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Approximation sequences and stability

Let A ∈ L(l2) and

Pn : l2 → l2, (xn)n≥0 7→ (x0, . . . , xn−1, 0, 0, . . .).

To solve an operator equation Au = f numerically by the finite
sections discretization (FSD), consider the sequence of the
equations

(PnA|imPn)un = Pnf, n = 1, 2, . . .

The sequence (PnA|imPn) is stable if there is an n0 such that the
PnA|imPn are invertible for n ≥ n0 and their inverses are uniformly
bounded.
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Algebras of approximation sequences

Let F stand for the set of all bounded sequences (An) of operators
An : imPn → imPn. Provided with the operations

(An) + (Bn) = (An +Bn), (An)(Bn) = (AnBn), (An)
∗ = (A∗n)

and the supremum norm, F becomes a C∗-algebra, and
G = {(An) : ‖An‖ → 0} is a closed ideal of F .

Stability theorem (Kozak)

A sequence (An) ∈ F is stable if and only if the coset (An) + G is
invertible in the quotient algebra F/G.
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Example: The algebra of the FSD for Toeplitz operators

For a ∈ C(T), with kth Fourier coefficient ak, the Toeplitz
operator T (a) ∈ L(l2) is given by its matrix representation
(ai−j)i,j≥0.

The Toeplitz algebra T(C) is the smallest closed subalgebra of
L(l2) which contains all Toeplitz operators T (a) with
a ∈ C(T).
The algebra of the FSD for Toeplitz operators S(T(C)) is the
smallest closed subalgebra of F , the algebra of all bounded
sequences (An) with An : imPn → imPn, which contains all
sequences (PnT (a)Pn) with a ∈ C(T).
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The algebra S(T(C)) of the FSD for Toeplitz operators

Theorem (Böttcher, Silbermann 1983)

(a) S(T(C)) consists exactly of all sequences (An) where

An = PnT (a)Pn + PnKPn +RnLRn +Gn

with a ∈ C(T), K, L compact and (Gn) ∈ G. This representation
is unique.

(b) A sequence A = (An) ∈ S(T(C)) is stable (i.e., A/G is
invertible) if and only if W (A) := s-limAnPn and

W̃ (A) := s-limRnAnRn are invertible.

Here, Rn : l2 → l2, (xn)n≥0 7→ (xn−1, . . . , x0, 0, 0, . . .).
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Fractal algebras

Given η : N→ N strictly increasing, let

Fη := {(Aη(n)) : (An) ∈ F} the restricted algebra,

Rη : F → Fη, (An) 7→ (Aη(n)) the restriction mapping.

Definition of a fractal algebra

Let A be a C∗-subalgebra of F .

(a) a homomorphism W : A → B is fractal if

∀η ∃Wη : Aη → B such that W =WηRη|A.

(b) the algebra A is fractal if the canonical homomorphism
π : A → A/(A ∩ G) is fractal.

Example: S(T(C)) is fractal.
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Properties of sequences in fractal algebras

Let (An) be a sequence in a fractal subalgebra of F . Then

lim ‖An‖ exists and is equal to ‖(An) + G‖,
if (An) = (An)

∗, then lim spec (An) = spec ((An) + G),
lim spec ε(An) = spec ε((An) + G),
(A ∩K)/G is a dual algebra,

and more...

Theorem

A C∗-subalgebra A of F is fractal if and only if the limit lim ‖An‖
exists for every sequence (An) ∈ A.
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The fractal restriction theorem

For every separable C∗-subalgebra A of F , there is a strictly
increasing η such that Aη is fractal.

(Proof: Diagonal argument.)
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The fractal exhaustion theorem

For every separable C∗-subalgebra A of F , there exists a (finite or
infinite) number of strictly increasing sequences η1, η2, . . . with

ηi(N) ∩ ηj(N) = ∅ for i 6= j and ∪i ηi(N) = N

such that every restriction Aηi is fractal.

(Proof: Repeated use of the fractal restriction theorem.)

We call A piecewise fractal if the number of restrictions in the
fractal exhaustion theorem is finite.
A is quasifractal if every restriction of A has a fractal restriction.
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Example: Full FSD for Block Toeplitz operators

Consider Toeplitz operators T (a) with a : T→ CN×N continuous.
Let S(T(CN×N )) denote the related algebra of the (full) FSD.

Theorem

(a) S(T(CN×N )) consists exactly of all sequences (An) where

An = PnT (a)Pn + PnKPn +RnLκ(n)Rn +Gn

with a ∈ C(T)N×N , K, Li compact, (Gn) ∈ G, and κ(n) is the
remainder of n mod N .

(b) A sequence A = (An) ∈ S(T(C)) is stable if and only if

W (A) := s-limAnPn and W̃i(A) := s-limRnN+iAnN+iRnN+i

are invertible.

Consequently, S(T(CN×N )) is piecewise fractal.
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A C∗-algebra is called

elementary if it is isomorphic to K(H) for a Hilbert space H;

dual if it is isomorphic to a direct sum of elementary algebras.

Theorem

Let A be a unital and piecewise fractal C∗-subalgebra of F which
contains the ideal G. Then (A ∩K)/G is a dual algebra.

Consequences:

Lifting theorem,

splitting of singular values,

formula for α-numbers....
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Example: Continuous functions of Toeplitz operators

Let X = [0, 1] and (ξn) a dense sequence in X. Let S(X, T(C))
stand for the smallest closed C∗-subalgebra of F which contains
all sequences (PnA(ξn)Pn) where A : X → T(C) is a continuous
function. Clearly, S(T(C)) ⊆ S(X, T(C)).

