Representation Theorems for Solvable Sesquilinear Forms

Rosario Corso

Università degli Studi di Palermo

Joint work with Camillo Trapani

IWOTA 2017
Chemnitz, 14 August 2017

Representation Theorems for Solvable Sesquilinear Forms

(1) S. Di Bella, C. Trapani, Some representation theorems for sesquilinear forms, J. Math. Anal. Appl., 451 (2017), 64-83.
(2) R. Corso, C. Trapani, Representation Theorems for Solvable Sesquilinear Forms, Integral Equations Operator Theory, published online, 2017.
(3) R. Corso, A Kato's second type representation theorem for solvable sesquilinear forms, arXiv:1707.05073, math.FA, 2017.

Let \mathcal{H} be a Hilbert space, with inner product $\langle\cdot \mid \cdot\rangle$ and norm $\|\cdot\|$.

Theorem

If Ω is a bounded sesquilinear form on \mathcal{H}, then there exists a unique bounded operator T such that

$$
\Omega(\xi, \eta)=\langle T \xi \mid \eta\rangle \quad \forall \xi, \eta \in \mathcal{H}
$$

Theorem (Kato's first representation theorem)

Let Ω be a closed, sectorial sesquilinear form on a dense subspace \mathcal{D} of \mathcal{H}. Then, there exists a unique m-sectorial operator T, with $D(T) \subseteq \mathcal{D}$, such that

$$
\Omega(\xi, \eta)=\langle T \xi \mid \eta\rangle, \quad \forall \xi \in D(T), \eta \in \mathcal{D}
$$

Q-closed and solvable sesquilinear forms

Let \mathcal{D} be a dense subspace of \mathcal{H}.

Definition

A sesquilinear form Ω on \mathcal{D} is called q-closed with respect to a norm $\|\cdot\|_{\Omega}$ on \mathcal{D} if
(1) $\mathcal{E}_{\Omega}:=\mathcal{D}\left[\|\cdot\|_{\Omega}\right]$ is a reflexive Banach space;
(2) the embedding $\mathcal{E}_{\Omega} \rightarrow \mathcal{H}$ is continuous;
(3) Ω is bounded on \mathcal{E}_{Ω}.

Under these hypotheses, a Banach-Gelfand triplet $\mathcal{E}_{\Omega} \hookrightarrow \mathcal{H} \hookrightarrow \mathcal{E}_{\Omega}^{\times}$ is well-defined.

Let Ω be a q-closed sesquilinear form with respect to a norm $\|\cdot\|_{\Omega}$ on \mathcal{D}. Let Υ be a bounded sesquilinear form on \mathcal{H}. We can define the bounded operator

$$
\begin{aligned}
X_{\Upsilon}: \mathcal{E}_{\Omega} & \rightarrow \mathcal{E}_{\Omega}^{\times} \\
\xi & \mapsto \Omega_{\Upsilon}^{\xi},
\end{aligned}
$$

where $\left\langle\Omega_{\curlyvee}^{\xi} \mid \eta\right\rangle=\Omega(\xi, \eta)+\Upsilon(\xi, \eta)$, for all $\eta \in \mathcal{E}_{\Omega}$. We denote by $\mathfrak{P}(\Omega)$ the set of bounded sesquilinear forms Υ on \mathcal{H}, such that X_{Υ} is a bijection.

Definition

If the set $\mathfrak{P}(\Omega)$ is not empty, then Ω is said to be solvable with respect to $\|\cdot\|_{\Omega}$.

The first representation theorem

Theorem

Let Ω be a solvable sesquilinear form on \mathcal{D} with respect to a norm $\|\cdot\|_{\Omega}$. Then there exists a closed operator T, with dense domain $D(T) \subseteq \mathcal{D}$ in \mathcal{H}, such that

$$
\Omega(\xi, \eta)=\langle T \xi \mid \eta\rangle, \quad \forall \xi \in D(T), \eta \in \mathcal{D}
$$

The operator T is said associated to Ω.

