Fredholmness of Some Toeplitz Operators

Beyaz Başak Koca

Istanbul University, Istanbul, Turkey

IWOTA, 2017

Koca, B.B. (Istanbul University) Fredholmness of Some Toeplitz Operators

IWOTA, 2017

Definition (Fredholm operator)

Let *H* be a Hilbert space and let $T \in \mathcal{B}(H)$. *T* is said to be Fredholm operator if the range of *T* is closed, dimKer*T* and dimKer*T*^{*} are finite.

Definition (Fredholm operator)

Let *H* be a Hilbert space and let $T \in \mathcal{B}(H)$. *T* is said to be Fredholm operator if the range of *T* is closed, dimKer*T* and dimKer*T*^{*} are finite.

Theorem (Atkinson's characterization)

Let H be a Hilbert space and let $T \in \mathcal{B}(H)$. Then T is Fredholm operator if and only if $T + \mathcal{K}(H)$ is invertible in the quotient algebra $\mathcal{B}(H)/\mathcal{K}(H)$, where $\mathcal{K}(H)$ is the ideal of all compact operators on H. A Banach algebra is a complex normed algebra \mathcal{A} which is complete (as a topological space) and satisfies

```
||ST|| \leq ||S|| ||T|| for all S, T \in \mathcal{A}.
```

A Banach algebra is a complex normed algebra \mathcal{A} which is complete (as a topological space) and satisfies

$$||ST|| \leq ||S|| ||T||$$
 for all $S, T \in A$.

A *C*^{*}-algebra is a Banach algebra \mathcal{A} with conjugate-linear involution * which is an anti-isomorphism, that is, for all $S, T \in \mathcal{A}$ and λ in \mathbb{C}

$$(\lambda S + T)^* = \overline{\lambda}S^* + T^*,$$

 $(ST)^* = T^*S^*,$
 $(S^*)^* = S$

and additional norm condition

$$||S^*S|| = ||S||^2$$
 for all $S \in \mathcal{A}$.

IWOTA, 2017

Theorem (Gelfand-Naimark Theorem)

Any C^{*}-algebra is isometrically *-isomorphic to a C^{*}-subalgebra of $\mathcal{B}(H)$ for some Hilbert space H.

Theorem (Gelfand-Naimark Theorem)

Any C^{*}-algebra is isometrically *-isomorphic to a C^{*}-subalgebra of $\mathcal{B}(H)$ for some Hilbert space H.

For every subset C of A there is a smallest C^* -subalgebra of A containing C, called the C^* -subalgebra generated by C.

Theorem (Gelfand-Naimark Theorem)

Any C^{*}-algebra is isometrically *-isomorphic to a C^{*}-subalgebra of $\mathcal{B}(H)$ for some Hilbert space H.

For every subset C of A there is a smallest C*-subalgebra of A containing C, called the C*-subalgebra generated by C.

If \mathcal{A} is a C^* -algebra, then its commutator ideal \mathcal{I} is the smallest (norm) closed, two-sided ideal of \mathcal{A} containing $\{AB - BA : A, B \in \mathcal{A}\}$.

C^* -algebras generated by a system of unilateral weighted shifts

Let n be a fixed positive integer.

$$I = (i_1, \dots, i_n) \text{ be a multi-index of integers.}$$
$$I \ge 0: i_j \ge 0 \text{ for all } j = 1, \dots, n$$
$$|I| = |i_1 + \dots + i_n|$$
For $I \ge 0$
$$z^I = z_1^{i_1} \dots z_n^{i_n},$$

where $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$. Let $\varepsilon_k = (\delta_{1k}, \ldots, \delta_{nk})$ be an another multi-index, where δ_{ij} is the Kronocker symbol. For the multi-index I

$$I \mp \varepsilon_k = (i_1, \ldots, i_k \mp 1, \ldots, i_n)$$

Let $\{e_l\}$ be an orthonormal basis of a complex Hilbert space H and let $\{w_{l,j} : j = 1, ..., n\}$ be a bounded set of complex numbers such that

$$w_{I,k}w_{I+\varepsilon_k,t} = w_{I,t}w_{I+\varepsilon_t,k}$$

for all I and $1 \le k, t \le n$.

