The Ritt property of subordinated operators in the group

case

Christian Le Merdy - IWOTA (Chemnitz), August 18th, 2017

Joint work with F. Lancien

Average operators, subordination

Let X be a Banach space.
Let $B(X)$ be the algebra of bounded operators on X.
Let G be an abelian locally compact group.
Let $\pi: G \rightarrow B(X)$ be a representation, that is,

$$
\forall s, t \in G, \pi(t s)=\pi(t) \pi(s) \quad \text { and } \quad \pi(e)=I_{X}
$$

Assume that π is strongly continuous: for any $x \in X, t \mapsto \pi(t) x$ is continuous from G into X.
Assume that π is bounded: there exists $C \geqslant 1$ such that $\|\pi(t)\| \leqslant C$ for any $t \in G$.

Average operators, subordination

Let X be a Banach space.
Let $B(X)$ be the algebra of bounded operators on X.
Let G be an abelian locally compact group.
Let $\pi: G \rightarrow B(X)$ be a representation, that is,

$$
\forall s, t \in G, \pi(t s)=\pi(t) \pi(s) \quad \text { and } \quad \pi(e)=I_{X}
$$

Assume that π is strongly continuous: for any $x \in X, t \mapsto \pi(t) x$ is continuous from G into X.
Assume that π is bounded: there exists $C \geqslant 1$ such that $\|\pi(t)\| \leqslant C$ for any $t \in G$.
To any probability measure $\nu \in M(G)$, we associate the average operator

$$
S(\pi, \nu)=\int_{G} \pi(t) d \nu(t)
$$

Average operators, subordination (continued)

Such average operators appear in many places, especially in ergodic theory.
References: Derriennic-Lin, 1989; Jones-Rosenblatt-Tempelman, 1994; Lin-Wittmann, 1994; Jones-Reinhold, 2001.

Average operators, subordination (continued)

Such average operators appear in many places, especially in ergodic theory.
References: Derriennic-Lin, 1989; Jones-Rosenblatt-Tempelman, 1994; Lin-Wittmann, 1994; Jones-Reinhold, 2001.

Case $G=\mathbb{Z}$
Let $U \in B(X)$ be an invertible operator with $\sup _{k \in \mathbb{Z}}\left\|U^{k}\right\|<\infty$.
Associate $\pi: \mathbb{Z} \rightarrow B(X)$ by $\pi(k)=U^{k}$.
A probability measure on \mathbb{Z} is a sequence $\nu=\left(c_{k}\right)_{k \in \mathbb{Z}}$ with

$$
\forall k \in \mathbb{Z}, \quad c_{k} \geqslant 0 \quad \text { and } \quad \sum_{k} c_{k}=1 .
$$

Average operators, subordination (continued)

Such average operators appear in many places, especially in ergodic theory.
References: Derriennic-Lin, 1989; Jones-Rosenblatt-Tempelman, 1994; Lin-Wittmann, 1994; Jones-Reinhold, 2001.

Case $G=\mathbb{Z}$

Let $U \in B(X)$ be an invertible operator with $\sup _{k \in \mathbb{Z}}\left\|U^{k}\right\|<\infty$.
Associate $\pi: \mathbb{Z} \rightarrow B(X)$ by $\pi(k)=U^{k}$.
A probability measure on \mathbb{Z} is a sequence $\nu=\left(c_{k}\right)_{k \in \mathbb{Z}}$ with

$$
\forall k \in \mathbb{Z}, \quad c_{k} \geqslant 0 \quad \text { and } \quad \sum_{k} c_{k}=1
$$

In this case,

$$
S(\nu, \pi)=\sum_{k=-\infty}^{\infty} c_{k} U^{k}
$$

Then $S(\nu, \pi)$ is subordinated to U in the sense of Dungey (2011).

Average operators, subordination (continued)

Several recent papers on subordination operators induced by probability measures on the semigroup \mathbb{N} or on the semigroup \mathbb{R}_{+}motivated this work.

References: Dungey, 2011; Gomilko-Tomilov (2015 + ?); Batty-Gomilko-Tomilov (2017).

Recent papers about the group case: Cohen-Cuny-Lin (2014), Cuny (2016).

