The Ritt property of subordinated operators in the group case

Christian Le Merdy - IWOTA (Chemnitz), August 18th, 2017

Joint work with F. Lancien

(日) (四) (문) (문) (문)

Average operators, subordination

Let X be a Banach space.

Let B(X) be the algebra of bounded operators on X.

Let G be an abelian locally compact group. Let $\pi: G \to B(X)$ be a **representation**, that is,

$$\forall s,t\in G,\ \pi(ts)=\pi(t)\pi(s) \ \ \, ext{and} \ \ \, \pi(e)=I_X.$$

Assume that π is **strongly continuous**: for any $x \in X$, $t \mapsto \pi(t)x$ is continuous from G into X.

Assume that π is **bounded**: there exists $C \ge 1$ such that $||\pi(t)|| \le C$ for any $t \in G$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let X be a Banach space.

Let B(X) be the algebra of bounded operators on X.

Let G be an abelian locally compact group. Let $\pi: G \to B(X)$ be a **representation**, that is,

$$\forall s,t\in G, \ \pi(ts)=\pi(t)\pi(s) \quad ext{and} \quad \pi(e)=I_X.$$

Assume that π is **strongly continuous**: for any $x \in X$, $t \mapsto \pi(t)x$ is continuous from G into X.

Assume that π is **bounded**: there exists $C \ge 1$ such that $||\pi(t)|| \le C$ for any $t \in G$.

To any probability measure $\nu \in M(G)$, we associate the **average operator**

$$S(\pi,
u) = \int_G \pi(t) d
u(t).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Average operators, subordination (continued)

Such average operators appear in many places, especially in ergodic theory.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

References : Derriennic-Lin, 1989; Jones-Rosenblatt-Tempelman, 1994; Lin-Wittmann, 1994; Jones-Reinhold, 2001.

Average operators, subordination (continued)

Such average operators appear in many places, especially in ergodic theory.

References : Derriennic-Lin, 1989; Jones-Rosenblatt-Tempelman, 1994; Lin-Wittmann, 1994; Jones-Reinhold, 2001.

<u>Case $G = \mathbb{Z}$ </u> Let $U \in B(X)$ be an invertible operator with $\sup_{k \in \mathbb{Z}} ||U^k|| < \infty$. Associate $\pi \colon \mathbb{Z} \to B(X)$ by $\pi(k) = U^k$. A probability measure on \mathbb{Z} is a sequence $\nu = (c_k)_{k \in \mathbb{Z}}$ with

$$\forall k \in \mathbb{Z}, \quad c_k \geqslant 0 \qquad ext{and} \qquad \sum_k c_k = 1.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Average operators, subordination (continued)

Such average operators appear in many places, especially in ergodic theory.

References : Derriennic-Lin, 1989; Jones-Rosenblatt-Tempelman, 1994; Lin-Wittmann, 1994; Jones-Reinhold, 2001.

<u>Case $G = \mathbb{Z}$ </u> Let $U \in B(X)$ be an invertible operator with $\sup_{k \in \mathbb{Z}} ||U^k|| < \infty$. Associate $\pi \colon \mathbb{Z} \to B(X)$ by $\pi(k) = U^k$. A probability measure on \mathbb{Z} is a sequence $\nu = (c_k)_{k \in \mathbb{Z}}$ with

$$orall \, k \in \mathbb{Z}, \quad c_k \geqslant 0 \qquad ext{and} \qquad \sum_k c_k = 1.$$

In this case,

$$S(\nu,\pi)=\sum_{k=-\infty}^{\infty}c_kU^k.$$

<u>।</u> २००

Then $S(\nu, \pi)$ is subordinated to U in the sense of Dungey (2011).

Several recent papers on subordination operators induced by probability measures on the semigroup $\mathbb N$ or on the semigroup $\mathbb R_+$ motivated this work.

```
References : Dungey, 2011; Gomilko-Tomilov (2015 + ?); Batty-Gomilko-Tomilov (2017).
```

Recent papers about the group case: Cohen-Cuny-Lin (2014), Cuny (2016).

