim _{n \rightarrow+\infty} \alpha_{n}(\tau)
$$

Then

- either $\tau_{-}=0$ and $\tau_{+}=\infty$,
- or $\tau_{-}=\infty$ and $\tau_{+}=0$.

The points τ_{+}and τ_{-}are called attracting and repelling points of the shift α, respectively.

Strict one-sided invertibility of binomial FOs

Theorem (KKL, 2016, for continuous data - Yuri Karlovich, Mardiev, 1985)
Suppose $a, b \in \operatorname{SO}\left(\mathbb{R}_{+}\right)$and $\alpha \in \operatorname{SOS}\left(\mathbb{R}_{+}\right)$. The binomial functional operator $A=a l-b U_{\alpha}$ is strictly left/right invertible on the space $L^{p}\left(\mathbb{R}_{+}\right)$if and only if

$$
\begin{aligned}
& \underset{t \rightarrow \tau_{-}}{\limsup }(|a(t)|-|b(t)|)<0<\liminf _{t \rightarrow \tau_{+}}(|a(t)|-|b(t)|) \\
& \underset{t \rightarrow \tau_{+}}{\left.\lim \sup (|a(t)|-|b(t)|)<0<\liminf _{t \rightarrow \tau_{-}}|a(t)|-|b(t)|\right)}
\end{aligned}
$$

and for every $t \in \mathbb{R}_{+}$there is an integer k_{t} such that

$$
\begin{aligned}
& b\left[\alpha_{k}(t)\right] \neq 0 \text { for } k<k_{t} \text { and } a\left[\alpha_{k}(t)\right] \neq 0 \text { for } k>k_{t} . \\
& b\left[\alpha_{k}(t)\right] \neq 0 \text { for } k \geq k_{t} \text { and } a\left[\alpha_{k}(t)\right] \neq 0 \text { for } k<k_{t} .
\end{aligned}
$$

If the operator A is strictly left/right invertible, then at least one of its left/right inverses belongs to the Banach algebra $\mathcal{F} \mathcal{O}_{\alpha}^{W}$.

Mellin convolution operators

Let $d \mu(t)=d t / t$ be the (normalized) invariant measure on \mathbb{R}_{+} and $\mathcal{M}: L^{2}\left(\mathbb{R}_{+}, d \mu\right) \rightarrow L^{2}(\mathbb{R})$ be the Mellin transform.

A function $a \in L^{\infty}(\mathbb{R})$ is called a Mellin multiplier on $L^{p}\left(\mathbb{R}_{+}, d \mu\right)$ if the mapping

$$
f \mapsto \mathcal{M}^{-1} a \mathcal{M} f
$$

maps $L^{2}\left(\mathbb{R}_{+}, d \mu\right) \cap L^{p}\left(\mathbb{R}_{+}, d \mu\right)$ into itself and extends to a bounded operator $\operatorname{Co}(a)$ on $L^{p}\left(\mathbb{R}_{+}, d \mu\right)$. The set of all Mellin multipliers is denoted by $\mathcal{M}_{p}(\mathbb{R})$.

Singular integral operators as Mellin convolution operators

Consider the isometric isomorphism

$$
\Phi: L^{p}\left(\mathbb{R}_{+}\right) \rightarrow L^{p}\left(\mathbb{R}_{+}, d \mu\right), \quad(\Phi f)(t):=t^{1 / p} f(t), \quad t \in \mathbb{R}_{+}
$$

Lemma (see, e.g., Roch-Santos-Silbermann's book 2011)
Let $1<p<\infty$ and $\gamma \in \mathbb{C}$ be such that $0<1 / p+\Re \gamma<1$. Then the functions

$$
p_{\gamma}^{ \pm}(x):=\frac{1}{2}(1 \pm \operatorname{coth}[\pi(x+i / p+i \gamma)]), \quad x \in \mathbb{R}
$$

belong to $\mathcal{M}_{p}(\mathbb{R})$ and

$$
P_{\gamma}^{ \pm}=\Phi^{-1} \operatorname{Co}\left(p_{\gamma}^{ \pm}\right) \Phi
$$