Questions

An operator $S \in B(X)$ is called power bounded if there exists $C \geqslant 1$ such that

$$
\forall n \geqslant 0, \quad\left\|S^{n}\right\| \leqslant C
$$

Questions

An operator $S \in B(X)$ is called power bounded if there exists $C \geqslant 1$ such that

$$
\forall n \geqslant 0, \quad\left\|S^{n}\right\| \leqslant C
$$

For any representation π and probabilities ν_{1}, ν_{2} as before, we have

$$
S\left(\pi, \nu_{1}\right) S\left(\pi, \nu_{2}\right)=S\left(\pi, \nu_{1} * \nu_{2}\right)
$$

Consequently, any $S(\pi, \nu)$ is power bounded.

Questions

An operator $S \in B(X)$ is called power bounded if there exists $C \geqslant 1$ such that

$$
\forall n \geqslant 0, \quad\left\|S^{n}\right\| \leqslant C
$$

For any representation π and probabilities ν_{1}, ν_{2} as before, we have

$$
S\left(\pi, \nu_{1}\right) S\left(\pi, \nu_{2}\right)=S\left(\pi, \nu_{1} * \nu_{2}\right)
$$

Consequently, any $S(\pi, \nu)$ is power bounded.
Question 1. When is $S(\pi, \nu)$ a Ritt operator?

Questions

An operator $S \in B(X)$ is called power bounded if there exists $C \geqslant 1$ such that

$$
\forall n \geqslant 0, \quad\left\|S^{n}\right\| \leqslant C
$$

For any representation π and probabilities ν_{1}, ν_{2} as before, we have

$$
S\left(\pi, \nu_{1}\right) S\left(\pi, \nu_{2}\right)=S\left(\pi, \nu_{1} * \nu_{2}\right)
$$

Consequently, any $S(\pi, \nu)$ is power bounded.
Question 1. When is $S(\pi, \nu)$ a Ritt operator?
Question 2. When does $S(\pi, \nu)$ admit a bounded H^{∞}-functional calculus?

Ritt operators

A Ritt operator $S \in B(X)$ is a power bounded operator such that

$$
\exists C>0 \quad \mid \quad \forall n \geqslant 1, \quad n\left\|S^{n}-S^{n-1}\right\| \leqslant C .
$$

Ritt operators

A Ritt operator $S \in B(X)$ is a power bounded operator such that

$$
\exists C>0 \quad \mid \quad \forall n \geqslant 1, \quad n\left\|S^{n}-S^{n-1}\right\| \leqslant C .
$$

Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ ．
This is equivalent to the so－called Ritt condition：

$$
\sigma(S) \subset \overline{\mathbb{D}} \quad \text { and } \quad \forall z \notin \overline{\mathbb{D}}, \quad\|R(z, S)\| \leqslant \frac{K}{|z-1|}
$$

Ritt operators

A Ritt operator $S \in B(X)$ is a power bounded operator such that

$$
\exists C>0 \quad \mid \quad \forall n \geqslant 1, \quad n\left\|S^{n}-S^{n-1}\right\| \leqslant C .
$$

Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$.
This is equivalent to the so-called Ritt condition:

$$
\sigma(S) \subset \overline{\mathbb{D}} \quad \text { and } \quad \forall z \notin \overline{\mathbb{D}}, \quad\|R(z, S)\| \leqslant \frac{K}{|z-1|}
$$

This is a discrete analogue of the notion of bounded analytic semigroup.

Ritt operators

A Ritt operator $S \in B(X)$ is a power bounded operator such that

$$
\exists C>0 \quad \mid \quad \forall n \geqslant 1, \quad n\left\|S^{n}-S^{n-1}\right\| \leqslant C
$$

Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$.
This is equivalent to the so-called Ritt condition:

$$
\sigma(S) \subset \overline{\mathbb{D}} \quad \text { and } \quad \forall z \notin \overline{\mathbb{D}}, \quad\|R(z, S)\| \leqslant \frac{K}{|z-1|}
$$

This is a discrete analogue of the notion of bounded analytic semigroup.
References: Coulhon-Saloff Coste, Nevanlinna, 1993; Lyubich, 1999; Nagy-Zemanek, 1999; Blunck, 2001; etc.

Spectral property of Ritt operators

For any angle $0<\gamma<\frac{\pi}{2}$, let B_{γ} be the convex hull of 1 and the disc of center 0 and radius $\sin \gamma$.

Spectral property of Ritt operators

For any angle $0<\gamma<\frac{\pi}{2}$, let B_{γ} be the convex hull of 1 and the disc of center 0 and radius $\sin \gamma$.

