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Born 1937 
 

Ridderkerk 
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Studied in Leiden 
 

Oldest University in The Netherlands 
 

Founded in 1575 
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PhD in 1964 (Leiden)

Postdoc University of California at Los Angeles, 1965 - 1966

VU University Amsterdam 1966 – 2002

Emeritus Professor 2002 – · · · (active!)
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Hence the title:

half a century of operator theory

in

Amsterdam
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Many Ph.D students (17)

MatScinet: 234 publications

Co-author of 9 books

Lots of collaborators
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Research interests mentioned in CV:

Analysis and Operator Theory,

and various connections between Operator Theory Matrix The-

ory and Mathematical Systems Theory

In particular, Wiener-Hopf integral equations and Toeplitz

operators and their nonstationary variants

State space methods for problems in Analysis

Metric constrained interpolation problems,

and various extension and completion problems for

partially defined matrices or operators,

including relaxed commutant lifting problems.
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In the available time impossible to cover

all aspects

all connections

all references

Aim:
Just to give an impression on what Kaashoek has been working
on

Emphasis on ideas / less on specific results

Not all the time mentioning of co-authors involved
List of them (MathSciNet):
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PhD in 1964 

 

Supervisor A.C. Zaanen 
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Doctoral Thesis:

Closed linear operators on Banach spaces

One of the issues:

Local behavior of operator pencils λS − T
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Sufficient conditions for

dim Ker (λS − T ), codim Im (λS − T )

to be constant on deleted neighborhood of the origin

Determination size of the neighborhood

Extension work of Gohberg/Krein and Kato
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Postdoc University of California at Los Angeles, 1965 - 1966

Upon return to Amsterdam:

Suggestion to HB: try generalization

pencils λS − T → analytic operator functions W (λ)

(admitting local power series expansions)
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Important tool: linearization / reduction to the pencil case:

local properties W (λ)↔ local properties λSW −TW

Suitable operators SW and TW on ’big(ger)’ spaces

Defined in terms of power series expansion

W (λ) =
∞∑
k=0

λkWk

Inspired by (among others, but mainly)

Karl-Heinz Foerster († 29–1–2017)
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Local properties W (λ)↔ local properties pencil λSW −TW

Drawbacks:

local behavior instead of global behavior

pencil λSW −TW instead of spectral item λIW −TW

Helpful in some circumstances: SW left invertible

1975: Enters Israel Gohberg
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Gohberg, Kaashoek, Lay:

Global reduction to spectral case λI−T

(killing two birds with one stone)

Linearization by equivalence after extension

[
W (λ) 0

0 IZ

]
= E(λ)(λI−TW )F (λ)

E(λ), F (λ) analytic equivalence functions

(Many) properties W (λ)↔ properties spectral pencil λI−TW
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Further analysis

Underlying concept: realization

Representation in the form

W (λ) = D + C(λIX −A)−1B (: Y → Y )

Important case: D = IY
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NB Misprint on next slide:

ŷ(λ) = (D + C(λ−A)−1B

should be

ŷ(λ) = (D + C(λ−A)−1B)û(λ)
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Input u Output y 
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Background (2): Livsic-Brodskii characteristic function

Characteristic functions of Livsic-Brodskii type, i.e.,

IH + 2iK∗(λIG −A)−1K, KK∗ =
1

2i
(A−A∗)

H,G Hilbert spaces

Designed to handle operators not far from being selfadjoint

Invariant subspace problem

Echo:
Bart, Gohberg, Kaashoek: Operator polynomials as inverses of
characteristic functions, 1978
First paper in first issue of the newly founded IEOT
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Realization takes different concrete forms depending on analyt-

icity/continuity properties W (λ)

For instance:

• W (λ) analytic on bounded Cauchy domain and continuous to-

ward its boundary Γ (D identity operator)

• Wλ) analytic on bounded open set, no boundary requirement

(Mitiagin, 1978)