Definition (Jewell, Lubin)

A system of unilateral weighted shifts is a family of *n*-operators $A = \{A_1, \ldots, A_n\}$ on *H* such that

$$A_j e_l = w_{l,j} e_{l+\varepsilon_j}, \ l \ge 0, \ j = 1, \ldots, n.$$

IWOTA, 2017

With aid of the positive $\{w_{l,j} : j = 1, \dots, n\}$ we define a set $\{\beta_l\}_{l \ge 0}$ such that

$$\beta_{I+\varepsilon_j} = w_{I,j}\beta_I; \quad \beta_0 = 1.$$

▲ □ ▶ ▲ □ ▶ ▲ □

With aid of the positive $\{w_{l,j} : j = 1, \dots, n\}$ we define a set $\{\beta_l\}_{l \ge 0}$ such that

$$\beta_{I+\varepsilon_j} = w_{I,j}\beta_I; \quad \beta_0 = 1.$$

Then, the space

$$H^2(\beta) = \left\{ f(z) = \sum_{l \ge 0} f_l z^l : \sum_{l \ge 0} |f_l|^2 \beta_l^2 < \infty \right\}.$$

IWOTA, 2017

With aid of the positive $\{w_{l,j} : j = 1, \ldots, n\}$ we define a set $\{\beta_l\}_{l \ge 0}$ such that

$$\beta_{I+\varepsilon_j} = w_{I,j}\beta_I; \quad \beta_0 = 1.$$

Then, the space

$$H^2(\beta) = \left\{ f(z) = \sum_{l \ge 0} f_l z^l : \sum_{l \ge 0} |f_l|^2 \beta_l^2 < \infty \right\}$$

is a Hilbert space with the inner product

$$\langle f,g\rangle = \sum_{I\geq 0} f_I \overline{g_I} \beta_I^2$$

and $\{\frac{z^{I}}{\beta_{I}}\}_{I\geq0}$ is an orthonormal basis for $H^{2}(\beta)$ (Jewell-Lubin).

Consider such $\{\beta_I\}_{I\geq 0}$ that the multi-variable moment problem

$$\beta_I^2 = \int_{[0,1]^n} r_1^{2i_1} r_2^{2i_2} \dots r_n^{2i_n} d\nu(r_1, r_2, \dots, r_n)$$

has a solution for these β_I^2 's, that is, there exists a positive Borel measure ν defined on $[0, 1]^n$ for these β_I^2 's satisfying above equality.

Consider such $\{\beta_I\}_{I\geq 0}$ that the multi-variable moment problem

$$\beta_I^2 = \int_{[0,1]^n} r_1^{2i_1} r_2^{2i_2} \dots r_n^{2i_n} d\nu(r_1, r_2, \dots, r_n)$$

has a solution for these β_l^2 's, that is, there exists a positive Borel measure ν defined on $[0, 1]^n$ for these β_l^2 's satisfying above equality.

Let Ω denote the family of the systems A such that β_I^2 's corresponding to the system A satisfying above property (i.e., the multi-variable moment problem has a solution for β_I^2 's)

Consider such $\{\beta_I\}_{I\geq 0}$ that the multi-variable moment problem

$$\beta_I^2 = \int_{[0,1]^n} r_1^{2i_1} r_2^{2i_2} \dots r_n^{2i_n} d\nu(r_1, r_2, \dots, r_n)$$

has a solution for these β_l^2 's, that is, there exists a positive Borel measure ν defined on $[0, 1]^n$ for these β_l^2 's satisfying above equality.

Let Ω denote the family of the systems A such that β_I^2 's corresponding to the system A satisfying above property (i.e., the multi-variable moment problem has a solution for β_I^2 's) and let ν_A denote the measure corresponding to the system A.

 $L^2(\bar{\mathbb{D}}^n,\mu)$ (= $L^2(\mu)$) : the space of complex-valued functions on $\bar{\mathbb{D}}^n$ which are Lebesgue measurable and square-integrable with respect to the measure μ . Here μ is given on $\bar{\mathbb{D}}^n$ by

$$d\mu = \frac{1}{(2\pi)^n} d\nu(r_1, r_2, \ldots, r_n) d\theta_1 d\theta_2 \ldots d\theta_n \quad (0 < \theta_i \le 2\pi)$$

 $L^2(\bar{\mathbb{D}}^n,\mu)$ (= $L^2(\mu)$) : the space of complex-valued functions on $\bar{\mathbb{D}}^n$ which are Lebesgue measurable and square-integrable with respect to the measure μ . Here μ is given on $\bar{\mathbb{D}}^n$ by

$$d\mu = \frac{1}{(2\pi)^n} d\nu(r_1, r_2, \ldots, r_n) d\theta_1 d\theta_2 \ldots d\theta_n \quad (0 < \theta_i \le 2\pi)$$

If $A \in \Omega$, then $\left\{\frac{1}{\sqrt{(2\pi)^n}} \frac{z'}{\beta_l}\right\}_{l \ge 0}$ is an orthonormal system in $L^2(\mu)$.