If $S \in B(X)$ is a Ritt operator, then

$$
\left.\exists 0<\gamma<\frac{\pi}{2} \right\rvert\, \quad \sigma(S) \subset B_{\gamma}
$$

H^{∞}-calculus of Ritt operators

Let \mathcal{P} be the algebra of complex polynomials.
Let S be a Ritt operator and let $0<\gamma<\frac{\pi}{2}$.

H^{∞}-calculus of Ritt operators

Let \mathcal{P} be the algebra of complex polynomials.
Let S be a Ritt operator and let $0<\gamma<\frac{\pi}{2}$.
We say that S has a bounded $H^{\infty}\left(B_{\gamma}\right)$ functional calculus if

$$
\sigma(S) \subset B_{\gamma}
$$

and there exists a constant $K \geqslant 1$ such that

$$
\forall \varphi \in \mathcal{P}, \quad\|\varphi(S)\| \leqslant K \sup \left\{|\varphi(z)|: z \in B_{\gamma}\right\}
$$

H^{∞}-calculus of Ritt operators

Let \mathcal{P} be the algebra of complex polynomials.
Let S be a Ritt operator and let $0<\gamma<\frac{\pi}{2}$.
We say that S has a bounded $H^{\infty}\left(B_{\gamma}\right)$ functional calculus if

$$
\sigma(S) \subset B_{\gamma}
$$

and there exists a constant $K \geqslant 1$ such that

$$
\forall \varphi \in \mathcal{P}, \quad\|\varphi(S)\| \leqslant K \sup \left\{|\varphi(z)|: z \in B_{\gamma}\right\}
$$

We simply say that S admits a bounded H^{∞}-functional calculus if this happens for some $0<\gamma<\frac{\pi}{2}$.

H^{∞}-calculus of Ritt operators (continued)

If a Ritt operator $S \in B(X)$ admits a bounded H^{∞}-functional calculus, then it is polynomially bounded, that is, there exists a constant $K \geqslant 1$ such that

$$
\forall \varphi \in \mathcal{P}, \quad\|\varphi(S)\| \leqslant K \sup \{|\varphi(z)|: z \in \mathbb{D}\} .
$$

H^{∞}-calculus of Ritt operators (continued)

If a Ritt operator $S \in B(X)$ admits a bounded H^{∞}-functional calculus, then it is polynomially bounded, that is, there exists a constant $K \geqslant 1$ such that

$$
\forall \varphi \in \mathcal{P}, \quad\|\varphi(S)\| \leqslant K \sup \{|\varphi(z)|: z \in \mathbb{D}\}
$$

The converse is not true (F. Lancien-Le Merdy, 2015).

H^{∞}-calculus of Ritt operators (continued)

If a Ritt operator $S \in B(X)$ admits a bounded H^{∞}-functional calculus, then it is polynomially bounded, that is, there exists a constant $K \geqslant 1$ such that

$$
\forall \varphi \in \mathcal{P}, \quad\|\varphi(S)\| \leqslant K \sup \{|\varphi(z)|: z \in \mathbb{D}\} .
$$

The converse is not true (F. Lancien-Le Merdy, 2015).
In many contexts, a bounded H^{∞}-functional calculus for a Ritt operator is equivalent to certain square function estimates.

References: Haak-Haase; Le Merdy.

Necessary condition on ν

Let $\nu \in M(G)$ be a probability measure and consider its Fourier transform $\widehat{\nu}: \widehat{G} \rightarrow \mathbb{C}$.

Necessary condition on ν

Let $\nu \in M(G)$ be a probability measure and consider its Fourier transform $\widehat{\nu}: \widehat{G} \rightarrow \mathbb{C}$.
Definition. We say that a ν has BAR (for 'bounded angular ratio') if there exists $\delta>1$ such that

$$
\forall \gamma \in \widehat{G}, \quad|1-\widehat{\nu}(\gamma)| \leqslant \delta(1-|\widehat{\nu}(\gamma)|)
$$

Necessary condition on ν

Let $\nu \in M(G)$ be a probability measure and consider its Fourier transform $\widehat{\nu}: \widehat{G} \rightarrow \mathbb{C}$.
Definition. We say that a ν has BAR (for 'bounded angular ratio') if there exists $\delta>1$ such that

$$
\forall \gamma \in \widehat{G}, \quad|1-\widehat{\nu}(\gamma)| \leqslant \delta(1-|\widehat{\nu}(\gamma)|)
$$

This is equivalent to the existence of $0<\gamma<\frac{\pi}{2}$ such that $\widehat{\nu}(\widehat{G}) \subset B_{\gamma}$.