• Wλ) rational matrix function, analytic at infinity

(Systems Theory)
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Connection with realization

W (λ) = D + C(λIX −A)−1B

Linearization by equivalence after two-sided extension:

[
W (λ) 0

0 IX

]
= E(λ)

[
λIX − (A−BD−1C) 0

0 IY

]
F (λ)

(Many) properties W (λ)↔ properties spectral pencil λIX −A×

A×= A-BD−1C

W (λ)−1 = D−1 −D−1C(λIX −A×)−1BD−1
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Realization, factorization, invariant subspaces

W (λ) = IY + C(λIX −A)−1B

W (λ)−1 = IY -C(λIX −A×)−1B

(D = IY for simplicity)

M invariant subspace A

M× invariant subspace A× = A−BC

Matching: X = M uM×
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Induces factorization W (λ) = W1(λ)W2(λ)

W1(λ) = IY + C(λIX −A)−1(I − P )B

W2(λ) = IY + CP (λIX −A)−1B

P = projection of X = M uM× onto M× along M

W1(λ)−1 = IY − C(I − P )(λIX −A)−1B

W2(λ)−1 = IY − C(λIX −A)−1PB

Factorization Principle

Bart/Gohberg/Kaashoek and Van Dooren (1978)
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Opportunities:

• Choice realization W (λ) = D + C(λIX −A)−1B

for instance minimal

• Choice (matching) invariant subspaces M and M×

for instance spectral subspaces

Corresponds to factorizations with special properties pertinent

to the particular application at hand

• Stability of factorizations ↔ stability invariant subspaces
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Example:

The (vector-valued) Wiener-Hopf integral equation

φ(t)−
∫ ∞

0
k(t− s)φ(s) ds = f(t), t ≥ 0

Kernel function k ∈ Ln×n1 (−∞,∞)

Given function f ∈ Ln1[0,∞)

Desired solution function φ ∈ Ln1[0,∞)
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Associated operator H : Ln1[0,∞)→ Ln1[0,∞)

(Hφ)(t) = φ(t)−
∫ ∞

0
k(t− s)φ(s) ds, t ≥ 0

Symbol: W (λ) = In −
∫ +∞

−∞
eiλtk(t)dt

Continuous on the real line

limλ∈R, |λ|→∞ W (λ) = In (Riemann-Lebesgue)

Fredholm properties H ↔ factorization properties W (λ)
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H : Ln1[0,∞)→ Ln1[0,∞) invertible

m

W (λ) admits canonical Wiener-Hopf factorization

W (λ) = W−(λ)W+(λ)

Factors W−(λ) and W+(λ) satisfying certain analyticity,

continuity and invertibility conditions

on lower and upper half plane, respectively

Needed for effective description inverse H:

concrete knowledge W−(λ) and W+(λ)
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Application ’state space method’ involving the use of realization

Assumption: W (λ) rational n× n matrix function

Realization W (λ) = In + C(λIm −A)−1B

A no real eigenvalue (continuity on the real line)

(Real line splits the non-connected spectrum of the m × m

matrix A)
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Application Factorization Principle:

H : Ln1[0,∞)→ Ln1[0,∞) invertible

m

A× = A−BC no real eigenvalue and Cm = M uM×

• M= spectral subspace A / upper half plane

• M×= spectral subspace A× / lower half plane
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Description inverse of H:

(H−1f)(t) = f(t) +
∫ ∞

0
κ(t, s)f(s) ds, t ≥ 0

κ(t, s) =


+iCe−itA×PeisA×B, s < t,

–iCe−itA×(Im − P )eisA×B, s > t.

P = projection of Cm = M uM× onto M× along M

NB: semigroups entering the picture!

