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Average operators, subordination

Let X be a Banach space.
Let B(X) be the algebra of bounded operators on X.

Let G be an abelian locally compact group.
Let m: G — B(X) be a representation, that is,

Vs, t € G, n(ts) =n(t)n(s) and mw(e)= Ix.

Assume that 7 is strongly continuous: for any x € X, t — 7(t)x is
continuous from G into X.

Assume that 7 is bounded: there exists C > 1 such that ||7(t)|| < C for
any t € G.
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Let m: G — B(X) be a representation, that is,

Vs, t € G, n(ts) =n(t)n(s) and mw(e)= Ix.

Assume that 7 is strongly continuous: for any x € X, t — 7(t)x is
continuous from G into X.

Assume that 7 is bounded: there exists C > 1 such that ||7(t)|| < C for
any t € G.

To any probability measure v € M(G), we associate the average operator

S(Tr,V):/Gﬂ'(t)dV(t).
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Such average operators appear in many places, especially in ergodic theory.

References : Derriennic-Lin, 1989; Jones-Rosenblatt-Tempelman, 1994;
Lin-Wittmann, 1994: Jones-Reinhold, 2001.
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Such average operators appear in many places, especially in ergodic theory.

References : Derriennic-Lin, 1989; Jones-Rosenblatt-Tempelman, 1994;
Lin-Wittmann, 1994: Jones-Reinhold, 2001.

Case G =7

Let U € B(X) be an invertible operator with sup,.;, || U¥|| < oco.
Associate 7: Z — B(X) by (k) = U*.

A probability measure on Z is a sequence v = (ck)kez with

VkelZ, c >0 and chzl.
k

In this case,
o0

Sv,m)= Y aU*

k=—00

Then S(v, ) is subordinated to U in the sense of Dungey (2011).



Average operators, subordination (continued)

Several recent papers on subordination operators induced by probability
measures on the semigroup N or on the semigroup R, motivated this work.

References : Dungey, 2011; Gomilko-Tomilov (2015 + ?);
Batty-Gomilko-Tomilov (2017).

Recent papers about the group case: Cohen-Cuny-Lin (2014), Cuny
(2016).
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An operator S € B(X) is called power bounded if there exists C > 1
such that

Vn>0, |IS"|<C.

For any representation 7 and probabilities 17, > as before, we have
S(m,v1)S(m, 1) = S(m, 11 x 12).

Consequently, any S(m,v) is power bounded.

Question 1. When is S(m,v) a Ritt operator?

Question 2. When does S(7, ) admit a bounded H*>-functional calculus?
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Ritt operators

A Ritt operator S € B(X) is a power bounded operator such that

3C>0 | Vnx1, nS"-S"1 <C.

LetD={zeC: |z| <1}

This is equivalent to the so-called Ritt condition:

K

o(S)cD and Vz¢D, IRz S < -

This is a discrete analogue of the notion of bounded analytic semigroup.

References: Coulhon-Saloff Coste, Nevanlinna, 1993; Lyubich, 1999;
Nagy-Zemanek, 1999; Blunck, 2001; etc.
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™

For any angle 0 < v < 7, let B, be the convex hull of 1 and the disc of
center 0 and radius sin .
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If S € B(X) is a Ritt operator, then
30<7<g | o(S)C B,
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H>-calculus of Ritt operators

Let P be the algebra of complex polynomials.
Let S be a Ritt operator and let 0 <y < 7.

We say that S has a bounded H>°(B,) functional calculus if
a(S) C B,
and there exists a constant K > 1 such that

VoeP, eS| < Ksup{lp(z)| : z € B,}.

We simply say that S admits a bounded H*-functional calculus if this
happens for some 0 < v < 7.
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If a Ritt operator S € B(X) admits a bounded H*>*-functional calculus,

then it is polynomially bounded, that is, there exists a constant K > 1
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H*°-calculus of Ritt operators (continued)

If a Ritt operator S € B(X) admits a bounded H*>*-functional calculus,

then it is polynomially bounded, that is, there exists a constant K > 1
such that

YoeP,  lleS)l < Ksup{le(z)| : z€D}.

The converse is not true (F. Lancien-Le Merdy, 2015).

In many contexts, a bounded H*-functional calculus for a Ritt operator is
equivalent to certain square function estimates.

References: Haak-Haase; Le Merdy.
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Necessary condition on v

Let v € M(G) be a probability measure and consider its Fourier transform
v:G—C.

Definition. We say that a v has BAR (for ‘bounded angular ratio’) if
there exists 0 > 1 such that

Vye G, [1-o(y) <51 PH)):
This is equivalent to the existence of 0 < v < 7 such that ﬁ(a) C B,.

Let \: G — B(L?(G)) be defined by \(t)f = f(- —t) for any f € L2(G)
and any t € G. Then

M, ;:/ ME) du(t) = vs -+ 12(G) — [3(G),
G

this is normal operator and o(M,) = I/(G)

Hence M, is Ritt if and only if v has BAR.
In this case, it automatically admits a bounded H*°-functional calculus.
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Refined questions

Note that
M, = S(\,v)

for the bounded strongly continuous representation A: G — B(L?(G)).

Hence BAR is a natural necessary condition for Questions 1 & 2.

e Assume that v has BAR.

(i) Is S(m,v) = [om(t) dv(t) a Ritt operator for any strongly continuous
bounded representatlon w?

(i) Which additional conditions imply this property?

(iii) What about H*°-functional calculus in this case?
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is a Ritt operator which admits a bounded H°°-functional calculus.




