Spectral properties of approximation sequences:

Helena Mascarenhas

IST, University of Lisbon and CEAFEL

14-18 August

Joint work with P. Santos and M. Seidel

∃ ► ▲ ∃ ► ∃ = √Q ∩

Outline of the Talk

Finite section method

- Stability
- 2 Algebras of operator sequences
 - Convergence notions
 - Algebras of *T*-structured sequences
 - Fractal algebras

3 Rich sequences

- *T*-structured subsequences
- Passage from sequences to subsequences

4 Finite sections of convolution type operators

- Multiplication and convolution operators
- An algebra A of convolution type operators
- Approximation sequences to operators in A

< ∃ ► ∃ = < < < <

Stability

Outline of the Talk

Finite section method Stability

- 2 Algebras of operator sequences
 - Convergence notions
 - Algebras of *T*-structured sequences
 - Fractal algebras

3 Rich sequences

- *T*-structured subsequences
- Passage from sequences to subsequences

4 Finite sections of convolution type operators

- Multiplication and convolution operators
- An algebra \mathscr{A} of convolution type operators
- Approximation sequences to operators in A

∃ ► ▲ ∃ ► ∃ = √Q ∩

Stability

Approximate solution to an operator equation

Let $A \in \mathscr{L}(L^{p}(\mathbb{R}))$, with $1 , and an approximate sequence <math>A_n \in \mathscr{L}((L^{p}(\mathbb{R})))$ of A, based on a sequence of projections $P_n \in \mathscr{L}(L^{p}(\mathbb{R}))$. A common question is to know whether we can substitute the equation

$$Au = b, \quad u, b \in L^p(\mathbb{R})$$

by the "simpler" ones

$$A_n u_n = P_n b$$

and guarantee that u_n are unique and converge to the solution of the initial equation.

Stability: The sequence (A_n) is stable if for n large enough the operators A_n are invertible and sup ||A_n⁻¹|| <∞.

P-compact, P-Fredholm and P-convergence T-structured sequences P-compact, P-Fredholm and P-convergence

∃ ► ▲ ∃ ► ∃ = √Q ∩

Outline of the Talk

Finite section method Stability

- 2 Algebras of operator sequences
 - Convergence notions
 - Algebras of *T*-structured sequences
 - Fractal algebras

3 Rich sequences

- *T*-structured subsequences
- Passage from sequences to subsequences

- Multiplication and convolution operators
- An algebra \mathscr{A} of convolution type operators
- Approximation sequences to operators in A

P-compact, P-Fredholm and P-convergence T-structured sequences P-compact, P-Fredholm and P-convergence

Convergence notions

Let
$$\mathscr{P} = (P_n) := \chi_{[-n,n]}I$$
.
• \mathscr{P} -compact operators

 $\begin{aligned} \mathscr{K}(L^{p},\mathscr{P}) &:= \{ K \in \mathscr{L}(L^{p}(\mathbb{R})) : \| K(I-P_{n})\|, \| (I-P_{n})K\| \to 0 \text{ as } n \to \infty \} \} \\ \mathscr{L}(L^{p},\mathscr{P}) &:= \{ A \in \mathscr{L}(L^{p}(\mathbb{R})) : AK, KA \in \mathscr{K}(L^{p},\mathscr{P}), \forall K \in \mathscr{K}(L^{p},\mathscr{P}) \} \\ \bullet \mathscr{P}\text{-} \text{Fredholm operators} \end{aligned}$

- $A \in \mathscr{L}(L^p, \mathscr{P})$ is \mathscr{P} -Fredholm if $A + \mathscr{K}(L^p, \mathscr{P})$ is invertible in the quotient algebra $\mathscr{L}(L^p, \mathscr{P})/\mathscr{K}(L^p, \mathscr{P})$.
- \mathscr{P} -Convergence: A sequence $(A_n) \subset \mathscr{L}(L^p, \mathscr{P})$ is said to **converge** \mathscr{P} -strongly to $A \in \mathscr{L}(L^p(\mathbb{R}))$ if

$$\|K(A_n - A)\|, \|(A_n - A)K\| o 0$$
 as $n o \infty$

for every \mathcal{P} -compact operators K.

