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Left and right Fredholm operators

Notation:

I X is a Banach space

I B(X ) is the Banach algebra of all bounded linear operators on
the space X

I K(X ) is the closed two-sided ideal of all compact operators on
the space X

I Bπ(X ) := B(X )/K(X ) is the Calkin algebra of the cosets

Aπ := A +K(X ) where A ∈ B(X ).

An operator A ∈ B(X ) is said to be
left Fredholm / right Fredholm

if the coset Aπ is
left invertible / right invertible

in the Calkin algebra Bπ(X ).



n-normal and d-normal operators

An operator A ∈ B(X ) is said to be n-normal / d-normal on X if
its image ImA is closed and

n(A) := dim KerA <∞ / d(A) := dim(X/ ImA) <∞.

Theorem
If X is a Banach space, then

A is left Fredholm ⇒ A is n-normal

A is right Fredholm ⇒ A is d-normal

If X is a Hilbert space, then

A is left Fredholm ⇔ A is n-normal

A is right Fredholm ⇔ A is d-normal



Fredholm and semi-Fredholm operators

An operator A is said to be Fredholm if it is

I left and right Fredholm,

I equivalently, n-normal and d-normal

The index of a Fredholm operator A is defined by

IndA = n(A)− d(A).

An operator A is said to be semi-Fredholm if it is
n-normal or d-normal.



The weighted Cauchy singular integral operator

Theorem (Boris Khvedelidze, 1956)

Let 1 < p <∞ and γ ∈ C be such that

0 < 1/p + <γ < 1.

Then the weighted Cauchy singular integral operator Sγ given by

(Sγf )(t) :=
1

πi
p.v.

∫
R+

( t
τ

)γ f (τ)

τ − t
dτ, t ∈ R+,

is bounded on the Lebesgue space Lp(R+).

Notation:
P±γ = (I ± Sγ)/2.

Warning:
(P±γ )2 6= P±γ .



Aim of the work

Find criteria for n-normality / d-normality on Lp(R+) of the paired
operator of the form

N = A+P
+
γ + A−P

−
γ ,

where A± are functional operators with shifts and slowly oscillating
data.



Slowly oscillating functions (Sarason, 1977)

A bounded continuous function f on R+ = (0,∞) is called slowly
oscillating (at 0 and ∞) if for each (equivalently, for some)
λ ∈ (0, 1),

lim
r→s

(
sup

t,τ∈[λr ,r ]
|f (t)− f (τ)|

)
︸ ︷︷ ︸

oscillation

= 0 for s ∈ {0,∞}.

The set SO(R+) of all slowly oscillating functions forms a
C ∗-algebra and

C (R+) ⊂ SO(R+), C (R+) 6= SO(R+),

where C (R+) is the set of all continuous functions on

R+ = [0,+∞].



Slowly oscillating shifts

Suppose α is an orientation-preserving homeomorphism of [0,∞]
itself, which has only two fixed points 0 and ∞ and suppose that
its restriction to R+ is a diffeomorphism.

We say that α is a slowly oscillating shift if

I logα′ is bounded,

I α′ ∈ SO(R+).

The set of all slowly oscillating shifts is denoted by SOS(R+).

Trivial example:
Let c ∈ R+ \ {1} and α(t) = ct. Then α ∈ SOS(R+).

Non-trivial examples of slowly oscillating shifts can be constructed
with the aid of the following lemma.



Exponent function of a slowly oscillating shift

Lemma (KKL, 2011)

Suppose α is an orientation-preserving homeomorphism of [0,∞]
itself, which has only two fixed points 0 and ∞ and suppose that
its restriction to R+ is a diffeomorphism. Then α ∈ SOS(R+) if
and only if

α(t) = teω(t), t ∈ R+,

for some real-valued function ω ∈ SO(R+)∩ C 1(R+) such that the
function t 7→ tω′(t) also belongs to SO(R+) and

inf
t∈R+

(
1 + tω′(t)

)
> 0.

The real-valued slowly oscillating function

ω(t) = log[α(t)/t]

is called the exponent function of α ∈ SOS(R+).



Shift operator

We suppose that 1 < p <∞ and consider the shift operator Uα
defined by

Uαf = (α′)1/pf ◦ α.

It is easy to see that Uα ∈ B(Lp(R+)) and Uα is an isometry
whenever α ∈ SOS(R+).



