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Average operators, subordination

Let X be a Banach space.
Let B(X ) be the algebra of bounded operators on X .

Let G be an abelian locally compact group.
Let π : G → B(X ) be a representation, that is,

∀ s, t ∈ G , π(ts) = π(t)π(s) and π(e) = IX .

Assume that π is strongly continuous: for any x ∈ X , t 7→ π(t)x is
continuous from G into X .
Assume that π is bounded: there exists C > 1 such that ‖π(t)‖ 6 C for
any t ∈ G .
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∀ s, t ∈ G , π(ts) = π(t)π(s) and π(e) = IX .

Assume that π is strongly continuous: for any x ∈ X , t 7→ π(t)x is
continuous from G into X .
Assume that π is bounded: there exists C > 1 such that ‖π(t)‖ 6 C for
any t ∈ G .

To any probability measure ν ∈ M(G ), we associate the average operator

S(π, ν) =

∫

G

π(t) dν(t) .
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Such average operators appear in many places, especially in ergodic theory.

References : Derriennic-Lin, 1989; Jones-Rosenblatt-Tempelman, 1994;
Lin-Wittmann, 1994; Jones-Reinhold, 2001.
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Case G = Z

Let U ∈ B(X ) be an invertible operator with supk∈Z ‖U
k‖ < ∞.

Associate π : Z → B(X ) by π(k) = Uk .
A probability measure on Z is a sequence ν = (ck)k∈Z with

∀ k ∈ Z, ck > 0 and
∑

k

ck = 1.
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Such average operators appear in many places, especially in ergodic theory.

References : Derriennic-Lin, 1989; Jones-Rosenblatt-Tempelman, 1994;
Lin-Wittmann, 1994; Jones-Reinhold, 2001.

Case G = Z

Let U ∈ B(X ) be an invertible operator with supk∈Z ‖U
k‖ < ∞.

Associate π : Z → B(X ) by π(k) = Uk .
A probability measure on Z is a sequence ν = (ck)k∈Z with

∀ k ∈ Z, ck > 0 and
∑

k

ck = 1.

In this case,

S(ν, π) =
∞∑

k=−∞

ckU
k .

Then S(ν, π) is subordinated to U in the sense of Dungey (2011).



Average operators, subordination (continued)

Several recent papers on subordination operators induced by probability
measures on the semigroup N or on the semigroup R+ motivated this work.

References : Dungey, 2011; Gomilko-Tomilov (2015 + ?);
Batty-Gomilko-Tomilov (2017).

Recent papers about the group case: Cohen-Cuny-Lin (2014), Cuny
(2016).
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such that

∀ n > 0, ‖Sn‖ 6 C .

For any representation π and probabilities ν1, ν2 as before, we have

S(π, ν1)S(π, ν2) = S(π, ν1 ∗ ν2).

Consequently, any S(π, ν) is power bounded.

Question 1. When is S(π, ν) a Ritt operator?

Question 2. When does S(π, ν) admit a bounded H∞-functional calculus?



Ritt operators

A Ritt operator S ∈ B(X ) is a power bounded operator such that

∃C > 0
∣∣ ∀ n > 1, n‖Sn − Sn−1‖ 6 C .



Ritt operators

A Ritt operator S ∈ B(X ) is a power bounded operator such that

∃C > 0
∣∣ ∀ n > 1, n‖Sn − Sn−1‖ 6 C .

Let D = {z ∈ C : |z | < 1}.

This is equivalent to the so-called Ritt condition:

σ(S) ⊂ D and ∀ z /∈ D, ‖R(z , S)‖ 6
K

|z − 1|
.



Ritt operators

A Ritt operator S ∈ B(X ) is a power bounded operator such that

∃C > 0
∣∣ ∀ n > 1, n‖Sn − Sn−1‖ 6 C .

Let D = {z ∈ C : |z | < 1}.

This is equivalent to the so-called Ritt condition:

σ(S) ⊂ D and ∀ z /∈ D, ‖R(z , S)‖ 6
K

|z − 1|
.

This is a discrete analogue of the notion of bounded analytic semigroup.