33



Non-invertible case

Realization W (λ) = In + C(λIm −A)−1B

A no real eigenvalue

Wiener-Hopf operator H Fredholm ⇔ A× no real eigenvalue

Fredholm characteristics:

dim KerH = dim (M ∩M×)

codim ImH = codim (M +M×)

indexH = dim KerH − codim ImH = dimM − codimM×
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Situation when W (λ) = In + C(λIm − A)−1B does not allow for
a canonical Wiener-Hopf factorization

Non-canonical factorization:

W (λ) = W−(λ)



(
λ−i
λ+i

)κ1 0 · · · 0

0
(
λ−i
λ+i

)κ2 ...

... . . . 0

0 · · · 0
(
λ−i
λ+i

)κn


W+(λ)

κ1 ≤ κ2 ≤ · · · ≤ κn: factorization indices (unique)

Can be described explicitly in terms of A,B,C and M,M×
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Similar approach works for

• Block Toeplitz operators

• Singular integral equations

• Riemann-Hilbert boundary value problem
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Impression of additional applications

Titles Part IV-VII from the monograph

A State Space Approach to Canonical Factorization

with Applications

(Bart, Gohberg, Kaashoek, Ran, OT 200, 2010):

• Factorization of selfadjoint matrix functions

• Riccati equations and factorization

• Factorization with symmetries

(Etc.)
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Also in the monograph: application tot the transport equation

Integro-differential equation modeling radiative transfer in stellar

atmosphere

Can be written as Wiener-Hopf integral equation with operator

valued kernel

Employs infinite dimensional version of the Factorization

Principle

Invertibility of the associated operator involves matching of two

specific spectral subspaces of two concrete self-adjoint operators

(albeit w.r.t. different inner products)
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Transport equation: instance of non-rational case

Leads up to considering situations where there is no analyticity

at infinity

Realizations W (λ) = IY +C(λIX −A)−1B involving unbounded

operators

Considerable technical difficulties

Direct sum decompositions associated with connected spectra.
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Led to new concept in semigroup theory: bisemigroup

S direct sum of of two possibly unbounded closed

operators S− and S+

−S− and +S+ generators of exponentially decaying semigroups

Bisemigroup generated by S:

E(t;S) =

 −e
tS−, t < 0

+etS+, t > 0

Generalization of semigroup

Not to be confused with the notion of a group
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Simple Example:

A =

[
i 0

0 −i

]
, S = −iA =

[
1 0

0 −1

]

Group generated by S:

etS =

[
et 0

0 e−t

]
, −∞ < t < +∞

Bisemigroup generated by S:

E(t;S) =

[
−et 0

0 0

]
, −∞ < t < 0

E(t;S) =

[
0 0

0 e−t

]
, 0 < t < +∞
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Bisemigroups introduced in BGK paper in
Journal of Functional Analysis 1986

Sparked off considerable ’follow up’:

Cornelis van der Mee (student Kaashoek):
Exponentially dichotomous operators and applications
OT 182, 2008
Applications: Wiener-Hopf factorization and Riccati equations,
transport equations, diffusion equations of indefinite Sturm-Liouville
type, noncausal infinite dimensional linear continuous-time sys-
tems, and functional differential equations of mixed type

Semi-Plenary Talk IWOTA 2014
Christian Wyss: Dichotomy, spectral subspaces and unbounded
projections
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Umbrella:

State space method in analysis

OT 200: A State Space Approach to Canonical factorization

with Applications (BGKR, 2010)

Still very much alive

Latest paper showing this in the title:

Frazho, Ter Horst, Kaashoek: State space formulas for a

suboptimal rational Leech problem I: Maximum entropy solution

(2014)
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As indicated earlier: also other ’Kaashoek topics’

Mention here:

Completion, extension and interpolation problems

General issue:

Object partly known/given

Determine missing parts such that certain conditions are satis-

fied

44



Example: Positive completions of band matrices



* * * * * * * * ? ? ? ? ?

∗ * * * * * * * * ? ? ? ?

* * * * * * * * * * ? ? ?

* * * * * * * * * * * ? ?

* * * * * * * * * * * * ?

* * * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * *

? * * * * * * * * * * * *

? ? * * * * * * * * * * *

? ? ? * * * * * * * * * *

? ? ? ? * * * * * * * * *

? ? ? ? ? * * * * * * * *


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Example: Strictly contractive completions



* * * * ? ? ? ?

* * * * * ? ? ?

* * * * * * ? ?

* * * * * * * ?

* * * * * * * *

 (1)

Reduction to positive extension problem for band matrix:

[
I3 (1)

(1)∗ I8

]

‖
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Positive extension band matrix



1 0 0 0 0 * * * * ? ? ? ?

0 1 0 0 0 * * * * * ? ? ?

0 0 1 0 0 * * * * * * ? ?

0 0 0 1 0 * * * * * * * ?

0 0 0 0 1 * * * * * * * *

* * * * * 1 0 0 0 0 0 0 0

* * * * * 0 1 0 0 0 0 0 0

* * * * * 0 0 1 0 0 0 0 0

* * * * * 0 0 0 1 0 0 0 0

? * * * * 0 0 0 0 1 0 0 0

? ? * * * 0 0 0 0 0 1 0 0

? ? ? * * 0 0 0 0 0 0 1 0

? ? ? ? * 0 0 0 0 0 0 0 1


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Band structure matrix algebra:
direct sum of five linear manifolds



* * * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * *


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Diagonal manifold (actually subalgebra)



* 0 0 0 0 0 0 0 0 0 0 0 0

0 * 0 0 0 0 0 0 0 0 0 0 0

0 0 * 0 0 0 0 0 0 0 0 0 0

0 0 0 * 0 0 0 0 0 0 0 0 0

0 0 0 0 * 0 0 0 0 0 0 0 0

0 0 0 0 0 * 0 0 0 0 0 0 0

0 0 0 0 0 0 * 0 0 0 0 0 0

0 0 0 0 0 0 0 * 0 0 0 0 0

0 0 0 0 0 0 0 0 * 0 0 0 0

0 0 0 0 0 0 0 0 0 * 0 0 0

0 0 0 0 0 0 0 0 0 0 * 0 0

0 0 0 0 0 0 0 0 0 0 0 * 0

0 0 0 0 0 0 0 0 0 0 0 0 *


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Upper band manifold



0 * * * * * * * 0 0 0 0 0

0 0 * * * * * * * 0 0 0 0

0 0 0 * * * * * * * 0 0 0

0 0 0 0 * * * * * * * 0 0

0 0 0 0 0 * * * * * * * 0

0 0 0 0 0 0 * * * * * * *

0 0 0 0 0 0 0 * * * * * *

0 0 0 0 0 0 0 0 * * * * *

0 0 0 0 0 0 0 0 0 * * * *

0 0 0 0 0 0 0 0 0 0 * * *

0 0 0 0 0 0 0 0 0 0 0 * *

0 0 0 0 0 0 0 0 0 0 0 0 *

0 0 0 0 0 0 0 0 0 0 0 0 0


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Lower band manifold = (upper band manifold)∗



0 0 0 0 0 0 0 0 0 0 0 0 0

* 0 0 0 0 0 0 0 0 0 0 0 0

* * 0 0 0 0 0 0 0 0 0 0 0

* * * 0 0 0 0 0 0 0 0 0 0

* * * * 0 0 0 0 0 0 0 0 0

* * * * * 0 0 0 0 0 0 0 0

* * * * * * 0 0 0 0 0 0 0

* * * * * * * 0 0 0 0 0 0

0 * * * * * * * 0 0 0 0 0

0 0 * * * * * * * 0 0 0 0

0 0 0 * * * * * * * 0 0 0

0 0 0 0 * * * * * * * 0 0

0 0 0 0 0 * * * * * * * 0


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Upper triangle manifold



0 0 0 0 0 0 0 0 * * * * *

0 0 0 0 0 0 0 0 0 * * * *

0 0 0 0 0 0 0 0 0 0 * * *

0 0 0 0 0 0 0 0 0 0 0 * *

0 0 0 0 0 0 0 0 0 0 0 0 *

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0


52



Lower triangle manifold = (upper triangle manifold)∗



0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

* 0 0 0 0 0 0 0 0 0 0 0 0

* * 0 0 0 0 0 0 0 0 0 0 0

* * * 0 0 0 0 0 0 0 0 0 0

* * * * 0 0 0 0 0 0 0 0 0

* * * * * 0 0 0 0 0 0 0 0


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Can be considered for more general algebras with involution

and unit element

(via abstract general scheme)

