The logarithmic residue theorem

in higher dimensions:

following an early lead by Marinus A. Kaashoek

IWOTA 2017, Chemnitz
18 August 2017

Harm Bart
Erasmus University Rotterdam

Joint work with

T. Ehrhardt (Santa Cruz) and B. Silbermann (Chemnitz)
INTRODUCTION
What is the Logarithmic Residue Theorem?

Concerned with

$$\text{LogRes}(f; \Gamma) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f'(\lambda)}{f(\lambda)} \, d\lambda$$

f scalar analytic on open neighborhood of closure of inner domain of positively oriented closed contour Γ, on which f has no zeros \textbf{(integral well-defined)}

Fact:

LogRes$(f; \Gamma)$ equal to number of zeros of f inside Γ (multiplicities counted)
Observation 1
LogRes\((f; \Gamma)\) nonnegative integer

Observation 2
LogRes\((f; \Gamma) = 0\) \Rightarrow \(f\) nonzero on inner domain \(\Gamma\)

Alternative formulation:
LogRes\((f; \Gamma) = 0\) \Rightarrow \(f\) invertible values on inner domain \(\Gamma\)
ISSUE
What can be said for analytic functions f having their values in a complex Banach algebra (with unit element)?

Generally lack of commutativity

Two possibilities:

Left version: \[\frac{1}{2\pi i} \int_{\Gamma} f'(\lambda)f(\lambda)^{-1} d\lambda \]

Right version: \[\frac{1}{2\pi i} \int_{\Gamma} f(\lambda)^{-1}f'(\lambda) d\lambda \]

Focus on **left** version
From now on:

\[B \text{ Banach algebra (with unit element)} \]

\[\text{LogRes}(f; B; \Gamma) = \frac{1}{2\pi i} \int_{\Gamma} f'(\lambda) f(\lambda)^{-1} d\lambda \]

\(f \) takes invertible values on \(\Gamma \)

Terminology: **logarithmic residue** of \(f \) with respect to \(\Gamma \)
Issues suggested by the two earlier observations:

ISSUE 1
What kind of elements are the logarithmic residues in B?

ISSUE 2
What can be said when $\text{LogRes}(f; B; \Gamma)$ vanishes?

Surprisingly many ramifications

Focus of this talk
HISTORICAL BACKGROUND
1966: Lothrop Mittenthal
Operator-Valued Polynomials in a Complex Variable, and Generalizations of Spectral Theory, Thesis
(commutative case)

1969: Suggestion Marinus A. Kaashoek
PhD project H. Bart

1974: H. Bart
Spectral properties of locally holomorphic vector-valued functions
Correction imperfection in Mittenthal
Not directly addressing the two issues but with some relevance for them:

1970: A.S. Markus and E.I. Sigal

1971: I.C. Gohberg and E.I. Sigal

1978: H. Bart, D.C. Lay, M.A. Kaashoek

Restart around 1990:
Together with Torsten Ehrhardt and Bernd Silbermann
HINTS
Spectral case:

\[f(\lambda) = \lambda e_B - t, \quad f'(\lambda) = e_B \]

\[\text{LogRes}(f; B; \Gamma) = \frac{1}{2\pi i} \int_{\Gamma} f'(\lambda) f(\lambda)^{-1} d\lambda \]

\[= \frac{1}{2\pi i} \int_{\Gamma} (\lambda e_B - t)^{-1} d\lambda \]

Spectral idempotent of \(t \) with respect to \(\Gamma \)

Vanishes \(\iff \) \(t \) has no spectrum inside \(\Gamma \)
Generalization to ‘pencil’:

\[f(\lambda) = \lambda s - t, \quad f'(\lambda) = s \]

Possibly \(st \neq ts \); no invertibility condition on \(s \)

\[
\text{LogRes}(f; B; \Gamma) = \frac{1}{2\pi i} \int_{\Gamma} f'(\lambda)f(\lambda)^{-1} d\lambda \\
= \frac{1}{2\pi i} \int_{\Gamma} s(\lambda s - t)^{-1} d\lambda
\]

Again idempotent (Stummel, 1974)

Vanishes \(\Leftrightarrow \) \(\lambda s - t \) invertible \(\lambda \) inside \(\Gamma \)
ISSUE 1
What kind of elements are the logarithmic residues in B?

Relationship with idempotents?