Ritt operators

A Ritt operator S ∈ B(X ) is a power bounded operator such that

∃C > 0
∣∣ ∀ n > 1, n‖Sn − Sn−1‖ 6 C .

Let D = {z ∈ C : |z | < 1}.

This is equivalent to the so-called Ritt condition:

σ(S) ⊂ D and ∀ z /∈ D, ‖R(z , S)‖ 6
K

|z − 1|
.

This is a discrete analogue of the notion of bounded analytic semigroup.

References: Coulhon-Saloff Coste, Nevanlinna, 1993; Lyubich, 1999;
Nagy-Zemanek, 1999; Blunck, 2001; etc.
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For any angle 0 < γ < π
2
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If S ∈ B(X ) is a Ritt operator, then

∃ 0 < γ <
π

2

∣∣ σ(S) ⊂ Bγ .
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Let P be the algebra of complex polynomials.
Let S be a Ritt operator and let 0 < γ < π

2
.

We say that S has a bounded H∞(Bγ) functional calculus if

σ(S) ⊂ Bγ

and there exists a constant K > 1 such that

∀ϕ ∈ P, ‖ϕ(S)‖ 6 K sup
{
|ϕ(z)| : z ∈ Bγ

}
.

We simply say that S admits a bounded H∞-functional calculus if this
happens for some 0 < γ < π

2
.
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H
∞-calculus of Ritt operators (continued)

If a Ritt operator S ∈ B(X ) admits a bounded H∞-functional calculus,
then it is polynomially bounded, that is, there exists a constant K > 1
such that

∀ϕ ∈ P, ‖ϕ(S)‖ 6 K sup
{
|ϕ(z)| : z ∈ D

}
.

The converse is not true (F. Lancien-Le Merdy, 2015).

In many contexts, a bounded H∞-functional calculus for a Ritt operator is
equivalent to certain square function estimates.

References: Haak-Haase; Le Merdy.
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ν̂ : Ĝ → C.

Definition. We say that a ν has BAR (for ‘bounded angular ratio’) if
there exists δ > 1 such that
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Let ν ∈ M(G ) be a probability measure and consider its Fourier transform
ν̂ : Ĝ → C.

Definition. We say that a ν has BAR (for ‘bounded angular ratio’) if
there exists δ > 1 such that

∀ γ ∈ Ĝ , |1− ν̂(γ)| 6 δ(1− |ν̂(γ)|).

This is equivalent to the existence of 0 < γ < π
2
such that ν̂(Ĝ ) ⊂ Bγ .

Let λ : G → B(L2(G )) be defined by λ(t)f = f (· −t) for any f ∈ L2(G )
and any t ∈ G . Then

Mν :=

∫

G

λ(t) dν(t) = ν∗ · : L2(G ) → L2(G ),

this is normal operator and σ(Mν) = ν̂(Ĝ ).

Hence Mν is Ritt if and only if ν has BAR.
In this case, it automatically admits a bounded H∞-functional calculus.
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Refined questions

Note that
Mν = S(λ, ν)

for the bounded strongly continuous representation λ : G → B(L2(G )).

Hence BAR is a natural necessary condition for Questions 1 & 2.

• Assume that ν has BAR.

(i) Is S(π, ν) =
∫
G
π(t) dν(t) a Ritt operator for any strongly continuous

bounded representation π?

(ii) Which additional conditions imply this property?

(iii) What about H∞-functional calculus in this case?
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Theorem

Let G be an abelian locally compact group. Let X be a UMD Banach
lattice and let π : G → B(X ) be a strongly continuous bounded
representation. Let ν ∈ M(G ) be a probability measure with BAR. Then

S(π, ν) =

∫

G

π(t) dν(t)

is a Ritt operator which admits a bounded H∞-functional calculus.

Elements of proof.

• Consider λX : G → B(L2(G ;X )) defined by λ(t)f = f (· −t) for any
f ∈ L2(G : X ) and any t ∈ G . Then we have

MX
ν :=

∫

G

λX (t) dν(t) = ν∗ · : L2(G ;X ) → L2(G ;X ).
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• By transference arguments, one shows that it suffices to consider the
case when π = λX ; the space X is replaced by L2(G ;X ) and S(π, ν) is
replaced by MX

ν .