A positive result on UMD Banach lattices

Theorem

Let G be an abelian locally compact group. Let X be a UMD Banach
lattice and let m: G — B(X) be a strongly continuous bounded
representation. Let v € M(G) be a probability measure with BAR. Then

S(r,v) = /G (t) du(t)

is a Ritt operator which admits a bounded H°°-functional calculus.

Elements of proof.
e Consider \X: G — B(L?(G; X)) defined by \(t)f = f(- —t) for any
f € L?(G: X)and any t € G. Then we have

MX ::/ M (t) du(t) = vx-: [2(G; X) — L%(G; X).
G
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A positive result on UMD Banach lattices (continued)

e By transference arguments, one shows that it suffices to consider the
case when m = \X; the space X is replaced by L?(G; X) and S(7,v) is
replaced by MX.

e Since X is a UMD Banach lattice, there exists a Hilbert space H, a
UMD Banach space Y and 0 € (0, 1) such that

X =Y, H

in the sense of complex interpolation (Rubio de Francia, 1986).

e Then L?(G; X) = [L%(G; Y), L*(G; H)]p and M.S interpolates betwen
M and MY .

e Since H is a Hilbert space, the operator Mﬁ behaves like M,,: this is a
Ritt operator with a bounded H*°-functional calculus.

e By interpolation (Blunck, 2001), this implies that M is a Ritt operator.

e Further interpolation arguments show that MX admits a bounded
H®>°-functional calculus. (Here the UMD property of Y plays a role.)



A positive result on UMD Banach lattices (continued)

Corollary

Let 1 < p < o0, let (2, ;1) be a measure space and let T € B(LP(2)) be a
positive contraction. Let ¢ = (ck)k>1 be a sequence satisfying BAR. Then

S = i Ck Tk
k=0

is a Ritt operator which admits a bounded H*°-functional calculus.




A positive result on UMD Banach lattices (continued)

Corollary

Let 1 < p < o0, let (2, ;1) be a measure space and let T € B(LP(2)) be a
positive contraction. Let ¢ = (ck)k>1 be a sequence satisfying BAR. Then

S = i Ck Tk
k=0

is a Ritt operator which admits a bounded H*°-functional calculus.

The proof consists in applying Akcoglu’s dilation Theorem and the
previous Theorem on G = Z.
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K-convex Banach spaces

Let X be a Banach space. We say that X contains /% uniformly if there
is a constant K > 1 such that for any integer n > 1, there is an

. . K .
n-dimensional subspace E, C X such that ¢/{ ~ E,. That is, for any n > 1,
there exist x1,...,x, in X such that for any a1, -- ,a, € C,

n n n
> lagl < D] <KD Jayl
j=1 j=1 j=1

Pisier's Theorem, 1982

The following are equivalent.
(i) X does not contains ¢%'s uniformly.
(i) X has Rademacher type > 1.
(ii) The Rademacher projection is bounded on L?(£; X).

Such spaces are called K-convex.

UMD implies K-convex but there exist non reflexive K-cenvex snaces.
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Symmetric measures

Let G be a locally compact abelian group and let v € M(G) be a
probability. We say that v is symmetric when v(A) = v(—A) for any
measurable A C G. The following is easy to check:

v is symmetric < M, : [%(G) — L?(G) is selfadjoint
& Uis real valued

< vis valued in [—-1,1].

A symmetric v has BAR if and only if there exists a € (—1,1) such that v
is actually valued in [a, 1].

If v =1 *n for some symmetric probability measure 7, then v is a
symmetric probability measure with BAR, since 7 = 7)? is valued in [0, 1].
We say that v is a square in this case.



Main result

Theorem

Let v be a symmetric probability measure on some locally compact abelian
group G. Assume that v is a square. Let X be a K-convex Banach space.
Then for any bounded strongly continuous representation 7: G — B(X),

S(r,v) = /G (t) du(t)

is a Ritt operator.




Main result

Theorem

Let v be a symmetric probability measure on some locally compact abelian
group G. Assume that v is a square. Let X be a K-convex Banach space.
Then for any bounded strongly continuous representation 7: G — B(X),

S(r,v) = /G (t) du(t)

is a Ritt operator.

v

The proof relies on some techniques introduced by Pisier, in particular the
following result:

@ IfY is a K-convex Banach space, then there exists C > 1 such that

for any integer n > 1 and for any commuting contractive projections
in B(Y), then

ISv-py I A <c
j=1

1<j#k<n
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Main result (continued)

Let v € M(G) be a symmetric probability with BAR.
If v € L1(G) (i.e. v has a density), then one can get rid of the assumption
that v is a square in the preceding Theorem.

This applies to any measure on a discrete group.
On G = Z this yields the following.

Corollary

Let ¢ = (ck)kez be a nonnegative sequence with ), cx = 1. Assume that
>k cke™®® > 0 for any § € R. Let X be a K-convex space and let
U € B(X) be an invertible operator with sup,c || T*|| < co. Then

o0

S= Z CkUk

k=—o00

is a Ritt operator.
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Necessity of K-convexity

Let G be a non-discrete locally compact abelian group. Let X be a Banach
space and assume that X in not K-convex. Then there exists a symmetric
probability measure v € M(G) such that leg is not a Ritt operator.

The proof relies on the existence of a symmetric probability measure
v € M(G) such that 1 + 12 is not invertible in M(G) (a refinement of the
Wiener-Pitt Theorem).