• A sequence $(A_n) \subset \mathscr{L}(L^p(\mathbb{R}))$ is said to **converge** *-strongly to $A \in \mathscr{L}(L^p(\mathbb{R}))$ if

$$s-\lim_{n\to\infty}A_n=A \quad \text{and} \quad s-\lim_{n\to\infty}A_n^*=A^*$$

P-compact, P-Fredholm and P-convergence T-structured sequences P-compact, P-Fredholm and P-convergence

∃ ► ▲ ∃ ► ∃ = √Q ∩

Outline of the Talk

Finite section method Stability

- 2 Algebras of operator sequences
 - Convergence notions
 - Algebras of *T*-structured sequences
 - Fractal algebras

3 Rich sequences

- *T*-structured subsequences
- Passage from sequences to subsequences

- Multiplication and convolution operators
- An algebra \mathscr{A} of convolution type operators
- Approximation sequences to operators in A

P-compact, P-Fredholm and P-convergence T-structured sequences P-compact, P-Fredholm and P-convergence

T-structured sequences

The set ${\mathscr F}$ defined by

$$\mathscr{F}:=\{(A_n):\,A_n\in\mathscr{L}(L^p,\mathscr{P}) ext{ and } \sup_n \lVert A_n \rVert <\infty\}$$

is a Banach algebra. Consider the following 3 homomorphisms on $L^{p}(\mathbb{R})$: $(V_{n}u)(x) := u(x - n),$ $(Z_{n}u)(x) := n^{-1/p}u(x/n)$ and $(U_{t}u)(x) := e^{itx}u(x), t \in \mathbb{R}.$ Let \mathscr{F}^{T} be the set of all *T*-structured sequences, i.e. all sequences $\mathbb{A} = (A_{n}) \in \mathscr{F}$ for which the \mathscr{P} -strong limits

$$\mathbb{W}(\mathbb{A}) := \mathscr{P}_{\substack{\mathsf{n} \to \infty}} \mathsf{Lim} A_n, \quad \mathbb{W}^{\pm}(\mathbb{A}) := \mathscr{P}_{\substack{\mathsf{n} \to \infty}} \mathsf{Lim} V_{\mp n} A_n V_{\pm n},$$

exist and the *-strong limits

$$\mathsf{H}^{t}(\mathbb{A}) := s - \lim_{n \to \infty} Z_{n}^{-1} U_{t} A_{n} U_{t}^{-1} Z_{n}$$

also exist for every $t \in \mathbb{R}$, where $T := \left\{ \left(V_{\mp n} \right), \left(Z_n^{-1} U_t \right), t \in \mathbb{R} \right\}$.

This set forms a closed subalgebra of \mathscr{F} .

P-compact, P-Fredholm and P-convergence T-structured sequences P-compact, P-Fredholm and P-convergence

I ^T-Fredholm sequences

 $\mathscr{F}^{\mathcal{T}}$ contains the ideal

$$\mathscr{J}^{\mathsf{T}} := \{ (\mathsf{K}) + (\mathsf{V}_{\pm n}\mathsf{K}^{-}\mathsf{V}_{\mp}) + (U_t^{-1}Z_n\mathsf{K}^{+}Z_n^{-1}U_t) + (G_n) : \\ \mathsf{K}, \mathsf{K}^{-} \in \mathscr{K}(\mathsf{X}, \mathscr{P}), \, \mathsf{K}^{+} \in \mathscr{K} \text{ and } \|G_n\| \to 0 \text{ as } n \to \infty \}$$

and we say that $(A_n) \in \mathscr{F}^T$ is a \mathscr{J}^T -**Fredholm sequence** if $(A_n) + \mathscr{J}^T$ is invertible in $\mathscr{F}^T / \mathscr{J}^T$.

The following theorem is an adaptation of the Silbermann's lifting theorem

Theorem

Let $\mathbb{A} = (A_n) \in \mathscr{F}^T$. Then \mathbb{A} is stable if and only if \mathbb{A} is \mathscr{J}^T -Fredholm and W(\mathbb{A}), W⁺(\mathbb{A}), W⁻(\mathbb{A}) and H^t(\mathbb{A}), $\forall t \in \mathbb{R}$, are invertible.