Baby shift operators as Mellin convolution operators

For $\omega, \eta \in \mathbb{R} \backslash\{0\}$, consider the baby slowly oscillating shifts

$$
\alpha(t)=t e^{\omega}, \quad \beta(t)=t e^{\eta}, \quad t \in \mathbb{R}_{+}
$$

and also recall that an adult slowly oscillating shift is of the form

$$
\gamma(t)=t e^{\psi(t)} \quad \text { with } \quad \psi \in S O\left(\mathbb{R}_{+}\right)
$$

Then the functions

$$
e_{\omega}(x)=e^{i \omega x}, \quad e_{\eta}(x)=e^{i \eta x}, \quad x \in \mathbb{R}
$$

belong to $\mathcal{M}_{p}(\mathbb{R})$ and

$$
U_{\alpha}=\Phi^{-1} \operatorname{Co}\left(e_{\omega}\right) \Phi, \quad U_{\beta}=\Phi^{-1} \operatorname{Co}\left(e_{\eta}\right) \Phi .
$$

More generally, for all $k \in \mathbb{Z}$,

$$
U_{\alpha}^{k}=\Phi^{-1} \operatorname{Co}\left(e_{k \omega}\right) \Phi, \quad U_{\beta}^{k}=\Phi^{-1} \operatorname{Co}\left(e_{k \eta}\right) \Phi .
$$

Operator $N_{\text {baby }}$ and function $n_{\text {baby }}$

Suppose now that

$$
\alpha(t)=t e^{\omega}, \quad \beta(t)=t e^{\eta}, \quad t \in \mathbb{R}_{+}
$$

$a_{k}, b_{k} \in \mathbb{C}$ for all $k \in \mathbb{Z}$ and

$$
\sum_{k \in \mathbb{Z}}\left|a_{k}\right|<\infty, \quad \sum_{k \in \mathbb{Z}}\left|b_{k}\right|<\infty
$$

Then

$$
\begin{aligned}
N_{\text {baby }} & =\left(\sum_{k \in \mathbb{Z}} a_{k} U_{\alpha}^{k}\right) P_{\gamma}^{+}+\left(\sum_{k \in \mathbb{Z}} b_{k} U_{\beta}^{k}\right) P_{\gamma}^{-} \\
& =\Phi^{-1} \operatorname{Co}\left(n_{b a b y}\right) \Phi
\end{aligned}
$$

where

$$
n_{\text {baby }}(x)=\left(\sum_{k \in \mathbb{Z}} a_{k} e^{i k \omega x}\right) p_{\gamma}^{+}(x)+\left(\sum_{k \in \mathbb{Z}} b_{k} e^{i k \eta x}\right) p_{\gamma}^{-}(x), \quad x \in \mathbb{R} .
$$

Fredholmness and invertibility of the operator $N_{\text {baby }}$

The function $n_{\text {baby }}$ is a semi-almost periodic Fourier multiplier.

Theorem (after Sarason, 1977 and Duduchava-Saginashvili, 1981)
The following statements are equivalent:

- the operator $N_{\text {baby }}$ is Fredholm on the space $L^{p}\left(\mathbb{R}_{+}\right)$
- the operator $N_{\text {baby }}$ is invertible on the space $L^{p}\left(\mathbb{R}_{+}\right)$

$$
\inf _{x \in \mathbb{R}}\left|n_{\text {baby }}(x)\right|>0
$$

Operator N and function n

Suppose

$$
\begin{aligned}
& a_{k}, b_{k} \in S O\left(\mathbb{R}_{+}\right) \text {for all } k \in \mathbb{Z}, \quad \alpha, \beta \in \operatorname{SOS}\left(\mathbb{R}_{+}\right), \\
& A_{+}=\sum_{k \in \mathbb{Z}} a_{k} U_{\alpha}^{k} \in W_{\alpha, p}^{S O}, \quad A_{-}=\sum_{k \in \mathbb{Z}} b_{k} U_{\beta}^{k} \in W_{\beta, p}^{S O}
\end{aligned}
$$