An operator $S \in B(X)$ is called **power bounded** if there exists $C \ge 1$ such that

 $\forall n \ge 0, \qquad \|S^n\| \leqslant C.$

An operator $S \in B(X)$ is called **power bounded** if there exists $C \ge 1$ such that

 $\forall n \ge 0, \qquad \|S^n\| \leqslant C.$

For any representation π and probabilities ν_1,ν_2 as before, we have

$$S(\pi, \nu_1)S(\pi, \nu_2) = S(\pi, \nu_1 * \nu_2).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Consequently, any $S(\pi, \nu)$ is power bounded.

An operator $S \in B(X)$ is called **power bounded** if there exists $C \ge 1$ such that

 $\forall n \ge 0, \qquad \|S^n\| \leqslant C.$

For any representation π and probabilities ν_1,ν_2 as before, we have

$$S(\pi, \nu_1)S(\pi, \nu_2) = S(\pi, \nu_1 * \nu_2).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Consequently, any $S(\pi, \nu)$ is power bounded.

Question 1. When is $S(\pi, \nu)$ a Ritt operator?

An operator $S \in B(X)$ is called **power bounded** if there exists $C \ge 1$ such that

 $\forall n \ge 0, \qquad \|S^n\| \leqslant C.$

For any representation π and probabilities ν_1, ν_2 as before, we have

$$S(\pi, \nu_1)S(\pi, \nu_2) = S(\pi, \nu_1 * \nu_2).$$

Consequently, any $S(\pi, \nu)$ is power bounded.

Question 1. When is $S(\pi, \nu)$ a Ritt operator?

Question 2. When does $S(\pi, \nu)$ admit a bounded H^{∞} -functional calculus?

$$\exists C > 0 \mid \forall n \ge 1, \quad n \| S^n - S^{n-1} \| \le C.$$

$$\exists C > 0 \mid \forall n \ge 1, \quad n \| S^n - S^{n-1} \| \leqslant C.$$

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$

This is equivalent to the so-called Ritt condition:

 $\sigma(S) \subset \overline{\mathbb{D}}$ and $\forall z \notin \overline{\mathbb{D}}, \quad \|R(z,S)\| \leqslant \frac{K}{|z-1|}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$\exists C > 0 \mid \forall n \ge 1, \quad n \| S^n - S^{n-1} \| \leqslant C.$$

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$

This is equivalent to the so-called Ritt condition:

$$\sigma(S) \subset \overline{\mathbb{D}}$$
 and $\forall z \notin \overline{\mathbb{D}}, ||R(z,S)|| \leq \frac{K}{|z-1|}$.

This is a discrete analogue of the notion of bounded analytic semigroup.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$\exists C > 0 \mid \forall n \ge 1, \quad n \| S^n - S^{n-1} \| \le C.$$

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$

This is equivalent to the so-called Ritt condition:

$$\sigma(S) \subset \overline{\mathbb{D}}$$
 and $\forall z \notin \overline{\mathbb{D}}, ||R(z,S)|| \leq \frac{K}{|z-1|}$.

This is a discrete analogue of the notion of *bounded analytic semigroup*.

<u>References:</u> Coulhon-Saloff Coste, Nevanlinna, 1993; Lyubich, 1999; Nagy-Zemanek, 1999; Blunck, 2001; etc.

Spectral property of Ritt operators

For any angle $0 < \gamma < \frac{\pi}{2}$, let B_{γ} be the convex hull of 1 and the disc of center 0 and radius sin γ .

Spectral property of Ritt operators

For any angle $0 < \gamma < \frac{\pi}{2}$, let B_{γ} be the convex hull of 1 and the disc of center 0 and radius sin γ .

If $S \in B(X)$ is a Ritt operator, then

$$|0 < \gamma < \frac{\pi}{2}| \qquad \sigma(S) \subset B_{\gamma}.$$

H^{∞} -calculus of Ritt operators

Let \mathcal{P} be the algebra of complex polynomials. Let S be a Ritt operator and let $0 < \gamma < \frac{\pi}{2}$.