P-compact, P-Fredholm and P-convergence T-structured sequences
P-compact, P-Fredholm and P-convergence

∃ ► ▲ ∃ ► ∃ = √Q ∩

Outline of the Talk

Finite section method Stability

2 Algebras of operator sequences

- Convergence notions
- Algebras of *T*-structured sequences
- Fractal algebras

3 Rich sequences

- *T*-structured subsequences
- Passage from sequences to subsequences

- Multiplication and convolution operators
- An algebra \mathscr{A} of convolution type operators
- Approximation sequences to operators in A

P-compact, P-Fredholm and P-convergence T-structured sequences
P-compact, P-Fredholm and P-convergence

Definition

Let \mathscr{B} be a Banach subalgebra of \mathscr{F} containing $\mathscr{G} := \{(G_n) : ||G_n|| \to 0 \text{ as } n \to \infty\}.$ \mathscr{B} is a **fractal algebra** if for every strictly increasing sequence *h* of natural numbers and $\mathscr{B}_h := \{(A_{h_n}) : (A_n) \in \mathscr{B}\},$ there exists a map $\pi_h : \mathscr{B}_h \to \mathscr{B}/\mathscr{G}$ such that for every $\mathbb{A} \in \mathscr{B}$,

$$\mathbb{A} + \mathscr{G} = \pi_h(\mathbb{A}_h).$$

Theorem

[Roch, Silbermann 1996] Let p = 2. If \mathscr{B} is a unital fractal subalgebra of \mathscr{F} and $\mathbb{A} = (A_n) \in \mathscr{B}$ then,

- \mathbb{A} is stable if and only if it possesses a stable subsequence.
- The limit $\lim ||A_n||$ exists and equals $||\mathbb{A} + \mathcal{G}||$.

T-structured subsequences Passage from sequences to subsequences

Outline of the Talk

Finite section method

- Stability
- 2 Algebras of operator sequences
 - Convergence notions
 - Algebras of *T*-structured sequences
 - Fractal algebras

3 Rich sequences

T-structured subsequences

Passage from sequences to subsequences

4 Finite sections of convolution type operators

- Multiplication and convolution operators
- An algebra \mathscr{A} of convolution type operators
- Approximation sequences to operators in A

∃ ► ▲ ∃ ► ∃ = √Q ∩

T-structured subsequences Passage from sequences to subsequences

T-structured subsequences

Given a strictly increasing sequence h of natural numbers and the associated projections $P_{h_n} = \chi_{[-h_n,h_n]}I$ we define in analogy the sets

$$\mathscr{F}_h = \{(A_{h_n}) : (A_n) \in \mathscr{F}\},\$$

 \mathscr{F}_h^T , \mathscr{J}_h^T , and denote by W(\mathbb{A}_h), the limit operators of the subsequences $\mathbb{A}_h := \{A_{h_n}\}$.

Definition

A sequence $\mathbb{A} = (A_n) \in \mathscr{F}$ is **rich** if every subsequence of \mathbb{A} has a T-structured subsequence $\mathbb{A}_h = (A_{h_n})$, i.e. for every strictly increasing sequence g of natural numbers there exists a subsequence h such that $\mathbb{A}_h \in \mathscr{F}_h^T$.

• $\mathscr{R}^{\mathcal{T}}$ denote the subset of \mathscr{F} consisting of all rich sequences.

$$\mathscr{F}^{\mathsf{T}} \subset \mathscr{R}^{\mathsf{T}} \subset \mathscr{F}$$

T-structured subsequences Passage from sequences to subsequences

Outline of the Talk

Finite section method

- Stability
- 2 Algebras of operator sequences
 - Convergence notions
 - Algebras of *T*-structured sequences
 - Fractal algebras

3 Rich sequences

- T-structured subsequences
- Passage from sequences to subsequences

4 Finite sections of convolution type operators

- Multiplication and convolution operators
- An algebra \mathscr{A} of convolution type operators
- Approximation sequences to operators in A

∃ ► ▲ ∃ ► ∃ = √Q ∩

T-structured subsequences Passage from sequences to subsequences

Passage from sequences to subsequences

Seidel, Silbermann, 2012

A sequence is $\mathbb{A} \in \mathscr{R}^{T}$ is stable if and only if every *T*-structured subsequence \mathbb{A}_{h} is stable.