The construction of T

By hypothesis $\mathfrak{P}(\Omega) \neq \varnothing$. Let $\Upsilon \in \mathfrak{P}(\Omega)$, then $X_{\Upsilon}: \mathcal{E}_{\Omega} \rightarrow \mathcal{E}_{\Omega}^{\times}$is a bijection.

$$
\begin{array}{ccc}
\mathcal{E}_{\Omega} & \xrightarrow{x_{\Upsilon}} & \mathcal{E}_{\Omega}^{\times} \\
\cup & & \cup \\
U(T):=X_{\Upsilon}{ }^{-1} \mathcal{H} \xrightarrow{x_{\Upsilon}} & \mathcal{H} \\
T \xi:=X_{\Upsilon} \xi-B \xi, & \forall \xi \in D(T),
\end{array}
$$

where $B \in \mathcal{B}(\mathcal{H})$ is such that $\Upsilon(\cdot, \cdot)=\langle B \cdot \mid \cdot\rangle$.
T does not depend on the choice of $\Upsilon \in \mathfrak{P}(\Omega)$.

Some properties of T

(1) $D(T)$ is dense in $\mathcal{E}_{\Omega}:=\mathcal{D}[\|\cdot\| \Omega]$.
(2) If T^{\prime} is an operator with $D\left(T^{\prime}\right) \subseteq \mathcal{D}$ and $\Omega(\xi, \eta)=\left\langle T^{\prime} \xi \mid \eta\right\rangle$, $\forall \xi \in D\left(T^{\prime}\right)$ and η which belongs to a dense subset of \mathcal{E}_{Ω}, then $T^{\prime} \subseteq T$.
(3) A bdd form $\Upsilon(\cdot, \cdot)=\langle B \cdot \mid \cdot\rangle \in \mathfrak{P}(\Omega) \Leftrightarrow 0 \in \rho(T+B)$. If $\Upsilon(\cdot, \cdot)=-\lambda(\cdot \cdot \cdot)$, with $\lambda \in \mathbb{C}, \Upsilon \in \mathfrak{P}(\Omega) \Leftrightarrow \lambda \in \rho(T)$.
(4) if $\Upsilon(\cdot, \cdot)=\langle B \cdot \mid \cdot\rangle \in \mathfrak{P}(\Omega)$ then T is the unique operator S satisfying

$$
\Omega(\xi, \eta)=\langle S \xi \mid \eta\rangle, \quad \forall \xi \in D(S), \eta \in \mathcal{D}
$$

and such that $S+B$ has range \mathcal{H}.

Theorem

Let Ω be a q-closed (respectively solvable) sesquilinear form on \mathcal{D} with respect to a norm $\|\cdot\|_{1}$ and let $\|\cdot\|_{2}$ be a norm on \mathcal{D}. Then, Ω is q-closed (respectively solvable) with respect to $\|\cdot\|_{2}$ if, and only if, $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ are equivalent.

Proposition

Let Ω be a q-closed sesquilinear form on \mathcal{D} with respect to a norm $\|\cdot\|_{\Omega}$ with numerical range $\mathfrak{n}_{\Omega}:=\{\Omega(\xi, \xi): \xi \in \mathcal{D},\|\xi\|=1\} \neq \mathbb{C}$. If $\lambda \notin \mathfrak{n}_{\Omega}$, then $-\lambda\langle\cdot \mid \cdot\rangle \in \mathfrak{P}(\Omega)$ if, and only if, there exists a constant $c>0$ such that

$$
c\|\xi\|_{\Omega} \leq \sup _{\|\eta\|_{\Omega}=1}|(\Omega-\lambda \iota)(\xi, \eta)|, \quad \forall \xi \in \mathcal{D}
$$

Theorem

If Ω is a q-closed (respectively solvable) sesquilinear form on \mathcal{D} with respect to a norm $\|\cdot\|_{\Omega}$, then also the adjoint Ω^{*} is q-closed (respectively solvable) with respect to $\|\cdot\|_{\Omega}$. If Ω is solvable and T is its associated operator, then T^{*} is the operator associated to Ω^{*}.

Corollary

The operator associated to a solvable sesquilinear form is self-adjoint if, and only if, the form is symmetric.