ISSUE 2
What can be said when $\text{LogRes}(f; B; \Gamma)$ vanishes?

Invertibility $f(\lambda)$ for λ inside Γ?
LOGARITHMIC RESIDUES

and

SUMS OF IDEMPOTENTS
General observation (simple):

Each sum of idempotents in a Banach algebra \mathcal{B} is a logarithmic residue in \mathcal{B}.

QUESTION
Are logarithmic residues always sums of idempotents?

Often they are, but not always.

There is a simple counterexample (subalgebra of $\mathbb{C}^{3 \times 3}$)
Often they are ...

Spectral case and 'Stummel' (already mentioned)

- The commutative case

- The full matrix algebra $\mathcal{B} = \mathbb{C}^{n \times n}$

- Many zero pattern subalgebras of $\mathbb{C}^{n \times n}$
B commutative

Reduction analytic function to polynomial

Uses (nonelementary) **Gelfand Theory**

Multiplicative linear functionals $\mu : B \rightarrow \mathbb{C}$

Also essential role for the famous **Newton’s identities** for symmetric polynomials
The full matrix algebra $B = \mathbb{C}^{n\times n}$

Function f with values in $\mathbb{C}^{n\times n}$

Key observation: rank/trace condition satisfied

\[
\text{rank}\left(\text{LogRes}(f; B; \Gamma)\right) \leq \text{trace}\left(\text{LogRes}(f; B; \Gamma)\right) \in \mathbb{Z}_+
\]

1990 Characterization by Hartwig/Putcha, independently by Wu

\[\Downarrow\]

LogRes($f; B; \Gamma$) is sum of (rank one) idempotents

The logarithmic residues in $\mathbb{C}^{n\times n}$ are precisely the sums of (rank one) idempotents in $\mathbb{C}^{n\times n}$
Subalgebras of $\mathbb{C}^{n \times n}$ determined by a pattern of zeros

Typical example: matrices of the type

\[
\begin{pmatrix}
* & * & * & * & * & * \\
0 & * & * & 0 & 0 & * \\
0 & * & * & 0 & 0 & * \\
0 & 0 & 0 & * & * & * \\
0 & 0 & 0 & * & * & * \\
0 & 0 & 0 & 0 & 0 & * \\
\end{pmatrix}
\]

Stars: possibly nonzero

Pattern: preorder (reflexive / transitive)

Corresponding graph:
Enters graph theory
Many positive results
logarithmic residue ⇔ sum of idempotents

Especially for patterns determined by a **partial order**
(reflexive, transitive, **antisymmetric**)

Example:

\[
\begin{pmatrix}
* & * & * & * & * & * & * & * \\
0 & * & 0 & 0 & 0 & 0 & 0 & * \\
0 & 0 & * & 0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & * & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 & * & 0 & * \\
0 & 0 & 0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & * \\
\end{pmatrix}
\]
Determining graph:
Key case (underlying most of the positive results):

algebra of block upper triangular matrices (fixed block size)

Typical example: block sizes 3, 2, 1 and 2

\[
\begin{pmatrix}
* & * & * & * & * & * & * & * & * \\
* & * & * & * & * & * & * & * & * \\
* & * & * & * & * & * & * & * & * \\
0 & 0 & 0 & * & * & * & * & * & * \\
0 & 0 & 0 & * & * & * & * & * & * \\
0 & 0 & 0 & 0 & 0 & * & * & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & * & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & * & * \\
\end{pmatrix}
\]

Special case: upper triangular matrices (block sizes all 1)
Reduces to proving existence **nonnegative integer** solution of set of linear equations

Integer Programming

Works because of **total unimodularity**
Sufficient to establish existence of **nonnegative real** solution

Involves the famous **Farkas Lemma**

Acknowledgement: Albert Wagelmans (Rotterdam)
SPECTRAL REGULARITY
ISSUE 2

$\text{LogRes}(f; B; \Gamma) = \frac{1}{2\pi i} \int_{\Gamma} f'(\lambda) f(\lambda)^{-1} d\lambda = 0$

$\downarrow \quad ?$

$f(\lambda)$ invertible in B for all $\lambda \in$ inner domain Γ

Two levels:

- individual functions
- Banach algebras / spectral regularity
For certain Banach algebras true

For others not

Again many ramifications

Connections with different parts of mathematics.