H^{∞} -calculus of Ritt operators

Let \mathcal{P} be the algebra of complex polynomials. Let S be a Ritt operator and let $0 < \gamma < \frac{\pi}{2}$.

We say that S has a **bounded** $H^{\infty}(B_{\gamma})$ functional calculus if

$$\sigma(S) \subset B_{\gamma}$$

and there exists a constant $K \ge 1$ such that

$$\forall \varphi \in \mathcal{P}, \qquad \|\varphi(S)\| \leqslant K \sup\{|\varphi(z)| \, : \, z \in B_{\gamma}\}.$$

H^{∞} -calculus of Ritt operators

Let \mathcal{P} be the algebra of complex polynomials. Let S be a Ritt operator and let $0 < \gamma < \frac{\pi}{2}$.

We say that S has a **bounded** $H^{\infty}(B_{\gamma})$ functional calculus if

$$\sigma(S) \subset B_{\gamma}$$

and there exists a constant $K \ge 1$ such that

$$\forall \varphi \in \mathcal{P}, \qquad \|\varphi(S)\| \leqslant K \sup\{|\varphi(z)| \, : \, z \in B_{\gamma}\}.$$

We simply say that S admits a **bounded** H^{∞} -functional calculus if this happens for some $0 < \gamma < \frac{\pi}{2}$.

H^{∞} -calculus of Ritt operators (continued)

If a Ritt operator $S \in B(X)$ admits a bounded H^{∞} -functional calculus, then it is polynomially bounded, that is, there exists a constant $K \ge 1$ such that

$$\forall \varphi \in \mathcal{P}, \qquad \| \varphi(S) \| \leqslant K \sup \{ |\varphi(z)| \, : \, z \in \mathbb{D} \}.$$

H^{∞} -calculus of Ritt operators (continued)

If a Ritt operator $S \in B(X)$ admits a bounded H^{∞} -functional calculus, then it is polynomially bounded, that is, there exists a constant $K \ge 1$ such that

$$\forall \varphi \in \mathcal{P}, \qquad \|\varphi(S)\| \leqslant K \sup\{|\varphi(z)| \, : \, z \in \mathbb{D}\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The converse is **not** true (F. Lancien-Le Merdy, 2015).

H^{∞} -calculus of Ritt operators (continued)

If a Ritt operator $S \in B(X)$ admits a bounded H^{∞} -functional calculus, then it is polynomially bounded, that is, there exists a constant $K \ge 1$ such that

$$\forall \varphi \in \mathcal{P}, \qquad \|\varphi(S)\| \leqslant K \sup\{|\varphi(z)| \, : \, z \in \mathbb{D}\}.$$

The converse is not true (F. Lancien-Le Merdy, 2015).

In many contexts, a bounded H^{∞} -functional calculus for a Ritt operator is equivalent to certain square function estimates.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

References: Haak-Haase; Le Merdy.

Let $\nu \in M(G)$ be a probability measure and consider its Fourier transform $\widehat{\nu} \colon \widehat{G} \to \mathbb{C}$.

Let $\nu \in M(G)$ be a probability measure and consider its Fourier transform $\hat{\nu} \colon \hat{G} \to \mathbb{C}$.

Definition. We say that a ν has **BAR** (for 'bounded angular ratio') if there exists $\delta > 1$ such that

$$orall \gamma \in \widehat{\mathcal{G}}, \quad |1 - \widehat{
u}(\gamma)| \leqslant \delta(1 - |\widehat{
u}(\gamma)|).$$

Let $\nu \in M(G)$ be a probability measure and consider its Fourier transform $\hat{\nu} \colon \hat{G} \to \mathbb{C}$.

Definition. We say that a ν has **BAR** (for 'bounded angular ratio') if there exists $\delta > 1$ such that

$$orall \gamma \in \widehat{\mathsf{G}}, \quad |1-\widehat{
u}(\gamma)| \leqslant \delta(1-|\widehat{
u}(\gamma)|).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

This is equivalent to the existence of $0 < \gamma < \frac{\pi}{2}$ such that $\widehat{\nu}(\widehat{G}) \subset B_{\gamma}$.