Wiener algebra of functional operators

Let α ∈ SOS(R+). For k ∈ N, put

U−kα := (U−1α )k .

Denote by W SO
α,p the collection of all operators of the form

A =
∑
k∈Z

akU
k
α

where ak ∈ SO(R+) for all k ∈ Z and

‖A‖W :=
∑
k∈Z
‖ak‖Cb(R+) < +∞. (1)

The set W SO
α,p is a Banach algebra with respect to the usual

operations and the norm (1).

By analogy with the Wiener algebra of absolutely convergent
Fourier series, we will call W SO

α,p the Wiener algebra.



Brief history of the study of A+P
+
γ + A−P

−
γ :

1. no shifts, continuous data, Fredholm and semi-Fredholm
theory
Israel Gohberg, Naum Krupnik, 1970’s

2. continuous data, Fredholm theory
Yuri Karlovich, Viktor Kravchenko, 1981

3. continuous data, semi-Fredholm theory
Yuri Karlovich, Rasul Mardiev, 1985

4. no shifts, slowly oscillating data, Fredholm theory
Albrecht Böttcher, Yuri Karlovich, Vladimir Rabinovich,
1990–2000

5. binomial functional operators A+ and A− with shifts and
slowly oscillating data, Fredholm theory
KKL, Fredholm criteria – 2011, an index formula – 2017

6. functional operators A+ and A− of Wiener type with shifts
and slowly oscillating data, Fredholm criteria
Gustavo Fernandéz-Torres and Yuri Karlovich, 2016



Theorem (Main result: incomplete form, 2017)

Let 1 < p <∞ and let γ ∈ C satisfy 0 < 1/p + <γ < 1. Suppose

ak , bk ∈ SO(R+) for all k ∈ Z, α, β ∈ SOS(R+),

A+ =
∑
k∈Z

akU
k
α ∈W SO

α,p , A− =
∑
k∈Z

bkU
k
β ∈W SO

β,p .

For the operator
N = A+P

+
γ + A−P

−
γ ,

the following assertions are equivalent:

(a) the operator N is n-normal / d-normal on the space Lp(R+),

(b) the operator N is left Fredholm / right Fredholm on Lp(R+),

(c) the following two conditions are fulfilled:

(c-i) the operators A+ and A− are left invertible / right invertible
on the space Lp(R+);

(c-ii) the function n (will be defined later) associated to the operator
N does not vanish in a certain sense.



Corollary (Fredholm criterion, 2016)

Let 1 < p <∞ and let γ ∈ C satisfy 0 < 1/p + <γ < 1. Suppose

ak , bk ∈ SO(R+) for all k ∈ Z, α, β ∈ SOS(R+),

A+ =
∑
k∈Z

akU
k
α ∈W SO

α,p , A− =
∑
k∈Z

bkU
k
β ∈W SO

β,p .

For the operator
N = A+P

+
γ + A−P

−
γ ,

the following assertions are equivalent:

(a) (=(b)) the operator N is Fredholm on the space Lp(R+),

(c) the following two conditions are fulfilled:

(c-i) the operators A+ and A− are invertible on the space Lp(R+);
(c-ii) the same as in the main theorem.

An index formula is available for the case

A+ = a0I + a1Uα, A− = b0I + b1Uβ.



Invertibility of binomial functional operators

Let a, b ∈ SO(R+). We say that a dominates b and write a� b if

inf
t∈R+

|a(t)| > 0, lim inf
t→s

(|a(t)| − |b(t)|) > 0, s ∈ {0,∞}.

Theorem (KKL, 2011, 2016
for continuous data - Viktor Kravchenko, 1974)

Suppose a, b ∈ SO(R+) and α ∈ SOS(R+). The binomial
functional operator aI − bUα is invertible on the Lebesgue space
Lp(R+) if and only if either a� b or b � a.

(a) If a� b, then (aI − bUα)−1 =
∞∑
n=0

(a−1bUα)na−1I .

(b) If b � a, then (aI − bUα)−1 = −U−1α
∞∑
n=0

(b−1aU−1α )nb−1I .



Attracting and repelling points of the shift

Suppose

α0(t) := t, αn(t) := α[αn−1(t)] for n ∈ Z and t ∈ R+.

Fix a point τ ∈ R+ and put

τ− := lim
n→−∞

αn(τ), τ+ := lim
n→+∞

αn(τ).