Special cases

The class of solvable forms covers the sesquilinear forms considered by many authors, for instance:

- Lions (1961)
- Kato (1966)
- McIntosh $(1968,1970)$
- Fleige, Hassi, de Snoo (2000)
- Schmüdgen (2012)
- Grubišić, Kostrykin, Makarov, Veselić (2013)
- Schmitz (2015).

Example

Let Ω be the sesquilinear form with domain

$$
\mathcal{D}:=\left\{f \in L^{2}(\mathbb{C}): \int_{\mathbb{C}}|z||f(z)|^{2} d z<\infty\right\}
$$

given by $\Omega(f, g)=\int_{\mathbb{C}} z f(z) \overline{g(z)} d z, f, g \in \mathcal{D}$.
Ω is solvable with respect to the norm

$$
\|f\|_{\Omega}=\left(\int_{\mathbb{C}}(1+|z|)|f(z)|^{2} d z\right)^{\frac{1}{2}}, \quad f \in \mathcal{D}
$$

Ω does not satisfy the conditions of other representation theorems (in particular Ω is not sectorial). The operator associated to Ω is the multiplication operator by z on $L^{2}(\mathbb{C})$.

The second representation theorem

Theorem (Kato's second representation theorem)

Let Ω be closed, positive sesquilinear form on \mathcal{D} and let T be the positive self-adjoint associated operator. Then $\mathcal{D}=D\left(T^{\frac{1}{2}}\right)$ and

$$
\Omega(\xi, \eta)=\left\langle T^{\frac{1}{2}} \xi \left\lvert\, T^{\frac{1}{2}} \eta\right.\right\rangle, \quad \forall \xi, \eta \in \mathcal{D} .
$$

Definition

A solvable sesquilinear form on \mathcal{D} with associated operator T is said hyper-solvable if $\mathcal{D}=D\left(|T|^{\frac{1}{2}}\right)$.

Example

The multiplication form by z on $L^{2}(\mathbb{C})$ is hyper-solvable.

Lemma

If Ω is a hyper-solvable sesquilinear form on \mathcal{D} with associated operator T, then $\mathcal{D}=D\left(\left\lvert\, T^{*} \frac{1}{2}\right.\right)$.

Theorem

Let Ω be a hyper-solvable sesquilinear form on \mathcal{D} with respect to a norm $\|\cdot\|_{\Omega}$ and with associated operator T. Then

$$
\begin{array}{ll}
\left.\Omega(\xi, \eta)=\left.\left.\langle U| T\right|^{\frac{1}{2}} \xi| | T^{*}\right|^{\frac{1}{2}} \eta\right\rangle, & \forall \xi, \eta \in \mathcal{D} \\
\left.\Omega(\xi, \eta)=\left.\left.\langle | T^{*}\right|^{\frac{1}{2}} U \xi| | T^{*}\right|^{\frac{1}{2}} \eta\right\rangle, & \forall \xi, \eta \in \mathcal{D}
\end{array}
$$

where $T=U|T|=\left|T^{*}\right| U$ is the polar decomposition of T, and $\|\cdot\|_{\Omega}$ is equivalent to the graph norms of $|T|^{\frac{1}{2}}$ and of $\left|T^{*}\right|^{\frac{1}{2}}$.

Example

Let Ω be the multiplication form by z on $L^{2}(\mathbb{C}), \mathcal{D}$ be its domain and M be its associated operator.

$$
\begin{array}{ll}
\left.\Omega(\xi, \eta)=\left.\left.\langle U| M\right|^{\frac{1}{2}} \xi| | M\right|^{\frac{1}{2}} \eta\right\rangle, & \forall \xi, \eta \in \mathcal{D}, \\
\left.\Omega(\xi, \eta)=\left.\left.\langle | M\right|^{\frac{1}{2}} U \xi| | M\right|^{\frac{1}{2}} \eta\right\rangle, & \forall \xi, \eta \in \mathcal{D},
\end{array}
$$

where $M=U|M|$ is the polar decomposition of M and in addition $|M|=\left|M^{*}\right|$.
More precisely, $|M|^{\frac{1}{2}}$ and U are the multiplication operators by, respectively, $|z|^{\frac{1}{2}}$ and $s(z)$, where $s(z)=\frac{z}{|z|}$ if $z \neq 0$ and $s(0)=0$.