Let $\nu \in M(G)$ be a probability measure and consider its Fourier transform $\hat{\nu} \colon \hat{G} \to \mathbb{C}$.

Definition. We say that a ν has **BAR** (for 'bounded angular ratio') if there exists $\delta > 1$ such that

$$orall \gamma \in \widehat{\mathsf{G}}, \quad |1-\widehat{
u}(\gamma)| \leqslant \delta(1-|\widehat{
u}(\gamma)|).$$

This is equivalent to the existence of $0 < \gamma < \frac{\pi}{2}$ such that $\widehat{\nu}(\widehat{G}) \subset B_{\gamma}$.

Let $\lambda: G \to B(L^2(G))$ be defined by $\lambda(t)f = f(\cdot -t)$ for any $f \in L^2(G)$ and any $t \in G$. Then

$$M_{\nu} := \int_{\mathcal{G}} \lambda(t) d\nu(t) = \nu * \cdot : L^2(\mathcal{G}) \to L^2(\mathcal{G}),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

this is normal operator and $\sigma(M_{\nu}) = \overline{\hat{\nu}(\widehat{G})}$.

Let $\nu \in M(G)$ be a probability measure and consider its Fourier transform $\hat{\nu} \colon \hat{G} \to \mathbb{C}$.

Definition. We say that a ν has **BAR** (for 'bounded angular ratio') if there exists $\delta > 1$ such that

$$orall \gamma \in \widehat{\mathsf{G}}, \quad |1-\widehat{
u}(\gamma)| \leqslant \delta(1-|\widehat{
u}(\gamma)|).$$

This is equivalent to the existence of $0 < \gamma < \frac{\pi}{2}$ such that $\widehat{\nu}(\widehat{G}) \subset B_{\gamma}$.

Let $\lambda: G \to B(L^2(G))$ be defined by $\lambda(t)f = f(\cdot -t)$ for any $f \in L^2(G)$ and any $t \in G$. Then

$$M_{\nu} := \int_{\mathcal{G}} \lambda(t) d\nu(t) = \nu * \cdot : L^2(\mathcal{G}) \to L^2(\mathcal{G}),$$

this is normal operator and $\sigma(M_{\nu}) = \hat{\nu}(\hat{G})$. Hence M_{ν} is Ritt if and only if ν has BAR.

Let $\nu \in M(G)$ be a probability measure and consider its Fourier transform $\hat{\nu} \colon \hat{G} \to \mathbb{C}$.

Definition. We say that a ν has **BAR** (for 'bounded angular ratio') if there exists $\delta > 1$ such that

$$orall \gamma \in \widehat{\mathsf{G}}, \quad |1-\widehat{
u}(\gamma)| \leqslant \delta(1-|\widehat{
u}(\gamma)|).$$

This is equivalent to the existence of $0 < \gamma < \frac{\pi}{2}$ such that $\widehat{\nu}(\widehat{G}) \subset B_{\gamma}$.

Let $\lambda: G \to B(L^2(G))$ be defined by $\lambda(t)f = f(\cdot -t)$ for any $f \in L^2(G)$ and any $t \in G$. Then

$$M_{\nu} := \int_{\mathcal{G}} \lambda(t) d\nu(t) = \nu * \cdot : L^2(\mathcal{G}) \to L^2(\mathcal{G}),$$

this is normal operator and $\sigma(M_
u)=\widehat{
u}(\widehat{G}).$

Hence M_{ν} is Ritt if and only if ν has BAR. In this case, it automatically admits a bounded H^{∞} -functional calculus.

Refined questions

Note that

$$M_{\nu}=S(\lambda,\nu)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

for the bounded strongly continuous representation $\lambda: G \to B(L^2(G))$. Hence BAR is a natural necessary condition for Questions 1 & 2.

