Representation Theorems for Solvable Sesquilinear Forms

Rosario Corso

Università degli Studi di Palermo

Joint work with Camillo Trapani

IWOTA 2017

Chemnitz, 14 August 2017

Rosario Corso

IWOTA 2017

1 / 21

- S. Di Bella, C. Trapani, Some representation theorems for sesquilinear forms, J. Math. Anal. Appl., 451 (2017), 64-83.
- 2 R. Corso, C. Trapani, *Representation Theorems for Solvable Sesquilinear Forms*, Integral Equations Operator Theory, published online, 2017.
- 3 R. Corso, A Kato's second type representation theorem for solvable sesquilinear forms, arXiv:1707.05073, math.FA, 2017.

Let \mathcal{H} be a Hilbert space, with inner product $\langle \cdot | \cdot \rangle$ and norm $|| \cdot ||$.

Theorem

If Ω is a bounded sesquilinear form on \mathcal{H} , then there exists a unique bounded operator T such that

 $\Omega(\xi,\eta) = \langle T\xi | \eta \rangle \qquad \forall \xi, \eta \in \mathcal{H}.$

Theorem (Kato's first representation theorem)

Let Ω be a closed, sectorial sesquilinear form on a dense subspace \mathcal{D} of \mathcal{H} . Then, there exists a unique m-sectorial operator T, with $D(T) \subseteq \mathcal{D}$, such that

$$\Omega(\xi,\eta) = \langle T\xi | \eta \rangle, \quad \forall \xi \in D(T), \eta \in \mathcal{D}.$$

Let ${\mathcal D}$ be a dense subspace of ${\mathcal H}.$

Definition

A sesquilinear form Ω on \mathcal{D} is called *q*-closed with respect to a norm $|| \cdot ||_{\Omega}$ on \mathcal{D} if

- 1 $\mathcal{E}_{\Omega} := \mathcal{D}[|| \cdot ||_{\Omega}]$ is a reflexive Banach space;
- 2 the embedding $\mathcal{E}_{\Omega} \to \mathcal{H}$ is continuous;
- **3** Ω is bounded on \mathcal{E}_{Ω} .

Under these hypotheses, a *Banach-Gelfand triplet* $\mathcal{E}_{\Omega} \hookrightarrow \mathcal{H} \hookrightarrow \mathcal{E}_{\Omega}^{\times}$ is well-defined.

Let Ω be a q-closed sesquilinear form with respect to a norm $|| \cdot ||_{\Omega}$ on \mathcal{D} . Let Υ be a bounded sesquilinear form on \mathcal{H} . We can define the bounded operator

$$egin{aligned} X_{\Upsilon} &: \mathcal{E}_{\Omega} o \mathcal{E}_{\Omega}^{ imes} \ & \xi \mapsto \Omega^{\xi}_{\Upsilon}, \end{aligned}$$

where $\langle \Omega^{\xi}_{\Upsilon} | \eta \rangle = \Omega(\xi, \eta) + \Upsilon(\xi, \eta)$, for all $\eta \in \mathcal{E}_{\Omega}$. We denote by $\mathfrak{P}(\Omega)$ the set of bounded sesquilinear forms Υ on \mathcal{H} , such that X_{Υ} is a bijection.

Definition

If the set $\mathfrak{P}(\Omega)$ is not empty, then Ω is said to be *solvable with* respect to $|| \cdot ||_{\Omega}$.

IWOTA 2017

Let Ω be a solvable sesquilinear form on \mathcal{D} with respect to a norm $|| \cdot ||_{\Omega}$. Then there exists a closed operator T, with dense domain $D(T) \subseteq \mathcal{D}$ in \mathcal{H} , such that

$$\Omega(\xi,\eta) = \langle T\xi | \eta \rangle, \qquad \forall \xi \in D(T), \eta \in \mathcal{D}.$$

The operator T is said *associated* to Ω .