Necessary condition on ν

Let $\nu \in M(G)$ be a probability measure and consider its Fourier transform $\widehat{\nu}: \widehat{G} \rightarrow \mathbb{C}$.
Definition. We say that a ν has BAR (for 'bounded angular ratio') if there exists $\delta>1$ such that

$$
\forall \gamma \in \widehat{G}, \quad|1-\widehat{\nu}(\gamma)| \leqslant \delta(1-|\widehat{\nu}(\gamma)|)
$$

This is equivalent to the existence of $0<\gamma<\frac{\pi}{2}$ such that $\widehat{\nu}(\widehat{G}) \subset B_{\gamma}$.
Let $\lambda: G \rightarrow B\left(L^{2}(G)\right)$ be defined by $\lambda(t) f=f(\cdot-t)$ for any $f \in L^{2}(G)$ and any $t \in G$. Then

$$
M_{\nu}:=\int_{G} \lambda(t) d \nu(t)=\nu * \cdot: L^{2}(G) \rightarrow L^{2}(G)
$$

this is normal operator and $\sigma\left(M_{\nu}\right)=\overline{\widehat{\nu}(\widehat{G})}$.

Necessary condition on ν

Let $\nu \in M(G)$ be a probability measure and consider its Fourier transform $\widehat{\nu}: \widehat{G} \rightarrow \mathbb{C}$.
Definition. We say that a ν has BAR (for 'bounded angular ratio') if there exists $\delta>1$ such that

$$
\forall \gamma \in \widehat{G}, \quad|1-\widehat{\nu}(\gamma)| \leqslant \delta(1-|\widehat{\nu}(\gamma)|)
$$

This is equivalent to the existence of $0<\gamma<\frac{\pi}{2}$ such that $\widehat{\nu}(\widehat{G}) \subset B_{\gamma}$.
Let $\lambda: G \rightarrow B\left(L^{2}(G)\right)$ be defined by $\lambda(t) f=f(\cdot-t)$ for any $f \in L^{2}(G)$ and any $t \in G$. Then

$$
M_{\nu}:=\int_{G} \lambda(t) d \nu(t)=\nu * \cdot: L^{2}(G) \rightarrow L^{2}(G)
$$

this is normal operator and $\sigma\left(M_{\nu}\right)=\overline{\widehat{\nu}(\widehat{G})}$. Hence M_{ν} is Ritt if and only if ν has BAR.

Necessary condition on ν

Let $\nu \in M(G)$ be a probability measure and consider its Fourier transform $\widehat{\nu}: \widehat{G} \rightarrow \mathbb{C}$.
Definition. We say that a ν has BAR (for 'bounded angular ratio') if there exists $\delta>1$ such that

$$
\forall \gamma \in \widehat{G}, \quad|1-\widehat{\nu}(\gamma)| \leqslant \delta(1-|\widehat{\nu}(\gamma)|)
$$

This is equivalent to the existence of $0<\gamma<\frac{\pi}{2}$ such that $\widehat{\nu}(\widehat{G}) \subset B_{\gamma}$.
Let $\lambda: G \rightarrow B\left(L^{2}(G)\right)$ be defined by $\lambda(t) f=f(\cdot-t)$ for any $f \in L^{2}(G)$ and any $t \in G$. Then

$$
M_{\nu}:=\int_{G} \lambda(t) d \nu(t)=\nu * \cdot: L^{2}(G) \rightarrow L^{2}(G)
$$

this is normal operator and $\sigma\left(M_{\nu}\right)=\overline{\widehat{\nu}(\widehat{G})}$.
Hence M_{ν} is Ritt if and only if ν has BAR.
In this case, it automatically admits a bounded H^{∞}-functional calculus.

Refined questions

Note that

$$
M_{\nu}=S(\lambda, \nu)
$$

for the bounded strongly continuous representation $\lambda: G \rightarrow B\left(L^{2}(G)\right)$. Hence BAR is a natural necessary condition for Questions $1 \& 2$.

Refined questions

Note that

$$
M_{\nu}=S(\lambda, \nu)
$$

for the bounded strongly continuous representation $\lambda: G \rightarrow B\left(L^{2}(G)\right)$.
Hence BAR is a natural necessary condition for Questions $1 \& 2$.