Then

I either τ− = 0 and τ+ =∞,

I or τ− =∞ and τ+ = 0.

The points τ+ and τ− are called attracting and repelling points of
the shift α, respectively.



Strict one-sided invertibility of binomial FOs

Theorem (KKL, 2016,
for continuous data - Yuri Karlovich, Mardiev, 1985)

Suppose a, b ∈ SO(R+) and α ∈ SOS(R+). The binomial
functional operator A = aI − bUα is strictly left/right invertible on
the space Lp(R+) if and only if

lim sup
t→τ−

(|a(t)| − |b(t)|) < 0 < lim inf
t→τ+

(|a(t)| − |b(t)|)

lim sup
t→τ+

(|a(t)| − |b(t)|) < 0 < lim inf
t→τ−

(|a(t)| − |b(t)|)

and for every t ∈ R+ there is an integer kt such that

b[αk(t)] 6= 0 for k < kt and a[αk(t)] 6= 0 for k > kt .

b[αk(t)] 6= 0 for k ≥ kt and a[αk(t)] 6= 0 for k < kt .

If the operator A is strictly left/right invertible, then at least one of
its left/right inverses belongs to the Banach algebra FOW

α .



Mellin convolution operators

Let dµ(t) = dt/t be the (normalized) invariant measure on R+

and M : L2(R+, dµ)→ L2(R) be the Mellin transform.

A function a ∈ L∞(R) is called a Mellin multiplier on Lp(R+, dµ)
if the mapping

f 7→ M−1aMf

maps L2(R+, dµ) ∩ Lp(R+, dµ) into itself and extends to a
bounded operator Co(a) on Lp(R+, dµ). The set of all Mellin
multipliers is denoted by Mp(R).



Singular integral operators as Mellin convolution operators

Consider the isometric isomorphism

Φ : Lp(R+)→ Lp(R+, dµ), (Φf )(t) := t1/pf (t), t ∈ R+.

Lemma (see, e.g., Roch-Santos-Silbermann’s book 2011)

Let 1 < p <∞ and γ ∈ C be such that 0 < 1/p + <γ < 1. Then
the functions

p±γ (x) :=
1

2
(1± coth[π(x + i/p + iγ)]), x ∈ R,

belong to Mp(R) and

P±γ = Φ−1 Co(p±γ )Φ.



Baby shift operators as Mellin convolution operators

For ω, η ∈ R \ {0}, consider the baby slowly oscillating shifts

α(t) = teω, β(t) = teη, t ∈ R+,

and also recall that an adult slowly oscillating shift is of the form

γ(t) = teψ(t) with ψ ∈ SO(R+).

Then the functions

eω(x) = e iωx , eη(x) = e iηx , x ∈ R,

belong to Mp(R) and

Uα = Φ−1 Co(eω)Φ, Uβ = Φ−1 Co(eη)Φ.

More generally, for all k ∈ Z,

Uk
α = Φ−1 Co(ekω)Φ, Uk

β = Φ−1 Co(ekη)Φ.



Operator Nbaby and function nbaby

Suppose now that

α(t) = teω, β(t) = teη, t ∈ R+,

ak , bk ∈ C for all k ∈ Z and∑
k∈Z
|ak | <∞,

∑
k∈Z
|bk | <∞.

Then

Nbaby =

(∑
k∈Z

akU
k
α

)
P+
γ +

(∑
k∈Z

bkU
k
β

)
P−γ

= Φ−1 Co(nbaby )Φ,

where

nbaby (x) =

(∑
k∈Z

ake
ikωx

)
p+γ (x) +

(∑
k∈Z

bke
ikηx

)
p−γ (x), x ∈ R.



Fredholmness and invertibility of the operator Nbaby

The function nbaby is a semi-almost periodic Fourier multiplier.

Theorem (after Sarason, 1977
and Duduchava-Saginashvili, 1981)

The following statements are equivalent:

I the operator Nbaby is Fredholm on the space Lp(R+)

I the operator Nbaby is invertible on the space Lp(R+)

I

inf
x∈R
|nbaby (x)| > 0.



Operator N and function n

Suppose

ak , bk ∈ SO(R+) for all k ∈ Z, α, β ∈ SOS(R+),

A+ =
∑
k∈Z

akU
k
α ∈W SO

α,p , A− =
∑
k∈Z

bkU
k
β ∈W SO

β,p .