NB Trouble spot in Thesis Mittenthal (1966)

Concerned with the commutative case

Correction H. Bart (1974)

Standard Gelfand Theory gives spectral regularity
Also spectrally regular:

Full matrix algebra $\mathbb{C}^{n \times n}$

Can be derived from Markus/Sigal (1970)

Generalizes to Fredholm valued functions

Can be derived from Gohberg/Sigal (1971)

Extends to all finite dimensional Banach algebras
Further with finite dimensional flavor:

Approximately finite-dimensional Banach algebras

dense union of finite dimensional subalgebras

Many interesting instances

Example:

The irrational rotation algebra
The Banach algebra generated by the compacts

\[\mathcal{L}_\mathcal{K}(X) = \{ \alpha I_X + K \mid \alpha \in \mathbb{C}, K \in \mathcal{K}(X) \} \]

\[\mathcal{K}(X) : \text{compact operators on Banach space } X \]

Note:

Spectacular result Argyros/Haydon 2011:
there is a Banach space \(Z \) for which \(\mathcal{L}_\mathcal{K}(Z) = \mathcal{L}(Z) \)

(each bounded linear operator on \(Z \) of the form \(\alpha I_Z + \text{compact} \))

\[\Rightarrow \mathcal{L}(Z) \text{ is spectrally regular} \]

More about spectral regularity of \(\mathcal{L}(X) \) later
More positive answers / Gelfand theory flavor:

Noncommutative Gelfand Theory

Multiplicative linear functionals → matrix representations

Polynomial identity Banach algebras

Generalization of commutative Banach algebras

Uses *Krupnik (1987)*

Upper triangular operators on ℓ_2
KEY QUESTION:

What about $\mathcal{L}(\ell_2)$ itself?

Brings us to the last topic:
BANACH ALGEBRAS

FAILING TO BE

SPECTRALLY REGULAR
Indeed: $\mathcal{L}(\ell_2)$ is not spectrally regular

For a long time essentially the only example we had

Goes via construction of **nontrivial zero sum of idempotents**

Background observation:
In a spectrally regular Banach algebra zero sums of idempotents are trivial
(all summands zero)
Further investigation / recent years:
determining property: ℓ_2 isomorphic to ℓ_2^2

In fact:
if a Banach space X is isomorphic to X^{k+1} for some positive integer k,
then $\mathcal{L}(X)$ features a **non-trivial zero sum of idempotents** (projections),
hence the operator algebra $\mathcal{L}(X)$ is **not** spectrally regular

Yields lots of examples

In passing:
here arise issues of the type:
X **is** isomorphic to X^{k+1} but **not** to X^k

Striking illustration:

If S is an **uncountable, compact, and metrizable** topological space, and $X = \mathcal{C}(S; \mathbb{C})$ is the Banach space of continuous complex functions on S, then the operator algebra $\mathcal{L}(X)$ is **not** spectrally regular.

Indeed, $\mathcal{C}(S'; \mathbb{C}) = \mathcal{C}(S; \mathbb{C})^2$.

Corollary of a **truly remarkable** result from general topology by **A.A. Miljutin (1966):**
THEOREM.
If S is an uncountable compact metrizable topological space and K is the usual Cantor set, then $C(S;\mathbb{C})$ and $C(K;\mathbb{C})$ are isomorphic (Banach spaces).

Reformulation:
$C(S;\mathbb{C})$ up to isomorphism independent of choice S
be it, for instance, K or $[0,1]$!

Use now that $C(K;\mathbb{C}) = C(K;\mathbb{C})^2$

Obvious from the fact that the Cantor set is homeomorphic to the topological direct sum of 2 copies of itself
Thank you for your attention!
APPENDIX
1) Note about the two Issues

Many problems about analytic vector-valued functions can be reduced to the spectral pencil case $\lambda I - T$ via linearization by equivalence and extension (cf. pages 7 and 12).

Not so here!

The trouble comes from the multiplicativity aspect in forming the logarithmic derivative which features under the integral in the definition of the logarithmic residue (see page 6).
2)

Mentioned on page 26: **W.T. Gowers** gave examples of Banach spaces X for which X is isomorphic to X^{k+1} but not to X^k. Here k may be any integer larger than or equal to 2. These examples are complicated.

Using an **alternative approach to constructing Cantor sets**, it is possible to produce relatively simple examples of Banach spaces Y for which Y is isomorphic to Y^{k+1} but for which it is **not at all clear** whether or not Y is isomorphic to X^k.