As a consequence of the previous theorem and the lifting theorem:

Let $\mathbb{A} \in \mathscr{R}^{T}$. Then, \mathbb{A} is stable if and only if every *T*-structured subsequence \mathbb{A}_{h} has a \mathscr{J}^{T} -Fredholm subsequence and $W(\mathbb{A}_{h})$, $W^{+}(\mathbb{A}_{h})$, $W^{-}(\mathbb{A}_{h})$ and $H^{t}(\mathbb{A})$, $\forall t \in \mathbb{R}$, are invertible.

A = A = A = A = A = A = A

Multiplication and convolution operators An algebra \mathscr{A} of convolution type operators Approximation sequences to operators in \mathscr{A}

▲ ■ ▶ < ■ ▶ < ■ | ■ </p>

Outline of the Talk

Finite section method

- Stability
- 2 Algebras of operator sequences
 - Convergence notions
 - Algebras of *T*-structured sequences
 - Fractal algebras

3 Rich sequences

- *T*-structured subsequences
- Passage from sequences to subsequences

- Multiplication and convolution operators
- An algebra A of convolution type operators
- Approximation sequences to operators in A

Multiplication and convolution operators An algebra \mathscr{A} of convolution type operators Approximation sequences to operators in \mathscr{A}

Function algebras

Closed subalgebras of $L^{\infty}(\mathbb{R})$:

- BUC the algebra of bounded and uniformly continuous functions on $\mathbb R$
- L_0^{∞} the algebra of functions with which possesses finite limit at $\pm \infty$.
- PC^{λ} the algebra of continuous functions with one-sided limits at $\lambda \in \mathbb{R}$
- PC the algebra generated by all PC^{λ} with $\lambda \in \mathbb{R}$.
- SO^{λ} the algebra of continuous functions on $\dot{\mathbb{R}} \setminus \{\lambda\}$ and slowly oscillating at $\lambda \in \dot{\mathbb{R}}$, i.e.

$$\lim_{x \to +0} \operatorname{osc}(f, \lambda + ([-x, -rx] \cup [rx, x])) = 0 \quad \text{if} \quad \lambda \in \mathbb{R}$$
$$\lim_{x \to +\infty} \operatorname{osc}(f, [-x, -rx] \cup [rx, x]) = 0 \quad \text{if} \quad \lambda = \infty$$

for every $r \in]0,1[$, where $\operatorname{osc}(f,I) := \operatorname{essup}\{|f(t) - f(s)| : t, s \in I\}.$

• SO - the algebra generated by all SO^{λ} with $\lambda \in \mathbb{R}$.

Multiplication and convolution operators An algebra \mathscr{A} of convolution type operators Approximation sequences to operators in \mathscr{A}

▲■▶ ▲■▶ ▲■▶ ■■ のQ@

Convolution operators:

For $b \in L^{\infty}(\mathbb{R})$ and F being the Fourier transform, the *convolution* operator on $L^{2}(\mathbb{R})$, is defined by:

$$W^0(b):=F^{-1}bF,$$

If the operator $W^0(b)$ on $L^p(\mathbb{R}) \cap L^2(\mathbb{R})$ admits a linear bounded extension to $L^p(\mathbb{R})$ then it is also called a convolution operator and *b* is called a *Fourier multiplier*. The set of all multipliers on $L^p(\mathbb{R})$

$$M^{p} := \{ b \in L^{\infty}(\mathbb{R}) : W^{0}(b) \in \mathscr{L}(L^{p}(\mathbb{R})) \}$$

with the norm $\|b\|_{M^p} := \|W^0(b)\|_{\mathscr{L}(L^p(\mathbb{R}))}$ forms a Banach algebra. For $p \in (1,\infty) \setminus \{2\}$, let $M^{}$ denote the set of all multipliers $b \in M^p$ for which there exists a $\delta > 0$ (depending on b) such that $b \in M^r$ for all $r \in (p-\delta, p+\delta)$. Also set $M^{<2>} := M^2 = L^{\infty}(\mathbb{R})$. Furthermore, for a subalgebra $\mathscr{B} \subset L^{\infty}(\mathbb{R})$ let \mathscr{B}_p denote the closure in M^p of $\mathscr{B} \cap M^{}$.