By hypothesis $\mathfrak{P}(\Omega) \neq \varnothing$. Let $\Upsilon \in \mathfrak{P}(\Omega)$, then $X_{\Upsilon} : \mathcal{E}_{\Omega} \to \mathcal{E}_{\Omega}^{\times}$ is a bijection.

$$\begin{array}{ccc} \mathcal{E}_{\Omega} & \xrightarrow{X_{\Upsilon}} & \mathcal{E}_{\Omega}^{\times} \\ \cup & \cup & \cup \\ D(T) := X_{\Upsilon}^{-1} \mathcal{H} & \xrightarrow{X_{\Upsilon}} & \mathcal{H} \end{array}$$

 $T\xi := X_{\Upsilon}\xi - B\xi, \quad \forall \xi \in D(T),$

where $B\in \mathcal{B}(\mathcal{H})$ is such that $\Upsilon(\cdot,\cdot)=\langle B\cdot|\cdot
angle.$

 \mathcal{T} does not depend on the choice of $\Upsilon \in \mathfrak{P}(\Omega)$.

IWOTA 2017

э

Some properties of T

- **1** D(T) is dense in $\mathcal{E}_{\Omega} := \mathcal{D}[|| \cdot ||_{\Omega}].$
- 2 If T' is an operator with D(T') ⊆ D and Ω(ξ, η) = ⟨T'ξ|η⟩,
 ∀ξ ∈ D(T') and η which belongs to a dense subset of E_Ω,
 then T' ⊆ T.
- **3** A bdd form $\Upsilon(\cdot, \cdot) = \langle B \cdot | \cdot \rangle \in \mathfrak{P}(\Omega) \Leftrightarrow 0 \in \rho(T + B)$. If $\Upsilon(\cdot, \cdot) = -\lambda \langle \cdot | \cdot \rangle$, with $\lambda \in \mathbb{C}$, $\Upsilon \in \mathfrak{P}(\Omega) \Leftrightarrow \lambda \in \rho(T)$.
- if $\Upsilon(\cdot, \cdot) = \langle B \cdot | \cdot \rangle \in \mathfrak{P}(\Omega)$ then T is the unique operator S satisfying

$$\Omega(\xi,\eta) = \langle S\xi | \eta
angle, \qquad orall \xi \in D(S), \eta \in \mathcal{D}$$

and such that S + B has range \mathcal{H} .

Let Ω be a q-closed (respectively solvable) sesquilinear form on \mathcal{D} with respect to a norm $|| \cdot ||_1$ and let $|| \cdot ||_2$ be a norm on \mathcal{D} . Then, Ω is q-closed (respectively solvable) with respect to $|| \cdot ||_2$ if, and only if, $|| \cdot ||_1$ and $|| \cdot ||_2$ are equivalent.

Proposition

Let Ω be a q-closed sesquilinear form on \mathcal{D} with respect to a norm $|| \cdot ||_{\Omega}$ with numerical range $\mathfrak{n}_{\Omega} := {\Omega(\xi, \xi) : \xi \in \mathcal{D}, ||\xi|| = 1} \neq \mathbb{C}$. If $\lambda \notin \mathfrak{n}_{\Omega}$, then $-\lambda \langle \cdot | \cdot \rangle \in \mathfrak{P}(\Omega)$ if, and only if, there exists a constant c > 0 such that

$$c||\xi||_{\Omega}\leq \sup_{||\eta||_{\Omega}=1}|(\Omega-\lambda\iota)(\xi,\eta)|, \qquad orall \xi\in\mathcal{D}.$$

WOTA 2017

If Ω is a q-closed (respectively solvable) sesquilinear form on \mathcal{D} with respect to a norm $||\cdot||_{\Omega}$, then also the adjoint Ω^* is q-closed (respectively solvable) with respect to $||\cdot||_{\Omega}$. If Ω is solvable and T is its associated operator, then T^* is the operator associated to Ω^* .