Refined questions

Note that

$$M_{\nu}=S(\lambda,\nu)$$

for the bounded strongly continuous representation $\lambda: G \to B(L^2(G))$. Hence BAR is a natural necessary condition for Questions 1 & 2.

• Assume that ν has BAR.

(i) Is $S(\pi, \nu) = \int_G \pi(t) d\nu(t)$ a Ritt operator for any strongly continuous bounded representation π ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

(ii) Which additional conditions imply this property?

(iii) What about H^{∞} -functional calculus in this case?

A positive result on UMD Banach lattices

▲ロト ▲園ト ▲画ト ▲画ト 三国 - のへで

Theorem

Let G be an abelian locally compact group. Let X be a UMD Banach lattice and let $\pi: G \to B(X)$ be a strongly continuous bounded representation. Let $\nu \in M(G)$ be a probability measure with BAR. Then

$$S(\pi,
u) = \int_G \pi(t) \, d
u(t)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

is a Ritt operator which admits a bounded H^{∞} -functional calculus.

Theorem

Let G be an abelian locally compact group. Let X be a UMD Banach lattice and let $\pi: G \to B(X)$ be a strongly continuous bounded representation. Let $\nu \in M(G)$ be a probability measure with BAR. Then

$$S(\pi,
u) = \int_G \pi(t) \, d
u(t)$$

is a Ritt operator which admits a bounded H^{∞} -functional calculus.

Elements of proof.

• Consider $\lambda^X : G \to B(L^2(G; X))$ defined by $\lambda(t)f = f(\cdot -t)$ for any $f \in L^2(G : X)$ and any $t \in G$. Then we have

$$M^X_{\nu} := \int_G \lambda^X(t) d\nu(t) = \nu * \cdot : L^2(G;X) \rightarrow L^2(G;X).$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

• By transference arguments, one shows that it suffices to consider the case when $\pi = \lambda^X$; the space X is replaced by $L^2(G; X)$ and $S(\pi, \nu)$ is replaced by M_{ν}^X .

• By transference arguments, one shows that it suffices to consider the case when $\pi = \lambda^X$; the space X is replaced by $L^2(G; X)$ and $S(\pi, \nu)$ is replaced by M_{ν}^X .

• Since X is a UMD Banach lattice, there exists a Hilbert space H, a UMD Banach space Y and $\theta \in (0, 1)$ such that

 $X = [Y, H]_{\theta}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

in the sense of complex interpolation (Rubio de Francia, 1986).

• By transference arguments, one shows that it suffices to consider the case when $\pi = \lambda^X$; the space X is replaced by $L^2(G; X)$ and $S(\pi, \nu)$ is replaced by M_{ν}^X .

• Since X is a UMD Banach lattice, there exists a Hilbert space H, a UMD Banach space Y and $\theta \in (0, 1)$ such that

 $X = [Y, H]_{\theta}$

in the sense of complex interpolation (Rubio de Francia, 1986).

• Then $L^2(G; X) = [L^2(G; Y), L^2(G; H)]_{\theta}$ and M_{ν}^X interpolates betwee M_{ν}^H and M_{ν}^Y .

• By transference arguments, one shows that it suffices to consider the case when $\pi = \lambda^X$; the space X is replaced by $L^2(G; X)$ and $S(\pi, \nu)$ is replaced by M_{ν}^X .

• Since X is a UMD Banach lattice, there exists a Hilbert space H, a UMD Banach space Y and $\theta \in (0, 1)$ such that

 $X = [Y, H]_{\theta}$

in the sense of complex interpolation (Rubio de Francia, 1986).

- Then $L^2(G; X) = [L^2(G; Y), L^2(G; H)]_{\theta}$ and M_{ν}^X interpolates betwee M_{ν}^H and M_{ν}^Y .
- Since *H* is a Hilbert space, the operator M_{ν}^{H} behaves like M_{ν} : this is a Ritt operator with a bounded H^{∞} -functional calculus.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• By transference arguments, one shows that it suffices to consider the case when $\pi = \lambda^X$; the space X is replaced by $L^2(G; X)$ and $S(\pi, \nu)$ is replaced by M_{ν}^X .