Multiplication and convolution operators An algebra \mathscr{A} of convolution type operators Approximation sequences to operators in \mathscr{A}

∃ ► < ∃ ► = = < <</p>

Outline of the Talk

Finite section method

- Stability
- 2 Algebras of operator sequences
 - Convergence notions
 - Algebras of *T*-structured sequences
 - Fractal algebras

3 Rich sequences

- *T*-structured subsequences
- Passage from sequences to subsequences

- Multiplication and convolution operators
- An algebra A of convolution type operators
- Approximation sequences to operators in A

An algebra \mathscr{A} of convolution type operators

Let \mathscr{A} be the smallest closed subalgebra of $\mathscr{L}(L^{p}(\mathbb{R}))$ which contains:

- All operators of multiplication aI, with $a \in alg(L_0^{\infty}, PC, SO)$
- All convolution operators $W^0(b)$ with $b \in [alg(BUC, PC^{\lambda}, SO)]_{\rho}$ $\forall \lambda \in \mathbb{R}$
- All \mathscr{P} -compact operators

Let $\mathscr{F}_{\mathscr{A}}$ denote the smallest closed subalgebra of \mathscr{F} containing all finite sections

$$(P_nAP_n+(I-P_n)), A \in \mathscr{A}.$$

Multiplication and convolution operators An algebra I of convolution type operators Approximation sequences to operators in I

∃ ► < ∃ ► = = < <</p>

Outline of the Talk

Finite section method

- Stability
- 2 Algebras of operator sequences
 - Convergence notions
 - Algebras of *T*-structured sequences
 - Fractal algebras

3 Rich sequences

- *T*-structured subsequences
- Passage from sequences to subsequences

- Multiplication and convolution operators
- An algebra A of convolution type operators
- Approximation sequences to operators in A

Multiplication and convolution operators An algebra I of convolution type operators Approximation sequences to operators in I

(日本)

Approximation sequences to operators in \mathscr{A}

Theorem

Let $\mathbb{A} \in \mathscr{F}_{\mathscr{A}}$. \mathbb{A} is stable if and only if for every T-structured subsequence \mathbb{A}_h , the operators $W(\mathbb{A}_h)$, $W^+(\mathbb{A}_h)$, $W^-(\mathbb{A}_h)$ and $H^t(\mathbb{A}_h)$, $\forall t \in \mathbb{R}$, are invertible.

Remarks: For p = 2

(1) Every *T*-structured subsequence belongs to a fractal algebra (2) Results on the index, asymptotic behaviour of condition numbers and convergence of pseudospectrum are also obtained for $\mathscr{F}_{\mathscr{A}}$.

For Further Reading

References I

- 📚 I. C. Gohberg, I. A. Feldman, Convolution equations and projection methods for their solution Nauka. Moscow 1971.
- R. Hagen, S. Roch, B. Silbermann, C*-Algebras and Numerical Analysis, Marcel Dekker, Inc., New York, Basel, 2001.
- 🛸 A. Yu. Karlovich. H. Mascarenhas. P. A. Santos. Finite Section Method for a Banach Algebra of Convolution Type Operators on $L^{p}(\mathbb{R})$ with Symbols Generated by PC and SO. Integr. Equ. Oper. Theory 67 (2010), 559-600.

怪 Yu. I. Karlovich, I. Loreto Hernández, Algebras of Convolution Type Operators with Piecewise Slowly Oscillating Data, Integral Equations Oper. Theory **74** (2012), 377-415 and **75** (2013), 49-86.

≽ M. Lindner. *Infinite Matrices and their Finite Sections*. Birkhäuser Verlag, Basel, Boston, Berlin, 2006.

★ ∃ ★ ★ ∃ ★ ∃ ∃ < 0 < 0</p>

References II

- H. Mascarenhas, P. A. Santos, M. Seidel, *Quasi-banded operators*, convolutions with almost periodic or quasi-continuous data, and their approximations, JMAA, **418**, 938-963, (2014).
- H. Mascarenhas, PA Santos, M Seidel, Approximation sequences to operators on Banach spaces: a rich approach, **96**,(1) JLMS, (2017)

🛸 V. S. Rabinovich, S. Roch, B. Silbermann, *Limit Operators and* Their Applications in Operator Theory, Birkhäuser Verlag, Basel, Boston, Berlin, 2004.

N. Seidel, B. Silbermann, Banach algebras of operator sequences, 📎 Oper. Matrices 6, (3), 385-432, (2012).