Since $\alpha(t)=t e^{\omega(t)}$ and $\beta(t)=t e^{\eta(t)}$ we can formally associate with the operator

$$
N=N_{\text {adult }}=A_{+} P_{\gamma}^{+}+A_{-} P_{\gamma}^{-}
$$

the function n as follows:

$$
\begin{aligned}
n(t, x)= & n_{\text {adult }}(t, x) \\
= & \left(\sum_{k \in \mathbb{Z}} a_{k}(t) e^{i k \omega(t) x}\right) p_{\gamma}^{+}(x)+\left(\sum_{k \in \mathbb{Z}} b_{k}(t) e^{i k \eta(t) x}\right) p_{\gamma}^{-}(x), \\
& (t, x) \in \mathbb{R}_{+} \times \mathbb{R} .
\end{aligned}
$$

Operator N is not similar to a Mellin PDO

One might think, by analogy with

$$
N_{\text {baby }}=\Phi^{-1} \mathrm{Co}\left(n_{b a b y}\right) \Phi
$$

that

$$
N_{\text {adult }}=\Phi^{-1} \mathrm{Op}\left(n_{\text {adult }}\right) \Phi+\text { compact operator }
$$

where $\operatorname{Op}(a)$ is a Mellin PDO:

$$
\operatorname{Op}(a) f(t)=\left[\mathcal{M}^{-1} a(t, \cdot) \mathcal{M} f\right](t), \quad t \in \mathbb{R}_{+}
$$

It is not the case!

Maximal ideal space of $C\left(\overline{\mathbb{R}}_{+}\right)$

For a unital commutative Banach algebra \mathfrak{A}, let $M(\mathfrak{A})$ denote its maximal ideal space.

Identifying the points $t \in \overline{\mathbb{R}}_{+}$with the evaluation functionals

$$
t(f)=f(t)
$$

for $f \in C\left(\overline{\mathbb{R}}_{+}\right)$, we get

$$
M\left(C\left(\overline{\mathbb{R}}_{+}\right)\right)=\overline{\mathbb{R}}_{+} .
$$

Maximal ideal space of $S O\left(\mathbb{R}_{+}\right)$

Consider the fibers

$$
M_{s}\left(S O\left(\mathbb{R}_{+}\right)\right):=\left\{\xi \in M\left(S O\left(\mathbb{R}_{+}\right)\right):\left.\xi\right|_{C\left(\overline{\mathbb{R}}_{+}\right)}=s\right\}
$$

of the maximal ideal space $M\left(S O\left(\mathbb{R}_{+}\right)\right)$over the points $s \in\{0, \infty\}$.

The set

$$
\Delta:=M_{0}\left(S O\left(\mathbb{R}_{+}\right)\right) \cup M_{\infty}\left(S O\left(\mathbb{R}_{+}\right)\right)
$$

coincides with (clossO* \mathbb{R}_{+}) $\backslash \mathbb{R}_{+}$where clossO \mathbb{R}_{+}is the weak-star closure of \mathbb{R}_{+}in the dual space of $S O\left(\mathbb{R}_{+}\right)$. Then

$$
M\left(S O\left(\mathbb{R}_{+}\right)\right)=\Delta \cup \mathbb{R}_{+}
$$

In what follows we write

$$
a(\xi):=\xi(a) \quad \text { for } \quad a \in S O\left(\mathbb{R}_{+}\right), \quad \xi \in \Delta .
$$

On the extension of function n to $M\left(S O\left(\mathbb{R}_{+}\right)\right) \times \mathbb{R}$