 $L^2(\bar{\mathbb{D}}^n,\mu)$ (= $L^2(\mu)$) : the space of complex-valued functions on $\bar{\mathbb{D}}^n$ which are Lebesgue measurable and square-integrable with respect to the measure μ . Here μ is given on $\bar{\mathbb{D}}^n$ by

$$d\mu = \frac{1}{(2\pi)^n} d\nu(r_1, r_2, \ldots, r_n) d\theta_1 d\theta_2 \ldots d\theta_n \quad (0 < \theta_i \le 2\pi)$$

If
$$A \in \Omega$$
, then $\left\{\frac{1}{\sqrt{(2\pi)^n}} \frac{z'}{\beta_l}\right\}_{l \ge 0}$ is an orthonormal system in $L^2(\mu)$.
Let $H^2(\bar{\mathbb{D}}^n, \mu)$ $(= H^2(\mu))$ be the subspace generated by the orthonormal system $\left\{\frac{1}{\sqrt{(2\pi)^n}} \frac{z'}{\beta_l}\right\}_{l \ge 0} \in L^2(\mu)$.

Functional Model

If $A \in \Omega$, then the system A of unilateral weighted shifts on H and the system $A_z (= \{A_{z_1}, \ldots, A_{z_n}\})$ of the multiplication operators A_{z_i} on $H^2(\mu)$ by the independent variables z_i 's, $i = 1, 2, \ldots, n$ are unitarily equivalent.

For simplicity, we consider n = 2. Let be

$$S_1 = \{ (r_1, r_2) \in [0, 1] \times [0, 1] : r_1^2 + r_2^2 \le 1 \}$$
$$\widetilde{S}_1 = \{ (r_1, r_2) \in [0, 1] \times [0, 1] : r_1^2 + r_2^2 = 1 \}.$$

Let Ω_1 be the subset of Ω defined by

$$\Omega_1 = \{A \in \Omega : supp
u_A \subset S_1, \
u_A(U(a)) > 0 \text{ for arbitrary} \}$$

neighborhood U(a) of each point $a \in \widetilde{S}_1$ }

Theorem

If $A \in \Omega_1$, then $H^2(\mu)$ is a functional Hilbert space.

Theorem (Ergezen, Sadik)

Let $A \in \Omega$. A necessary and sufficient condition for the operator algebra generated by the system A to be isometrically isomorphic to the ball algebra is that A is in Ω_1 .

Theorem (Ergezen, Sadik)

Let $A \in \Omega$. A necessary and sufficient condition for the operator algebra generated by the system A to be isometrically isomorphic to the ball algebra is that A is in Ω_1 .

Theorem (K., Sadik)

Let $A \in \Omega$. If the algebra generated by the system A is the ball algebra, then the commutator ideal of the C^{*}- algebra C^{*}(A) generated by the system A is the ideal of all compact operators \mathcal{K} and

$$C^*(A) = \{T_{\psi} + K : \psi \in C(supp\mu), K \in \mathcal{K}\}.$$

The quotient $C^*(A)/\mathcal{K}$ is *-isomorphic to $C(S^3)$, where S^3 is the unit sphere.

Definition

If *P* denotes the orthogonal projection from $L^2(\mu)$ onto $H^2(\mu)$, then for $\psi \in C(supp\mu)$ the Toeplitz operator T_{ψ} on $H^2(\mu)$ with continuous symbol ψ is defined by

$$T_{\psi}f = P(\psi f)$$

for $f \in H^2(\mu)$.

Definition

If *P* denotes the orthogonal projection from $L^2(\mu)$ onto $H^2(\mu)$, then for $\psi \in C(supp\mu)$ the Toeplitz operator T_{ψ} on $H^2(\mu)$ with continuous symbol ψ is defined by

$$T_{\psi}f = P(\psi f)$$

for $f \in H^2(\mu)$.

Corollary

Let $\psi \in C(supp\mu)$. Then The Toeplitz operator $T_{\psi} \in C^*(A)$ is Fredholm if and only if $\psi(z) \neq 0$ for all $z \in S^3$.