- Assume that ν has BAR.
(i) Is $S(\pi, \nu)=\int_{G} \pi(t) d \nu(t)$ a Ritt operator for any strongly continuous bounded representation π ?
(ii) Which additional conditions imply this property?
(iii) What about H^{∞}-functional calculus in this case?

A positive result on UMD Banach lattices

A positive result on UMD Banach lattices

Theorem

Let G be an abelian locally compact group．Let X be a UMD Banach lattice and let $\pi: G \rightarrow B(X)$ be a strongly continuous bounded representation．Let $\nu \in M(G)$ be a probability measure with BAR．Then

$$
S(\pi, \nu)=\int_{G} \pi(t) d \nu(t)
$$

is a Ritt operator which admits a bounded H^{∞}－functional calculus．

A positive result on UMD Banach lattices

Theorem

Let G be an abelian locally compact group. Let X be a UMD Banach lattice and let $\pi: G \rightarrow B(X)$ be a strongly continuous bounded representation. Let $\nu \in M(G)$ be a probability measure with BAR. Then

$$
S(\pi, \nu)=\int_{G} \pi(t) d \nu(t)
$$

is a Ritt operator which admits a bounded H^{∞}-functional calculus.

Elements of proof.

- Consider $\lambda^{X}: G \rightarrow B\left(L^{2}(G ; X)\right)$ defined by $\lambda(t) f=f(\cdot-t)$ for any $f \in L^{2}(G: X)$ and any $t \in G$. Then we have

$$
M_{\nu}^{X}:=\int_{G} \lambda^{X}(t) d \nu(t)=\nu * \cdot: L^{2}(G ; X) \rightarrow L^{2}(G ; X)
$$

A positive result on UMD Banach lattices（continued）

－By transference arguments，one shows that it suffices to consider the case when $\pi=\lambda^{X}$ ；the space X is replaced by $L^{2}(G ; X)$ and $S(\pi, \nu)$ is replaced by M_{ν}^{X} ．

A positive result on UMD Banach lattices (continued)

- By transference arguments, one shows that it suffices to consider the case when $\pi=\lambda^{X}$; the space X is replaced by $L^{2}(G ; X)$ and $S(\pi, \nu)$ is replaced by M_{ν}^{X}.
- Since X is a UMD Banach lattice, there exists a Hilbert space H, a UMD Banach space Y and $\theta \in(0,1)$ such that

$$
X=[Y, H]_{\theta}
$$

in the sense of complex interpolation (Rubio de Francia, 1986).

A positive result on UMD Banach lattices (continued)

- By transference arguments, one shows that it suffices to consider the case when $\pi=\lambda^{X}$; the space X is replaced by $L^{2}(G ; X)$ and $S(\pi, \nu)$ is replaced by M_{ν}^{X}.
- Since X is a UMD Banach lattice, there exists a Hilbert space H, a UMD Banach space Y and $\theta \in(0,1)$ such that

$$
X=[Y, H]_{\theta}
$$

in the sense of complex interpolation (Rubio de Francia, 1986).

- Then $L^{2}(G ; X)=\left[L^{2}(G ; Y), L^{2}(G ; H)\right]_{\theta}$ and M_{ν}^{X} interpolates betwen M_{ν}^{H} and M_{ν}^{Y}.

A positive result on UMD Banach lattices (continued)

- By transference arguments, one shows that it suffices to consider the case when $\pi=\lambda^{X}$; the space X is replaced by $L^{2}(G ; X)$ and $S(\pi, \nu)$ is replaced by M_{ν}^{X}.
- Since X is a UMD Banach lattice, there exists a Hilbert space H, a UMD Banach space Y and $\theta \in(0,1)$ such that

$$
X=[Y, H]_{\theta}
$$

in the sense of complex interpolation (Rubio de Francia, 1986).

- Then $L^{2}(G ; X)=\left[L^{2}(G ; Y), L^{2}(G ; H)\right]_{\theta}$ and M_{ν}^{X} interpolates betwen M_{ν}^{H} and M_{ν}^{Y}.
- Since H is a Hilbert space, the operator M_{ν}^{H} behaves like M_{ν} : this is a Ritt operator with a bounded H^{∞}-functional calculus.