Theorem

Let T be a densely defined, closed operator satisfies
(a) there exists $B \in \mathcal{B}(\mathcal{H})$ such that $0 \in \rho(T+B)$;
(b) $D\left(|T|^{\frac{1}{2}}\right)=D\left(\left|T^{*}\right|^{\frac{1}{2}}\right)$.

Then, there exists a unique hyper-solvable sesquilinear form Ω with associated operator T.
$\{$ hyper-solvable forms $\} \stackrel{1-1}{\longleftrightarrow}\left\{\begin{array}{c}\text { densely defined closed } \\ \text { operators verifying (a) and (b) }\end{array}\right\}$
\{symmetric hyper-solvable forms $\} \stackrel{1-1}{\longleftrightarrow}$ \{self-adjoint operators $\}$

Proposition

Let Ω_{1} and Ω_{2} be two solvable sesquilinear forms with domains \mathcal{D}_{1} and \mathcal{D}_{2}, respectively, and with the same associated operator T. If $\mathcal{D}_{1} \subseteq \mathcal{D}_{2}$ then $\mathcal{D}_{1}=\mathcal{D}_{2}$ and $\Omega_{1}=\Omega_{2}$.

Proposition

Let Ω be a solvable sesquilinear form on \mathcal{D}, with associated operator T to Ω. The following statements are equivalent.
(1) $\mathcal{D}=D\left(|T|^{\frac{1}{2}}\right)$, i.e. Ω is hyper-solvable;
(2) $\mathcal{D} \subseteq D\left(|T|^{\frac{1}{2}}\right) \cap D\left(\left|T^{*}\right|^{\frac{1}{2}}\right)$;
(3) $\mathcal{D} \supseteq D\left(|T|^{\frac{1}{2}}\right) \cup D\left(\left|T^{*}\right|^{\frac{1}{2}}\right)$.

Theorem

A sesquilinear form Ω on \mathcal{D} is q-closed with respect to a norm induced by an inner product, if and only if, there exist a positive self-adjoint operator H, with domain $D(H)=\mathcal{D}$ and $0 \in \rho(H)$, and $Q \in \mathcal{B}(\mathcal{H})$ such that

$$
\begin{equation*}
\Omega(\xi, \eta)=\langle Q H \xi \mid H \eta\rangle, \quad \forall \xi, \eta \in \mathcal{D} . \tag{1}
\end{equation*}
$$

Suppose that (1) holds and that Ω is also solvable. Then its associated operator is $T=H Q H$ defined in the natural domain $D(T)=\{\xi \in \mathcal{D}: Q H \xi \in \mathcal{D}\}$.

Further references

A. Fleige, S. Hassi, H. de Snoo, A Krein space approach to representation theorems and generalized Friedrichs extensions, Acta Sci. Math. (Szeged), 66 (2000), 633-650.
圊 L. Grubišić, V. Kostrykin, K. A. Makarov, K. Veselić, Representation theorems for indefinite quadratic forms revisited, Mathematika, 59(1), (2013), 169-189.
围 T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966.
J. L. Lions, Équations différentielles opérationnelles et problèmes aux limites, Berlin-Göttingen-Heidelberg: Springer 1961.

R A. McIntosh, Representation of bilinear forms in Hilbert space by linear operators, Trans. Am. Math. Soc., 131, 2 (1968), 365-377.
A. McIntosh, Bilinear forms in Hilbert space, J. Math. Mech., 19 (1970), 1027-1045.

囯 S. Schmitz, Representation Theorems for Indefinite Quadratic Forms Without Spectral Gap, Integral Equations Operator Theory, 83 (2015), 73-94.

國 K. Schmüdgen, Unbounded Self-adjoint Operators on Hilbert Space, Springer, Dordrecht, 2012.

THANKS FOR THE ATTENTION