• Since X is a UMD Banach lattice, there exists a Hilbert space H, a UMD Banach space Y and $\theta \in (0, 1)$ such that

 $X = [Y, H]_{\theta}$

in the sense of complex interpolation (Rubio de Francia, 1986).

- Then $L^2(G; X) = [L^2(G; Y), L^2(G; H)]_{\theta}$ and M_{ν}^X interpolates betwee M_{ν}^H and M_{ν}^Y .
- Since *H* is a Hilbert space, the operator M_{ν}^{H} behaves like M_{ν} : this is a Ritt operator with a bounded H^{∞} -functional calculus.
- By interpolation (Blunck, 2001), this implies that M_{ν}^{X} is a Ritt operator.

• By transference arguments, one shows that it suffices to consider the case when $\pi = \lambda^X$; the space X is replaced by $L^2(G; X)$ and $S(\pi, \nu)$ is replaced by M_{ν}^X .

• Since X is a UMD Banach lattice, there exists a Hilbert space H, a UMD Banach space Y and $\theta \in (0, 1)$ such that

 $X = [Y, H]_{\theta}$

in the sense of complex interpolation (Rubio de Francia, 1986).

- Then $L^2(G; X) = [L^2(G; Y), L^2(G; H)]_{\theta}$ and M_{ν}^X interpolates betwee M_{ν}^H and M_{ν}^Y .
- Since *H* is a Hilbert space, the operator M_{ν}^{H} behaves like M_{ν} : this is a Ritt operator with a bounded H^{∞} -functional calculus.
- By interpolation (Blunck, 2001), this implies that M_{ν}^{X} is a Ritt operator.
- Further interpolation arguments show that M_{ν}^{χ} admits a bounded H^{∞} -functional calculus. (Here the UMD property of Y plays a role.)

《曰》 《國》 《理》 《理》 [] 편 [

Corollary

Let $1 , let <math>(\Omega, \mu)$ be a measure space and let $T \in B(L^{p}(\Omega))$ be a positive contraction. Let $c = (c_{k})_{k \ge 1}$ be a sequence satisfying BAR. Then

$$S = \sum_{k=0}^{\infty} c_k T^k$$

(日) (四) (코) (코) (코) (코)

is a Ritt operator which admits a bounded H^{∞} -functional calculus.

Corollary

Let $1 , let <math>(\Omega, \mu)$ be a measure space and let $T \in B(L^{p}(\Omega))$ be a positive contraction. Let $c = (c_{k})_{k \ge 1}$ be a sequence satisfying BAR. Then

$$S = \sum_{k=0}^{\infty} c_k T^k$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

is a Ritt operator which admits a bounded H^{∞} -functional calculus.

The proof consists in applying Akcoglu's dilation Theorem and the previous Theorem on $G = \mathbb{Z}$.

Let X be a Banach space. We say that X **contains** ℓ_n^1 **uniformly** if there is a constant $K \ge 1$ such that for any integer $n \ge 1$, there is an *n*-dimensional subspace $E_n \subset X$ such that $\ell_1^n \stackrel{K}{\simeq} E_n$. That is, for any $n \ge 1$, there exist x_1, \ldots, x_n in X such that for any $\alpha_1, \cdots, \alpha_n \in \mathbb{C}$,

$$\sum_{j=1}^{n} |\alpha_j| \leq \left\| \sum_{j=1}^{n} \alpha_j x_j \right\| \leq K \sum_{j=1}^{n} |\alpha_j|$$

Let X be a Banach space. We say that X **contains** ℓ_n^1 **uniformly** if there is a constant $K \ge 1$ such that for any integer $n \ge 1$, there is an *n*-dimensional subspace $E_n \subset X$ such that $\ell_1^n \stackrel{K}{\simeq} E_n$. That is, for any $n \ge 1$, there exist x_1, \ldots, x_n in X such that for any $\alpha_1, \cdots, \alpha_n \in \mathbb{C}$,

$$\sum_{j=1}^{n} |\alpha_j| \leq \left\| \sum_{j=1}^{n} \alpha_j x_j \right\| \leq K \sum_{j=1}^{n} |\alpha_j|$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Pisier's Theorem, 1982

The following are equivalent.