Since α(t) = teω(t) and β(t) = teη(t) we can formally associate
with the operator

N = Nadult = A+P
+
γ + A−P

−
γ

the function n as follows:

n(t, x) = nadult(t, x)

=

(∑
k∈Z

ak(t)e ikω(t)x

)
p+γ (x) +

(∑
k∈Z

bk(t)e ikη(t)x

)
p−γ (x),

(t, x) ∈ R+ × R.



Operator N is not similar to a Mellin PDO

One might think, by analogy with

Nbaby = Φ−1 Co(nbaby )Φ,

that
Nadult = Φ−1 Op(nadult)Φ + compact operator

where Op(a) is a Mellin PDO:

Op(a)f (t) = [M−1a(t, ·)Mf ](t), t ∈ R+.

It is not the case!



Maximal ideal space of C (R+)

For a unital commutative Banach algebra A, let M(A) denote its
maximal ideal space.

Identifying the points t ∈ R+ with the evaluation functionals

t(f ) = f (t)

for f ∈ C (R+), we get

M(C (R+)) = R+.



Maximal ideal space of SO(R+)

Consider the fibers

Ms(SO(R+)) :=
{
ξ ∈ M(SO(R+)) : ξ|C(R+)

= s
}

of the maximal ideal space M(SO(R+)) over the points
s ∈ {0,∞}.

The set
∆ := M0(SO(R+)) ∪M∞(SO(R+))

coincides with (closSO∗ R+) \ R+ where closSO∗ R+ is the
weak-star closure of R+ in the dual space of SO(R+). Then

M(SO(R+)) = ∆ ∪ R+.

In what follows we write

a(ξ) := ξ(a) for a ∈ SO(R+), ξ ∈ ∆.



On the extension of function n to M(SO(R+))× R
Under our assumption that

ak , bk ∈ SO(R+) for all k ∈ Z, α, β ∈ SOS(R+),

and ∑
k∈Z
‖ak‖Cb(R+) <∞,

∑
k∈Z
‖bk‖Cb(R+) <∞,

one can show that n(·, x) ∈ SO(R+) for every x ∈ R.

Taking the Gelfand transform of n(·, x), we can extend the
function n(·, x) defined on R+ to M(SO(R+)) = ∆ ∪ R+, that is,

n(ξ, x) =

(∑
k∈Z

ak(ξ)e ikω(ξ)x

)
p+γ (x) +

(∑
k∈Z

bk(ξ)e ikη(ξ)x

)
p−γ (x)

for all (ξ, x) ∈ (∆ ∪ R+)× R.



Theorem (Main result: complete form)

Let 1 < p <∞ and let γ ∈ C satisfy 0 < 1/p + <γ < 1. Suppose

ak , bk ∈ SO(R+) for all k ∈ Z, α, β ∈ SOS(R+),

A+ =
∑
k∈Z

akU
k
α ∈W SO

α,p , A− =
∑
k∈Z

bkU
k
β ∈W SO

β,p .

For the operator
N = A+P

+
γ + A−P

−
γ ,

the following assertions are equivalent:

(a) the operator N is n-normal / d-normal on the space Lp(R+),

(b) the operator N is left Fredholm / right Fredholm on Lp(R+),

(c) the following two conditions are fulfilled:

(c-i) the operators A+ and A− are left invertible / right invertible
on the space Lp(R+);

(c-ii) for every ξ ∈ ∆, the function n satisfies the inequality

inf
x∈R
|n(ξ, x)| > 0.



Why is the semi-Fredholm case much more difficult than
the Fredholm case?

(a)⇒(c-i) Study of one-sided invertibility of A+ and A− is much more
complicated than the study of their two-sided invertibility.

(a)⇒(c-ii) In the Fredholm case this implication can be obtained by
using the method of limit operators, which is not applicable in
the semi-Fredholm case. Instead we use a heavy machinery of
Mellin pseudodifferental operators.

(c)⇒(b) One of the steps of the proof is to show that if

A+ ∈W SO
α,p , A− ∈W SO

β,p

are left invertible / right invertible then there are left inverses

/ right inverses A
(−1)
+ and A

(−1)
− such that

A
(−1)
+ ∈W SO

α,p , A
(−1)
− ∈W SO

β,p .

(b)⇒(a) trivial.



Thank you!