A positive result on UMD Banach lattices (continued)

- By transference arguments, one shows that it suffices to consider the case when $\pi=\lambda^{X}$; the space X is replaced by $L^{2}(G ; X)$ and $S(\pi, \nu)$ is replaced by M_{ν}^{X}.
- Since X is a UMD Banach lattice, there exists a Hilbert space H, a UMD Banach space Y and $\theta \in(0,1)$ such that

$$
X=[Y, H]_{\theta}
$$

in the sense of complex interpolation (Rubio de Francia, 1986).

- Then $L^{2}(G ; X)=\left[L^{2}(G ; Y), L^{2}(G ; H)\right]_{\theta}$ and M_{ν}^{X} interpolates betwen M_{ν}^{H} and M_{ν}^{Y}.
- Since H is a Hilbert space, the operator M_{ν}^{H} behaves like M_{ν} : this is a Ritt operator with a bounded H^{∞}-functional calculus.
- By interpolation (Blunck, 2001), this implies that M_{ν}^{X} is a Ritt operator.

A positive result on UMD Banach lattices (continued)

- By transference arguments, one shows that it suffices to consider the case when $\pi=\lambda^{X}$; the space X is replaced by $L^{2}(G ; X)$ and $S(\pi, \nu)$ is replaced by M_{ν}^{X}.
- Since X is a UMD Banach lattice, there exists a Hilbert space H, a UMD Banach space Y and $\theta \in(0,1)$ such that

$$
X=[Y, H]_{\theta}
$$

in the sense of complex interpolation (Rubio de Francia, 1986).

- Then $L^{2}(G ; X)=\left[L^{2}(G ; Y), L^{2}(G ; H)\right]_{\theta}$ and M_{ν}^{X} interpolates betwen M_{ν}^{H} and M_{ν}^{Y}.
- Since H is a Hilbert space, the operator M_{ν}^{H} behaves like M_{ν} : this is a Ritt operator with a bounded H^{∞}-functional calculus.
- By interpolation (Blunck, 2001), this implies that M_{ν}^{X} is a Ritt operator.
- Further interpolation arguments show that M_{ν}^{X} admits a bounded H^{∞}-functional calculus. (Here the UMD property of Y plays a role.)

A positive result on UMD Banach lattices（continued）

Corollary

Let $1<p<\infty$ ，let (Ω, μ) be a measure space and let $T \in B\left(L^{p}(\Omega)\right)$ be a positive contraction．Let $c=\left(c_{k}\right)_{k \geqslant 1}$ be a sequence satisfying BAR．Then

$$
S=\sum_{k=0}^{\infty} c_{k} T^{k}
$$

is a Ritt operator which admits a bounded H^{∞}－functional calculus．

A positive result on UMD Banach lattices (continued)

Corollary

Let $1<p<\infty$, let (Ω, μ) be a measure space and let $T \in B\left(L^{p}(\Omega)\right)$ be a positive contraction. Let $c=\left(c_{k}\right)_{k \geqslant 1}$ be a sequence satisfying BAR. Then

$$
S=\sum_{k=0}^{\infty} c_{k} T^{k}
$$

is a Ritt operator which admits a bounded H^{∞}-functional calculus.
The proof consists in applying Akcoglu's dilation Theorem and the previous Theorem on $G=\mathbb{Z}$.

K-convex Banach spaces

Let X be a Banach space. We say that X contains ℓ_{n}^{1} uniformly if there is a constant $K \geqslant 1$ such that for any integer $n \geqslant 1$, there is an n-dimensional subspace $E_{n} \subset X$ such that $\ell_{1}^{n} \stackrel{K}{\sim} E_{n}$. That is, for any $n \geqslant 1$, there exist x_{1}, \ldots, x_{n} in X such that for any $\alpha_{1}, \cdots, \alpha_{n} \in \mathbb{C}$,

$$
\sum_{j=1}^{n}\left|\alpha_{j}\right| \leqslant\left\|\sum_{j=1}^{n} \alpha_{j} x_{j}\right\| \leqslant K \sum_{j=1}^{n}\left|\alpha_{j}\right|
$$

K-convex Banach spaces

Let X be a Banach space. We say that X contains ℓ_{n}^{1} uniformly if there is a constant $K \geqslant 1$ such that for any integer $n \geqslant 1$, there is an n-dimensional subspace $E_{n} \subset X$ such that $\ell_{1}^{n} \stackrel{K}{\sim} E_{n}$. That is, for any $n \geqslant 1$, there exist x_{1}, \ldots, x_{n} in X such that for any $\alpha_{1}, \cdots, \alpha_{n} \in \mathbb{C}$,

$$
\sum_{j=1}^{n}\left|\alpha_{j}\right| \leqslant\left\|\sum_{j=1}^{n} \alpha_{j} x_{j}\right\| \leqslant K \sum_{j=1}^{n}\left|\alpha_{j}\right|
$$

Pisier's Theorem, 1982

The following are equivalent.
(i) X does not contains ℓ_{n}^{1} 's uniformly.
(ii) X has Rademacher type >1.
(iii) The Rademacher projection is bounded on $L^{2}(\Omega ; X)$.