• Since X is a UMD Banach lattice, there exists a Hilbert space H, a
UMD Banach space Y and θ ∈ (0, 1) such that

X = [Y ,H]θ

in the sense of complex interpolation (Rubio de Francia, 1986).

• Then L2(G ;X ) = [L2(G ;Y ), L2(G ;H)]θ and MX
ν interpolates betwen

MH
ν and MY

ν .

• Since H is a Hilbert space, the operator MH
ν behaves like Mν : this is a

Ritt operator with a bounded H∞-functional calculus.

• By interpolation (Blunck, 2001), this implies that MX
ν is a Ritt operator.

• Further interpolation arguments show that MX
ν admits a bounded

H∞-functional calculus. (Here the UMD property of Y plays a role.)
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Corollary

Let 1 < p < ∞, let (Ω, µ) be a measure space and let T ∈ B(Lp(Ω)) be a
positive contraction. Let c = (ck)k>1 be a sequence satisfying BAR. Then

S =
∞∑

k=0

ckT
k

is a Ritt operator which admits a bounded H∞-functional calculus.
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Corollary

Let 1 < p < ∞, let (Ω, µ) be a measure space and let T ∈ B(Lp(Ω)) be a
positive contraction. Let c = (ck)k>1 be a sequence satisfying BAR. Then

S =
∞∑

k=0

ckT
k

is a Ritt operator which admits a bounded H∞-functional calculus.

The proof consists in applying Akcoglu’s dilation Theorem and the
previous Theorem on G = Z.
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UMD implies K -convex but there exist non reflexive K -convex spaces.
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Symmetric measures

Let G be a locally compact abelian group and let ν ∈ M(G ) be a
probability. We say that ν is symmetric when ν(A) = ν(−A) for any
measurable A ⊂ G . The following is easy to check:

ν is symmetric ⇔ Mν : L
2(G ) → L2(G ) is selfadjoint

⇔ ν̂ is real valued

⇔ ν̂ is valued in [−1, 1].

A symmetric ν has BAR if and only if there exists a ∈ (−1, 1) such that ν̂
is actually valued in [a, 1].

If ν = η ∗ η for some symmetric probability measure η, then ν is a
symmetric probability measure with BAR, since ν̂ = η̂2 is valued in [0, 1].
We say that ν is a square in this case.
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Theorem
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group G . Assume that ν is a square. Let X be a K -convex Banach space.
Then for any bounded strongly continuous representation π : G → B(X ),

S(π, ν) =

∫

G

π(t) dν(t)

is a Ritt operator.

The proof relies on some techniques introduced by Pisier, in particular the
following result:

If Y is a K-convex Banach space, then there exists C > 1 such that

for any integer n > 1 and for any commuting contractive projections

in B(Y ), then

∥∥∥
n∑

j=1

(IY − Pj)
∏

16j 6=k6n

Pk

∥∥∥ 6 C .
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If ν ∈ L1(G ) (i.e. ν has a density), then one can get rid of the assumption
that ν is a square in the preceding Theorem.
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Corollary

Let c = (ck)k∈Z be a nonnegative sequence with
∑

k ck = 1. Assume that∑
k cke

ikθ > 0 for any θ ∈ R. Let X be a K -convex space and let
U ∈ B(X ) be an invertible operator with supk∈Z ‖T

k‖ < ∞. Then

S =
∞∑

k=−∞

ckU
k

is a Ritt operator.
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Theorem

Let G be a non-discrete locally compact abelian group. Let X be a Banach
space and assume that X in not K -convex. Then there exists a symmetric
probability measure ν ∈ M(G ) such that MX

ν2
is not a Ritt operator.



Necessity of K -convexity

Theorem

Let G be a non-discrete locally compact abelian group. Let X be a Banach
space and assume that X in not K -convex. Then there exists a symmetric
probability measure ν ∈ M(G ) such that MX

ν2
is not a Ritt operator.

The proof relies on the existence of a symmetric probability measure
ν ∈ M(G ) such that 1 + ν2 is not invertible in M(G ) (a refinement of the
Wiener-Pitt Theorem).