Under our assumption that

$$
a_{k}, b_{k} \in S O\left(\mathbb{R}_{+}\right) \text {for all } k \in \mathbb{Z}, \quad \alpha, \beta \in \operatorname{SOS}\left(\mathbb{R}_{+}\right)
$$

and

$$
\sum_{k \in \mathbb{Z}}\left\|a_{k}\right\|_{C_{b}\left(\mathbb{R}_{+}\right)}<\infty, \quad \sum_{k \in \mathbb{Z}}\left\|b_{k}\right\|_{C_{b}\left(\mathbb{R}_{+}\right)}<\infty
$$

one can show that $n(\cdot, x) \in S O\left(\mathbb{R}_{+}\right)$for every $x \in \mathbb{R}$.
Taking the Gelfand transform of $n(\cdot, x)$, we can extend the function $n(\cdot, x)$ defined on \mathbb{R}_{+}to $M\left(S O\left(\mathbb{R}_{+}\right)\right)=\Delta \cup \mathbb{R}_{+}$, that is,

$$
n(\xi, x)=\left(\sum_{k \in \mathbb{Z}} a_{k}(\xi) e^{i k \omega(\xi) x}\right) p_{\gamma}^{+}(x)+\left(\sum_{k \in \mathbb{Z}} b_{k}(\xi) e^{i k \eta(\xi) x}\right) p_{\gamma}^{-}(x)
$$

for all $(\xi, x) \in\left(\Delta \cup \mathbb{R}_{+}\right) \times \mathbb{R}$.

Theorem (Main result: complete form)
Let $1<p<\infty$ and let $\gamma \in \mathbb{C}$ satisfy $0<1 / p+\Re \gamma<1$. Suppose

$$
\begin{aligned}
& a_{k}, b_{k} \in S O\left(\mathbb{R}_{+}\right) \text {for all } k \in \mathbb{Z}, \quad \alpha, \beta \in \operatorname{SOS}\left(\mathbb{R}_{+}\right), \\
& A_{+}=\sum_{k \in \mathbb{Z}} a_{k} U_{\alpha}^{k} \in W_{\alpha, p}^{S O}, \quad A_{-}=\sum_{k \in \mathbb{Z}} b_{k} U_{\beta}^{k} \in W_{\beta, p}^{S O}
\end{aligned}
$$

For the operator

$$
N=A_{+} P_{\gamma}^{+}+A_{-} P_{\gamma}^{-}
$$

the following assertions are equivalent:
(a) the operator N is n-normal / d-normal on the space $L^{p}\left(\mathbb{R}_{+}\right)$,
(b) the operator N is left Fredholm / right Fredholm on $L^{p}\left(\mathbb{R}_{+}\right)$,
(c) the following two conditions are fulfilled:
(c-i) the operators A_{+}and A_{-}are left invertible / right invertible on the space $L^{p}\left(\mathbb{R}_{+}\right)$;
(c-ii) for every $\xi \in \Delta$, the function n satisfies the inequality

$$
\inf _{x \in \mathbb{R}}|n(\xi, x)|>0
$$

Why is the semi-Fredholm case much more difficult than

 the Fredholm case?$(\mathrm{a}) \Rightarrow(\mathrm{c}-\mathrm{i})$ Study of one-sided invertibility of A_{+}and A_{-}is much more complicated than the study of their two-sided invertibility.
(a) \Rightarrow (c-ii) In the Fredholm case this implication can be obtained by using the method of limit operators, which is not applicable in the semi-Fredholm case. Instead we use a heavy machinery of Mellin pseudodifferental operators.
$(c) \Rightarrow$ (b) One of the steps of the proof is to show that if

$$
A_{+} \in W_{\alpha, p}^{S O}, \quad A_{-} \in W_{\beta, p}^{S O}
$$

are left invertible / right invertible then there are left inverses / right inverses $A_{+}^{(-1)}$ and $A_{-}^{(-1)}$ such that

$$
A_{+}^{(-1)} \in W_{\alpha, p}^{S O}, \quad A_{-}^{(-1)} \in W_{\beta, p}^{S O} .
$$

$(\mathrm{b}) \Rightarrow(\mathrm{a})$ trivial.

Thank you!