Applications:

• Scalar matrix completion (positive / strictly contractive)

• Operator matrix completion (positive / strictly contractive)

• Carathéodory-Toeplitz extension problem

• Nevanlina-Pick interpolation

• Nehari extension problem
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Major contributions Kaashoek et al

Briefly discuss here

• rational contractive interpolants

Related to ’Nehari’

Involves State Space method (again)

Rationality requirement: important for concrete applications

(system / control theory)
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M rational m×m matrix function

Assumptions:

• M has its poles in the open unit disc D

• M analytic at ∞ and vanishes there

Implies existence stable realization

M(λ) = C(λIn −A)−1B, σ(A) ⊂ D
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Strictly contractive rational interpolant F :

• F rational without poles on T

• ‖F (ζ)‖ < 1 for all ζ in the unit circle T

• F −M analytic on the open unit disc D
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Given stable realization

M(λ) = C(λIn −A)−1B, σ(A) ⊂ D

Introduce:

Controllability Gramian: Gc =
∞∑
j=0

AjBB∗(A∗)j

Observability Gramian: Go =
∞∑
j=0

(A∗)jC∗CAj

Well-defined because σ(A) ⊂ D (stability)
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M has a strictly contractive interpolant

m

σ(GcGo) ⊂ D

Description of all strictly contractive (rational) in terms

of A,B and C

Identification of a unique one that maximizes an entropy type

integral:

the maximum entropy interpolant of M
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Marinus A. Kaashoek:

central figure in Operator Theory

Earlier slide with MathScinet List co-authors Printscreen

Count: fifty
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Services/international (selection):

• Several editorships

• Several co-editorships special issues/volumes

• Co-organizer several conferences

• Member/chairman Steering Committees MTNS and IWOTA

Will step down by the end of the year

– after becoming eighty in November!
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Services/national (selection):

• Chairman Board Dutch Mathematical Society

• Dean Faculty of Mathematics and Computer Science

VU Amsterdam

• Dean Faculty of Mathematics Sciences VU Amsterdam

• Netherlands Coordinator European Research Network Analysis

and Operators

• Member/chairman important advisory committees

Dutch mathematics
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Seminar Operator Theory / Analysis VU Amsterdam

Started 1976 . . . approximately 25 years

Every Thursday morning

Students, colleagues

Virtually all leading figures Operator Theory

Enormous stimulus

Number of PhD’s: 17
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Not to forget: 

brought Israel Gohberg to Amsterdam on a systematic basis 
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To quote Gerard Reve (Dutch writer, 1923-2006),

the closing sentence of his famous book The Evenings:

(Dutch original: De Avonden)

”It has been seen, it has not gone unnoticed.”

(Dutch: Het is gezien het is niet onopgemerkt gebleven.)

Honors!
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Honors International:

• Toeplitz Lecturer, Tel-Aviv, 1991

• Member of the Honorary Editorial Board of the journal Integral

Equations and Operator Theory, 2008
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Doctor Honoris Causa North-West University (Potchefstroom)  
South Africa, 2014 
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Honors National:

• Honorary member Royal Dutch Mathematical Society, 2016

• Royal decoration: Order of the Dutch Lion
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Knight in the Royal Order of the Dutch Lion 
November 2002 
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Rien:

Thanks for what you did for

mathematics
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Thanks for what you did for

IWOTA
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And, from the personal side:

Thanks for having been

my teacher,

and for becoming

my friend!
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Thank you

for

your attention!
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