- (i) X does not contains ℓ_n^1 's uniformly.
- (ii) X has Rademacher type > 1.

(iii) The Rademacher projection is bounded on $L^2(\Omega; X)$.

Let X be a Banach space. We say that X **contains** ℓ_n^1 **uniformly** if there is a constant $K \ge 1$ such that for any integer $n \ge 1$, there is an *n*-dimensional subspace $E_n \subset X$ such that $\ell_1^n \stackrel{K}{\simeq} E_n$. That is, for any $n \ge 1$, there exist x_1, \ldots, x_n in X such that for any $\alpha_1, \cdots, \alpha_n \in \mathbb{C}$,

$$\sum_{j=1}^{n} |\alpha_j| \leq \left\| \sum_{j=1}^{n} \alpha_j x_j \right\| \leq K \sum_{j=1}^{n} |\alpha_j|$$

Pisier's Theorem, 1982

The following are equivalent.

- (i) X does not contains ℓ_n^1 's uniformly.
- (ii) X has Rademacher type > 1.

(iii) The Rademacher projection is bounded on $L^2(\Omega; X)$.

Such spaces are called *K*-**convex**.

Let X be a Banach space. We say that X **contains** ℓ_n^1 **uniformly** if there is a constant $K \ge 1$ such that for any integer $n \ge 1$, there is an *n*-dimensional subspace $E_n \subset X$ such that $\ell_1^n \stackrel{K}{\simeq} E_n$. That is, for any $n \ge 1$, there exist x_1, \ldots, x_n in X such that for any $\alpha_1, \cdots, \alpha_n \in \mathbb{C}$,

$$\sum_{j=1}^{n} |\alpha_j| \leq \left\| \sum_{j=1}^{n} \alpha_j x_j \right\| \leq K \sum_{j=1}^{n} |\alpha_j|$$

Pisier's Theorem, 1982

The following are equivalent.

- (i) X does not contains ℓ_n^1 's uniformly.
- (ii) X has Rademacher type > 1.

(iii) The Rademacher projection is bounded on $L^2(\Omega; X)$.

Such spaces are called K-convex.

UMD implies K-convex but there exist non reflexive K-convex spaces

Let G be a locally compact abelian group and let $\nu \in M(G)$ be a probability. We say that ν is **symmetric** when $\nu(A) = \nu(-A)$ for any measurable $A \subset G$. The following is easy to check:

Let G be a locally compact abelian group and let $\nu \in M(G)$ be a probability. We say that ν is **symmetric** when $\nu(A) = \nu(-A)$ for any measurable $A \subset G$. The following is easy to check:

 ν is symmetric $\Leftrightarrow M_{\nu} \colon L^{2}(G) \to L^{2}(G)$ is selfadjoint $\Leftrightarrow \widehat{\nu}$ is real valued $\Leftrightarrow \widehat{\nu}$ is valued in [-1, 1].

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let G be a locally compact abelian group and let $\nu \in M(G)$ be a probability. We say that ν is **symmetric** when $\nu(A) = \nu(-A)$ for any measurable $A \subset G$. The following is easy to check:

 ν is symmetric $\Leftrightarrow M_{\nu} \colon L^{2}(G) \to L^{2}(G)$ is selfadjoint $\Leftrightarrow \widehat{\nu}$ is real valued $\Leftrightarrow \widehat{\nu}$ is valued in [-1, 1].

A symmetric ν has BAR if and only if there exists $a \in (-1, 1)$ such that $\hat{\nu}$ is actually valued in [a, 1].