Theorem

The algebra S(X, T(C)) is quasifractal.

(Proof: Every subsequence of (ξn) has a convergent subsequence
(ξη(n)). The restriction S(X, T(C))η is fractal.)
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The fractal variety of an algebra

Notation: identify strictly increasing sequences η with their
range M = η(N).
For a C∗-subalgebra A of F , let frA stand for the set of all
infinite subsets M of N such that the restriction A|M is fractal.

Call M1, M2 ∈ frA equivalent if M1 ∪M2 ∈ frA. Then write
M1 ∼M2.

Goals:

Describe the fractal variety (frA)∼ := frA/ ∼ of A.

Describe the structure of quasifractal algebras.
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Remember:

Theorem

A C∗-subalgebra A of F is fractal if and only if the limit lim ‖An‖
exists for every sequence (An) ∈ A.

Given a quasifractal algebra A, let L(A) be the smallest closed
complex subalgebra of l∞(N) which contains all sequences (‖An‖)
with (An) ∈ A.

L(A) is a commutative C∗-algebra; it is quasiconvergent in the
following sense.
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Quasiconvergent algebras (I)

A C∗-subalgebra L of l∞ is quasiconvergent if for every infinite
subset M′ of N there is an infinite subset M of M′ such that every
sequence in L|M converges.
Let crL denote the set of all infinite subsets M of N such that all
sequences in L|M converge.

Theorem

An algebra A ⊆ F is quasifractal if and only if L(A) ⊆ l∞ is
quasiconvergent. In this case,

frA = crL(A).

(Proof: The norm limit criterium for fractality.)
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Quasiconvergent algebras (II)

For every M ∈ crL, the mapping

ϕM : L → C, a 7→ lim(a|M)

is a multiplicative linear functional on L which is a character if M
is non-degenerated, i.e. L|M 6⊆ c0|M. Since L ∩ c0 is in the kernel
of this functional, the quotient mapping

ϕM : L/(L ∩ c0)→ C, a+ (L ∩ c0) 7→ lim(a|M) (1)

is well defined. This mapping is a character of L/(L ∩ c0) if M is
non-degenerated.

Theorem

Let L be a unital, separable and quasiconvergent C∗-subalgebra of
l∞. Then {ϕM : M ∈ crL} = Max (L/(L ∩ c0)).
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Sketch of the Proof.

Step 1: {ϕM : M ∈ crL} is strictly spectral.

If a+ (L ∩ c0) is not invertible in L/(L ∩ c0), then a+ c0 is not
invertible in L/c0. Let M′ be an infinite subset of N such that
a|M′ → 0. Since L is quasiconvergent, there is an infinite subset M
of M′ which belongs to crL. The character associated with M
satisfies ϕM(a) = 0. Conversely, if a ∈ L and ϕM(a) 6= 0 for all
M ∈ crL, then a+ (L ∩ c0) is invertible in L/(L ∩ c0).

Step 2: {ϕM : M ∈ crL} is exhausting.

By a theorem of Nistor/Prudhon (Preprint 2014), every strictly
spectral family on a separable C∗-algebra is exhausting. (In the
concrete setting, there is a simple direct proof.)
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Quasiconvergent algebras (III)

Let L ⊆ l∞. Which sets M ∈ crL generate the same character?

Call M1, M2 ∈ crL equivalent if M1 ∪M2 ∈ crL. Then write
M1 ∼M2.

By this definition, the mapping

(crL)∼ → {ϕM : M ∈ crL}, M∼ 7→ ϕM

is a (well defined) bijection. Combining this observation with the
previous theorem we obtain:

Theorem

Let L be a unital, separable and quasiconvergent C∗-subalgebra of
l∞. Then the mapping M∼ 7→ ϕM is a bijection from (crL)∼ onto
Max (L/(L ∩ c0)).
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The fractal variety as a compact Hausdorff space...

Let A be a unital and quasifractal C∗-subalgebra of F such that
L(A) is separable. Then

frA = crL(A),
(frA)∼ = (crL(A))∼,

L(A) is separable and quasiconvergent.

Thus, there is a (well defined) bijection

(frA)∼ → Max (L(A)/(L(A) ∩ c0)), M∼ 7→ ϕM

which allows to transfer the Gelfand topology of
Max (L(A)/(L(A) ∩ c0)) onto (frA)∼, making the latter to a
compact Hausdorff space.
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... and quasifractal algebras as continuous fields (I)

Let X be a compact Hausdorff space and B be the direct product
of a family {Bx}x∈X of C∗-algebras. A continuous field of
C∗-algebras over X is a C∗-subalgebra C of B such that:

(a) C is maximal, i.e., Bx = {c(x) : c ∈ C} for every x ∈ X,
(b) the function X → C, x 7→ ‖c(x)‖ is continuous for every c ∈ C.

Let A be a unital and quasifractal C∗-subalgebra of F for which
L(A) is separable. Set X = (frA)∼, for M ∈ frA define BM as
A|M/(A|M ∩ G|M), and let B be the direct product of the family
{BM}M∈frA. Every sequence A ∈ A determines a function in B via

M 7→ A|M + (A|M ∩ G|M) ∈ A|M/(A|M ∩ G|M). (2)

Let C be the set of all functions (2) with A ∈ A.
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... and quasifractal algebras as continuous fields (II)

Theorem

Let A be a unital and quasifractal C∗-subalgebra of F for which
L(A) is separable. Then

(a) C is a continuous field of C∗-algebras over (frA)∼,
(b) the mapping which sends A+ (A ∩ G) to the function (2) is a
∗-isomorphism from A/(A ∩ G) onto C.

Thank you for your attention.
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