Let Ω_2 be the subset of Ω defined by

$$\Omega_2 = \{A \in \Omega : \nu_A(U(1,1)) > 0 \text{ for arbitrary } \}$$

neighborhood U(1,1) of the point $(1,1) \in [0,1]^2$.

Theorem

If $A \in \Omega_2$, then $H^2(\mu)$ is a functional Hilbert space.

Theorem (Ergezen, Sadik)

Let $A \in \Omega$. A necessary and sufficient condition for the operator algebra generated by the system A to be isometrically isomorphic to the polydisc algebra is that A is in Ω_2 .

Theorem (Ergezen, Sadik)

Let $A \in \Omega$. A necessary and sufficient condition for the operator algebra generated by the system A to be isometrically isomorphic to the polydisc algebra is that A is in Ω_2 .

Theorem (K., Sadik)

Let $A \in \Omega_2$. Then, the commutator ideal \mathcal{J} of $C^*(A)$ properly contains the ideal \mathcal{K} of compact operators on $H^2(\mathbb{D}^2)$. The quotient space $\mathcal{J}/\mathcal{K}(H^2(\mathbb{D}^2))$ is isometrically isomorphic to $C(\mathbb{T} \times \{0,1\}) \otimes \mathcal{K}(H^2(\mathbb{D}))$, where \mathbb{T} is the unit circle and $\{0,1\}$ is the two-point space. We assume that the measure ν_A has of the form

$$\nu_A(r_1, r_2) = \nu_1(r_1)\nu_2(r_2),$$

where both measures ν_1 and ν_2 are defined on [0, 1] and satisfying $\nu_i(a, 1] > 0$, i = 1, 2 for all 0 < a < 1. The measure μ_A is then written as

$$\mu_{\mathcal{A}} = \frac{1}{(2\pi)^2} \nu_1 \nu_2 d\theta_1 d\theta_2$$

IWOTA, 2017

We assume that the measure ν_A has of the form

$$\nu_A(r_1, r_2) = \nu_1(r_1)\nu_2(r_2),$$

where both measures ν_1 and ν_2 are defined on [0, 1] and satisfying $\nu_i(a, 1] > 0$, i = 1, 2 for all 0 < a < 1. The measure μ_A is then written as

$$\mu_A = \frac{1}{(2\pi)^2} \nu_1 \nu_2 d\theta_1 d\theta_2$$

Theorem (K., Sadik)

Let $\psi \in C(supp\mu)$. Then a necessary and sufficient condition for T_{ψ} to be Fredholm is that ψ does not vanish in \mathbb{T}^2 and $\psi|_{\mathbb{T}^2}$ is homotopic to a constant.

An application for the unit ball case

 π : the quotient homomorphism from B(H) to $B(H)/\mathcal{K}(H)$

L: a subalgebra of B(H) such that the image $\pi(L)$ is a commutative subalgebra of $B(H)/\mathcal{K}(H)$

S: an automorphism in the algebra $\pi(L)$ such that $S\pi(B) = \pi(B')S$, where $B, B' \in L$, that is, if $B \in L$, then $SBS^{-1} = B' + K$, $B' \in L$ and $K \in \mathcal{K}(H)$.

An application for the unit ball case

 $\pi :$ the quotient homomorphism from B(H) to $B(H)/\mathcal{K}(H)$

L: a subalgebra of B(H) such that the image $\pi(L)$ is a commutative subalgebra of $B(H)/\mathcal{K}(H)$

S: an automorphism in the algebra $\pi(L)$ such that $S\pi(B) = \pi(B')S$, where $B, B' \in L$, that is, if $B \in L$, then $SBS^{-1} = B' + K$, $B' \in L$ and $K \in \mathcal{K}(H)$.

Consider the operator

$$T=B_1+B_2S+K,$$

where $B_1, B_2 \in L$ ve $K \in \mathcal{K}$.

An application for the unit ball case

 $\pi:$ the quotient homomorphism from B(H) to $B(H)/\mathcal{K}(H)$

L: a subalgebra of B(H) such that the image $\pi(L)$ is a commutative subalgebra of $B(H)/\mathcal{K}(H)$

S: an automorphism in the algebra $\pi(L)$ such that $S\pi(B) = \pi(B')S$, where $B, B' \in L$, that is, if $B \in L$, then $SBS^{-1} = B' + K$, $B' \in L$ and $K \in \mathcal{K}(H)$.