K-convex Banach spaces

Let X be a Banach space. We say that X contains ℓ_{n}^{1} uniformly if there is a constant $K \geqslant 1$ such that for any integer $n \geqslant 1$, there is an n-dimensional subspace $E_{n} \subset X$ such that $\ell_{1}^{n} \stackrel{K}{\sim} E_{n}$. That is, for any $n \geqslant 1$, there exist x_{1}, \ldots, x_{n} in X such that for any $\alpha_{1}, \cdots, \alpha_{n} \in \mathbb{C}$,

$$
\sum_{j=1}^{n}\left|\alpha_{j}\right| \leqslant\left\|\sum_{j=1}^{n} \alpha_{j} x_{j}\right\| \leqslant K \sum_{j=1}^{n}\left|\alpha_{j}\right|
$$

Pisier's Theorem, 1982

The following are equivalent.
(i) X does not contains ℓ_{n}^{1} 's uniformly.
(ii) X has Rademacher type >1.
(iii) The Rademacher projection is bounded on $L^{2}(\Omega ; X)$.

Such spaces are called K-convex.

K-convex Banach spaces

Let X be a Banach space. We say that X contains ℓ_{n}^{1} uniformly if there is a constant $K \geqslant 1$ such that for any integer $n \geqslant 1$, there is an n-dimensional subspace $E_{n} \subset X$ such that $\ell_{1}^{n} \stackrel{K}{\sim} E_{n}$. That is, for any $n \geqslant 1$, there exist x_{1}, \ldots, x_{n} in X such that for any $\alpha_{1}, \cdots, \alpha_{n} \in \mathbb{C}$,

$$
\sum_{j=1}^{n}\left|\alpha_{j}\right| \leqslant\left\|\sum_{j=1}^{n} \alpha_{j} x_{j}\right\| \leqslant K \sum_{j=1}^{n}\left|\alpha_{j}\right|
$$

Pisier's Theorem, 1982

The following are equivalent.
(i) X does not contains ℓ_{n}^{1} 's uniformly.
(ii) X has Rademacher type >1.
(iii) The Rademacher projection is bounded on $L^{2}(\Omega ; X)$.

Such spaces are called K-convex.
UMD implies K-convex but there exist non reflexive K-convex spaces

Symmetric measures

Let G be a locally compact abelian group and let $\nu \in M(G)$ be a probability. We say that ν is symmetric when $\nu(A)=\nu(-A)$ for any measurable $A \subset G$. The following is easy to check:

Symmetric measures

Let G be a locally compact abelian group and let $\nu \in M(G)$ be a probability. We say that ν is symmetric when $\nu(A)=\nu(-A)$ for any measurable $A \subset G$. The following is easy to check:

$$
\begin{aligned}
\nu \text { is symmetric } & \Leftrightarrow M_{\nu}: L^{2}(G) \rightarrow L^{2}(G) \text { is selfadjoint } \\
& \Leftrightarrow \widehat{\nu} \text { is real valued } \\
& \Leftrightarrow \widehat{\nu} \text { is valued in }[-1,1] .
\end{aligned}
$$

Symmetric measures

Let G be a locally compact abelian group and let $\nu \in M(G)$ be a probability. We say that ν is symmetric when $\nu(A)=\nu(-A)$ for any measurable $A \subset G$. The following is easy to check:

$$
\begin{aligned}
\nu \text { is symmetric } & \Leftrightarrow M_{\nu}: L^{2}(G) \rightarrow L^{2}(G) \text { is selfadjoint } \\
& \Leftrightarrow \widehat{\nu} \text { is real valued } \\
& \Leftrightarrow \widehat{\nu} \text { is valued in }[-1,1] .
\end{aligned}
$$

A symmetric ν has BAR if and only if there exists $a \in(-1,1)$ such that $\widehat{\nu}$ is actually valued in $[a, 1]$.