Corollary

The operator associated to a solvable sesquilinear form is self-adjoint if, and only if, the form is symmetric.

WOTA 2017

The class of solvable forms covers the sesquilinear forms considered by many authors, for instance:

- Lions (1961)
- Kato (1966)
- McIntosh (1968, 1970)
- Fleige, Hassi, de Snoo (2000)
- Schmüdgen (2012)
- Grubišić, Kostrykin, Makarov, Veselić (2013)
- Schmitz (2015).

Example

Let Ω be the sesquilinear form with domain

$$\mathcal{D} := \left\{ f \in L^2(\mathbb{C}) : \int_{\mathbb{C}} |z| |f(z)|^2 dz < \infty \right\}$$

given by $\Omega(f,g) = \int_{\mathbb{C}} zf(z)\overline{g(z)}dz$, $f,g \in \mathcal{D}$. Ω is solvable with respect to the norm

$$||f||_{\Omega} = \left(\int_{\mathbb{C}} (1+|z|)|f(z)|^2 dz\right)^{\frac{1}{2}}, \qquad f \in \mathcal{D}.$$

 Ω does not satisfy the conditions of other representation theorems (in particular Ω is not sectorial). The operator associated to Ω is the multiplication operator by z on $L^2(\mathbb{C})$.

Theorem (Kato's second representation theorem)

Let Ω be closed, positive sesquilinear form on \mathcal{D} and let T be the positive self-adjoint associated operator. Then $\mathcal{D} = D(T^{\frac{1}{2}})$ and

$$\Omega(\xi,\eta) = \langle T^{\frac{1}{2}}\xi | T^{\frac{1}{2}}\eta \rangle, \qquad \forall \xi,\eta \in \mathcal{D}.$$

Definition

A solvable sesquilinear form on \mathcal{D} with associated operator \mathcal{T} is said *hyper-solvable* if $\mathcal{D} = D(|\mathcal{T}|^{\frac{1}{2}})$.

Example

The multiplication form by z on $L^2(\mathbb{C})$ is hyper-solvable.

WOTA 2017

13 / 21

Lemma

If Ω is a hyper-solvable sesquilinear form on $\mathcal D$ with associated operator T, then $\mathcal{D} = D(|T^*|^{\frac{1}{2}})$.

Theorem

wh

Let Ω be a hyper-solvable sesquilinear form on \mathcal{D} with respect to a norm $|| \cdot ||_{\Omega}$ and with associated operator T. Then

$$\Omega(\xi,\eta) = \langle U|T|^{\frac{1}{2}}\xi||T^*|^{\frac{1}{2}}\eta\rangle, \quad \forall \xi,\eta \in \mathcal{D},$$
$$\Omega(\xi,\eta) = \langle |T^*|^{\frac{1}{2}}U\xi||T^*|^{\frac{1}{2}}\eta\rangle, \quad \forall \xi,\eta \in \mathcal{D},$$
where $T = U|T| = |T^*|U$ is the polar decomposition of T , and $||\cdot||_{\Omega}$ is equivalent to the graph norms of $|T|^{\frac{1}{2}}$ and of $|T^*|^{\frac{1}{2}}$.

Example

Let Ω be the multiplication form by z on $L^2(\mathbb{C})$, \mathcal{D} be its domain and M be its associated operator.

$$\begin{split} \Omega(\xi,\eta) &= \langle U|M|^{\frac{1}{2}}\xi||M|^{\frac{1}{2}}\eta\rangle, \qquad \forall \xi,\eta\in\mathcal{D}, \\ \Omega(\xi,\eta) &= \langle |M|^{\frac{1}{2}}U\xi||M|^{\frac{1}{2}}\eta\rangle, \qquad \forall \xi,\eta\in\mathcal{D}, \end{split}$$

where M = U|M| is the polar decomposition of M and in addition $|M| = |M^*|$. More precisely, $|M|^{\frac{1}{2}}$ and U are the multiplication operators by, respectively, $|z|^{\frac{1}{2}}$ and s(z), where $s(z) = \frac{z}{|z|}$ if $z \neq 0$ and s(0) = 0.