Consider the operator

$$T=B_1+B_2S+K,$$

where $B_1, B_2 \in L$ ve $K \in \mathcal{K}$.

Theorem (K., Sadik)

If the operator $\pi(B_1)\pi(B'_1) - \pi(B_2)\pi(B'_2)$ has an inverse in $\pi(L)$, then $T = B_1 + B_2S + K$ is Fredholm.

IWOTA, 2017

< ロ > < 同 > < 回 > < 回 > < 回 > <

Take $A \in \Omega_1$. Let $L = C^*(A)$. Consider the operator

$$T=T_{\psi_1}+T_{\psi_2}S+K,$$

where T_{ψ_1} ve T_{ψ_2} are Toeplitz operators in $C^*(A)$ with the symbols $\psi_1, \psi_2 \in C(supp\mu)$, respectively and $Sf(w_1, w_2) = f(w_2, w_1)$ for all $f \in H^2(\mu)$.

Take $A \in \Omega_1$. Let $L = C^*(A)$. Consider the operator

$$T=T_{\psi_1}+T_{\psi_2}S+K,$$

where T_{ψ_1} ve T_{ψ_2} are Toeplitz operators in $C^*(A)$ with the symbols $\psi_1, \psi_2 \in C(supp\mu)$, respectively and $Sf(w_1, w_2) = f(w_2, w_1)$ for all $f \in H^2(\mu)$.

The equation $Tf = \varphi$ is written of the form

$$\int_{B^4} K(z,w)\psi_1(w_1,w_2)f(w_1,w_2)d\mu(w_1,w_2)+$$

 $\int_{B^4} K(z,w)\psi_2(w_1,w_2)f(w_2,w_1)d\mu(w_1,w_2) + (Kf)(z_1,z_2) = \varphi(z_1,z_2)$

Theorem (K., Sadik)

If $\psi_1(z_1, z_2)\psi_1(z_2, z_1) - \psi_2(z_1, z_2)\psi_2(z_2, z_1)$ does not vanish in S³, then all of Noether's theorems is true for the equation $Tf = \varphi$.

Theorem (K., Sadik)

If $\psi_1(z_1, z_2)\psi_1(z_2, z_1) - \psi_2(z_1, z_2)\psi_2(z_2, z_1)$ does not vanish in S^3 , then all of Noether's theorems is true for the equation $Tf = \varphi$. In particular, if we take $w_{I,1} = \sqrt{\frac{m+1}{2+m+n}}$, $w_{I,2} = \sqrt{\frac{n+1}{2+m+n}}$ and $Sf(w_1, w_2) = f(w_2, w_1)$ then the equation above has the form

$$\int_{S^3} \frac{\psi_1(w_1, w_2) f(w_1, w_2)}{(1 - z_1 \bar{w}_1 - z_2 \bar{w}_2)^2} ds + \int_{S^3} \frac{\psi_2(w_1, w_2) f(w_2, w_1)}{(1 - z_1 \bar{w}_1 - z_2 \bar{w}_2)^2} ds + (Kf)(z_1, z_2) = \varphi(z_1, z_2),$$

where ds is the surface measure in S^3 .

- Coburn, L. A., 1969, The *C**-algebra generated by an isometry II, *Trans. Amer. Math. Soc.*, 137,211-217.
- Coburn, L. A., 1973/74, Singular integral operators and Toeplitz operators on odd spheres, *Indiana Univ. Math. J.*, 23, 433-439.
- Douglas, R. G. and Howe, R., 1971, On the C*-algebra of Toeplitz operators on the quarter plane, *Trans. Amer. Math. Soc.*, 158, 203-217.
- Jewell, N. P. and Lubin, A. R., 1979, Commuting weighted shifts and analytic function theory in several variables, *J. Operator Theory*, 1, no.2, 207-223.

- Ergezen, F., 2008, On unilateral weighted shifts in noncommutative operator theory., *Topology Appl.*, 155, no. 17-18, 1929-1934.
- Ergezen, F. and Sadik, N., 2010, On some operator algebras generated by unilateral weighted shifts., *Publ. Math. Debrecen* 76, no. 1-2, 21-30.
- Koca, B.B. and Sadik, N., 2012, C*-Algebras Generated by a System of Unilateral Weighted Shifts and Their Application, *Journal of Function Spaces and Applications*, vol. 2012, 5 pages
- Koca, B.B., 2016, Fredholmness of Toeplitz operators on generalized Hardy spaces over the polydisc", *Arch. Math.*, vol.107, pp.265-270.