Symmetric measures

Let G be a locally compact abelian group and let $\nu \in M(G)$ be a probability. We say that ν is symmetric when $\nu(A)=\nu(-A)$ for any measurable $A \subset G$. The following is easy to check:

$$
\begin{aligned}
\nu \text { is symmetric } & \Leftrightarrow M_{\nu}: L^{2}(G) \rightarrow L^{2}(G) \text { is selfadjoint } \\
& \Leftrightarrow \widehat{\nu} \text { is real valued } \\
& \Leftrightarrow \widehat{\nu} \text { is valued in }[-1,1] .
\end{aligned}
$$

A symmetric ν has BAR if and only if there exists $a \in(-1,1)$ such that $\widehat{\nu}$ is actually valued in $[a, 1]$.

If $\nu=\eta * \eta$ for some symmetric probability measure η, then ν is a symmetric probability measure with BAR, since $\widehat{\nu}=\widehat{\eta}^{2}$ is valued in $[0,1]$. We say that ν is a square in this case.

Main result

Theorem

Let ν be a symmetric probability measure on some locally compact abelian group G. Assume that ν is a square. Let X be a K-convex Banach space. Then for any bounded strongly continuous representation $\pi: G \rightarrow B(X)$,

$$
S(\pi, \nu)=\int_{G} \pi(t) d \nu(t)
$$

is a Ritt operator.

Main result

Theorem

Let ν be a symmetric probability measure on some locally compact abelian group G. Assume that ν is a square. Let X be a K-convex Banach space. Then for any bounded strongly continuous representation $\pi: G \rightarrow B(X)$,

$$
S(\pi, \nu)=\int_{G} \pi(t) d \nu(t)
$$

is a Ritt operator.
The proof relies on some techniques introduced by Pisier, in particular the following result:

- If Y is a K-convex Banach space, then there exists $C \geqslant 1$ such that for any integer $n \geqslant 1$ and for any commuting contractive projections in $B(Y)$, then

$$
\left\|\sum_{j=1}^{n}\left(I_{Y}-P_{j}\right) \prod_{1 \leqslant j \neq k \leqslant n} P_{k}\right\| \leqslant C
$$

Main result (continued)

Let $\nu \in M(G)$ be a symmetric probability with BAR.
If $\nu \in L^{1}(G)$ (i.e. ν has a density), then one can get rid of the assumption that ν is a square in the preceding Theorem.

Main result (continued)

Let $\nu \in M(G)$ be a symmetric probability with BAR.
If $\nu \in L^{1}(G)$ (i.e. ν has a density), then one can get rid of the assumption that ν is a square in the preceding Theorem.

This applies to any measure on a discrete group.
On $G=\mathbb{Z}$ this yields the following.

Main result (continued)

Let $\nu \in M(G)$ be a symmetric probability with BAR.
If $\nu \in L^{1}(G)$ (i.e. ν has a density), then one can get rid of the assumption that ν is a square in the preceding Theorem.

This applies to any measure on a discrete group.
On $G=\mathbb{Z}$ this yields the following.

Corollary

Let $c=\left(c_{k}\right)_{k \in \mathbb{Z}}$ be a nonnegative sequence with $\sum_{k} c_{k}=1$. Assume that $\sum_{k} c_{k} e^{i k \theta} \geqslant 0$ for any $\theta \in \mathbb{R}$. Let X be a K-convex space and let $U \in B(X)$ be an invertible operator with $\sup _{k \in \mathbb{Z}}\left\|T^{k}\right\|<\infty$. Then

$$
S=\sum_{k=-\infty}^{\infty} c_{k} U^{k}
$$

is a Ritt operator.

Necessity of K-convexity

Theorem

Let G be a non-discrete locally compact abelian group. Let X be a Banach space and assume that X in not K-convex. Then there exists a symmetric probability measure $\nu \in M(G)$ such that $M_{\nu^{2}}^{X}$ is not a Ritt operator.

Necessity of K-convexity

Theorem

Let G be a non-discrete locally compact abelian group. Let X be a Banach space and assume that X in not K-convex. Then there exists a symmetric probability measure $\nu \in M(G)$ such that $M_{\nu^{2}}^{X}$ is not a Ritt operator.

The proof relies on the existence of a symmetric probability measure $\nu \in M(G)$ such that $1+\nu^{2}$ is not invertible in $M(G)$ (a refinement of the Wiener-Pitt Theorem).