Let T be a densely defined, closed operator satisfies (a) there exists $B \in \mathcal{B}(\mathcal{H})$ such that $0 \in \rho(T + B)$; (b) $D(|T|^{\frac{1}{2}}) = D(|T^*|^{\frac{1}{2}})$. Then, there exists a unique hyper-solvable sesquilinear form Ω with

Then, there exists a unique hyper-solvable sesquilinear form Ω with associated operator T.

$$\{ hyper-solvable forms \} \stackrel{1-1}{\longleftrightarrow} \left\{ \begin{array}{c} densely defined closed \\ operators verifying (a) and (b) \end{array} \right\}$$

{symmetric hyper-solvable forms} \longleftrightarrow {self-adjoint operators}

Proposition

Let Ω_1 and Ω_2 be two solvable sesquilinear forms with domains \mathcal{D}_1 and \mathcal{D}_2 , respectively, and with the same associated operator T. If $\mathcal{D}_1 \subseteq \mathcal{D}_2$ then $\mathcal{D}_1 = \mathcal{D}_2$ and $\Omega_1 = \Omega_2$.

Proposition

Let Ω be a solvable sesquilinear form on \mathcal{D} , with associated operator T to Ω . The following statements are equivalent. 1 $\mathcal{D} = D(|T|^{\frac{1}{2}})$, i.e. Ω is hyper-solvable;

2 $\mathcal{D} \subseteq D(|T|^{\frac{1}{2}}) \cap D(|T^*|^{\frac{1}{2}});$

3 $\mathcal{D} \supseteq D(|T|^{\frac{1}{2}}) \cup D(|T^*|^{\frac{1}{2}}).$

A sesquilinear form Ω on \mathcal{D} is q-closed with respect to a norm induced by an inner product, if and only if, there exist a positive self-adjoint operator H, with domain $D(H) = \mathcal{D}$ and $0 \in \rho(H)$, and $Q \in \mathcal{B}(\mathcal{H})$ such that

$$\Omega(\xi,\eta) = \langle QH\xi | H\eta \rangle, \qquad \forall \xi, \eta \in \mathcal{D}.$$
(1)

Suppose that (1) holds and that Ω is also solvable. Then its associated operator is T = HQH defined in the natural domain $D(T) = \{\xi \in \mathcal{D} : QH\xi \in \mathcal{D}\}.$

- A. Fleige, S. Hassi, H. de Snoo, A Krein space approach to representation theorems and generalized Friedrichs extensions, Acta Sci. Math. (Szeged), 66 (2000), 633-650.
- L. Grubišić, V. Kostrykin, K. A. Makarov, K. Veselić, *Representation theorems for indefinite quadratic forms revisited*, Mathematika, 59(1), (2013), 169–189.
- T. Kato, *Perturbation Theory for Linear Operators*, Springer, Berlin, 1966.
- J. L. Lions, Équations différentielles opérationnelles et problèmes aux limites, Berlin-Göttingen-Heidelberg: Springer 1961.

- A. McIntosh, Representation of bilinear forms in Hilbert space by linear operators, Trans. Am. Math. Soc., 131, 2 (1968), 365-377.
- A. McIntosh, *Bilinear forms in Hilbert space*, J. Math. Mech., 19 (1970), 1027–1045.
- S. Schmitz, Representation Theorems for Indefinite Quadratic Forms Without Spectral Gap, Integral Equations Operator Theory, 83 (2015), 73–94.
- K. Schmüdgen, Unbounded Self-adjoint Operators on Hilbert Space, Springer, Dordrecht, 2012.

THANKS FOR THE ATTENTION

Rosario Corso

IWOTA 2017

21 / 21

イロト イポト イヨト イヨト

2