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let G be a locally compact abelian group and let $\nu \in M(G)$ be a probability. We say that ν is **symmetric** when $\nu(A) = \nu(-A)$ for any measurable $A \subset G$. The following is easy to check:

 ν is symmetric $\Leftrightarrow M_{\nu} \colon L^{2}(G) \to L^{2}(G)$ is selfadjoint $\Leftrightarrow \widehat{\nu}$ is real valued $\Leftrightarrow \widehat{\nu}$ is valued in [-1, 1].

A symmetric ν has BAR if and only if there exists $a \in (-1, 1)$ such that $\hat{\nu}$ is actually valued in [a, 1].

If $\nu = \eta * \eta$ for some symmetric probability measure η , then ν is a symmetric probability measure with BAR, since $\hat{\nu} = \hat{\eta}^2$ is valued in [0, 1]. We say that ν is a square in this case.

Main result

Theorem

Let ν be a symmetric probability measure on some locally compact abelian group G. Assume that ν is a square. Let X be a K-convex Banach space. Then for any bounded strongly continuous representation $\pi: G \to B(X)$,

$$S(\pi,
u) = \int_G \pi(t) \, d
u(t)$$

(日) (四) (문) (문) (문)

is a Ritt operator.

Main result

Theorem

Let ν be a symmetric probability measure on some locally compact abelian group *G*. Assume that ν is a square. Let *X* be a *K*-convex Banach space. Then for any bounded strongly continuous representation $\pi: G \to B(X)$,

$$S(\pi,
u) = \int_G \pi(t) \, d
u(t)$$

is a Ritt operator.

The proof relies on some techniques introduced by Pisier, in particular the following result:

 If Y is a K-convex Banach space, then there exists C ≥ 1 such that for any integer n ≥ 1 and for any commuting contractive projections in B(Y), then

$$\left\|\sum_{j=1}^{n}(I_{Y}-P_{j})\prod_{1\leqslant j\neq k\leqslant n}P_{k}\right\|\leqslant C.$$

Main result (continued)

Let $\nu \in M(G)$ be a symmetric probability with BAR.

If $\nu \in L^1(G)$ (i.e. ν has a density), then one can get rid of the assumption that ν is a square in the preceding Theorem.

Main result (continued)

Let $\nu \in M(G)$ be a symmetric probability with BAR. If $\nu \in L^1(G)$ (i.e. ν has a density), then one can get rid of the assumption that ν is a square in the preceding Theorem.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

This applies to any measure on a discrete group. On $G = \mathbb{Z}$ this yields the following.

Main result (continued)

Let $\nu \in M(G)$ be a symmetric probability with BAR. If $\nu \in L^1(G)$ (i.e. ν has a density), then one can get rid of the assumption that ν is a square in the preceding Theorem.

This applies to any measure on a discrete group. On $G = \mathbb{Z}$ this yields the following.

Corollary

Let $c = (c_k)_{k \in \mathbb{Z}}$ be a nonnegative sequence with $\sum_k c_k = 1$. Assume that $\sum_k c_k e^{ik\theta} \ge 0$ for any $\theta \in \mathbb{R}$. Let X be a K-convex space and let $U \in B(X)$ be an invertible operator with $\sup_{k \in \mathbb{Z}} ||T^k|| < \infty$. Then

$$S = \sum_{k=-\infty}^{\infty} c_k U^k$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

is a Ritt operator.

Theorem

Let G be a non-discrete locally compact abelian group. Let X be a Banach space and assume that X in not K-convex. Then there exists a symmetric probability measure $\nu \in M(G)$ such that $M_{\nu^2}^X$ is not a Ritt operator.

(日) (四) (코) (코) (코) (코)

Theorem

Let G be a non-discrete locally compact abelian group. Let X be a Banach space and assume that X in not K-convex. Then there exists a symmetric probability measure $\nu \in M(G)$ such that $M_{\nu^2}^X$ is not a Ritt operator.

The proof relies on the existence of a symmetric probability measure $\nu \in M(G)$ such that $1 + \nu^2$ is not invertible in M(G) (a refinement of the Wiener-Pitt Theorem).

(日) (四) (코) (코) (코) (코)