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INTRODUCTION

2



What is the Logarithmic Residue Theorem?

Concerned with

LogRes(f ; Γ) =
1

2πi

∫
Γ

f ′(λ)

f(λ)
dλ

f scalar analytic on open neighborhood of closure of inner domain

of positively oriented closed contour Γ,

on which f has no zeros (integral well-defined)

Fact:

LogRes(f ; Γ) equal to number of zeros of f inside Γ

(multiplicities counted)
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Observation 1

LogRes(f ; Γ) nonnegative integer

Observation 2

LogRes(f ; Γ) = 0 ⇒ f nonzero on inner domain Γ

Alternative formulation:

LogRes(f ; Γ) = 0 ⇒ f invertible values on inner domain Γ
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ISSUE

What can be said for analytic functions f having their values

in a complex Banach algebra (with unit element)?

Generally lack of commutativity

Two possibilities:

Left version:
1

2πi

∫
Γ
f ′(λ)f(λ)−1 dλ

Right version:
1

2πi

∫
Γ
f(λ)−1f ′(λ) dλ

Focus on left version
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From now on:

B Banach algebra (with unit element)

LogRes(f ;B;Γ) =
1

2πi

∫
Γ
f ′(λ)f(λ)−1 dλ

f takes invertible values on Γ

Terminology: logarithmic residue of f with respect to Γ
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Issues suggested by the two earlier observations:

ISSUE 1

What kind of elements are the logarithmic residues in B?

ISSUE 2

What can be said when LogRes(f ;B; Γ) vanishes?

Surprisingly many ramifications

Focus of this talk
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HISTORICAL

BACKGROUND
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1966: Lothrop Mittenthal

Operator-Valued Polynomials in a Complex Variable,

and Generalizations of Spectral Theory, Thesis

(commutative case)

1969: Suggestion Marinus A. Kaashoek

PhD project H. Bart

1974: H. Bart

Spectral properties of locally holomorphic vector-valued func-

tions

Correction imperfection in Mittenthal
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Not directly addressing the two issues but with some rele-

vance for them:

1970: A.S. Markus and E.I. Sigal

1971: I.C. Gohberg and E.I. Sigal

1978: H. Bart, D.C. Lay, M.A. Kaashoek

Restart around 1990:

together with Torsten Ehrhardt and Bernd Silbermann
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HINTS
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Spectral case:

f(λ) = λeB − t, f ′(λ) = eB

LogRes(f ;B; Γ) =
1

2πi

∫
Γ
f ′(λ)f(λ)−1 dλ

=
1

2πi

∫
Γ

(λeB − t)−1 dλ

Spectral idempotent of t with respect to Γ

Vanishes ⇔ t has no spectrum inside Γ
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Generalization to ’pencil’:

f(λ) = λs− t, f ′(λ) = s

Possibly st 6= ts; no invertibility condition on s

LogRes(f ;B; Γ) =
1

2πi

∫
Γ
f ′(λ)f(λ)−1 dλ

=
1

2πi

∫
Γ
s(λs− t)−1 dλ

Again idempotent (Stummel, 1974)

Vanishes ⇔ λs− t invertible λ inside Γ
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ISSUE 1

What kind of elements are the logarithmic residues in B?

Relationship with idempotents?

ISSUE 2

What can be said when LogRes(f ;B; Γ) vanishes?

Invertibility f(λ) for λ inside Γ?
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LOGARITHMIC

RESIDUES

and

SUMS OF

IDEMPOTENTS
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General observation (simple):

Each sum of idempotents in a Banach algebra B is a logarithmic

residue in B.

QUESTION

Are logarithmic residues always sums of idempotents?

Often they are, but not always

There is a simple counterexample (subalgebra of C3×3)
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Often they are . . .

Spectral case and ’Stummel’ (already mentioned)

• The commutative case

• The full matrix algebra B = Cn×n

• Many zero pattern subalgebras of Cn×n
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B commutative

Reduction analytic function to polynomial

Uses (nonelementary) Gelfand Theory

Multiplicative linear functionals µ : B → C

Also essential role for the famous Newton’s identities for

symmetric polynomials
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The full matrix algebra B = Cn×n

Function f with values in Cn×n

Key observation: rank/trace condition satisfied

rank
(
LogRes(f ;B; Γ)

)
≤ trace

(
LogRes(f ;B; Γ)

)
∈ Z+

1990 Characterization by Hartwig/Putcha, independently by Wu

⇓

LogRes(f ;B; Γ) is sum of (rank one) idempotents

The logarithmic residues in Cn×n are precisely the sums of

(rank one) idempotents in Cn×n
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Subalgebras of Cn×n determined by a pattern of zeros

Typical example: matrices of the type

∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ 0 0 ∗
0 ∗ ∗ 0 0 ∗
0 0 0 ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 0 0 ∗


Stars: possibly nonzero

Pattern: preorder (reflexive / transitive)

Corresponding graph:
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Enters graph theory
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Many positive results
logarithmic residue ⇔ sum of idempotents

Especially for patterns determined by a partial order
(reflexive, transitive, antisymmetric)

Example:



∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ 0 0 0 0 0 ∗
0 0 ∗ 0 0 0 0 ∗
0 0 0 ∗ 0 0 0 ∗
0 0 0 0 ∗ 0 0 ∗
0 0 0 0 0 ∗ 0 ∗
0 0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 0 ∗


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Determining graph:

•
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Key case (underlying most of the positive results):

algebra of block upper triangular matrices
(fixed block size)

Typical example: block sizes 3,2,1 and 2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 ∗ ∗ ∗
0 0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 ∗ ∗


Special case: upper triangular matrices (block sizes all 1)
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Reduces to proving existence nonnegative integer solution of

set of linear equations

Integer Programming

Works because of total unimodularity

Sufficient to establish existence of nonnegative real solution

Involves the famous Farkas Lemma

Acknowledgement: Albert Wagelmans (Rotterdam)
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SPECTRAL REGULARITY
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ISSUE 2

LogRes(f ;B; Γ) =
1

2πi

∫
Γ
f ′(λ)f(λ)−1dλ = 0

⇓ ?

f(λ) invertible in B for all λ ∈ inner domain Γ

Two levels:

individual functions

Banach algebras / spectral regularity
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For certain Banach algebras true

For others not

Again many ramifications

Connections with different parts of mathematics.

NB Trouble spot in Thesis Mittenthal (1966)

Concerned with the commutative case

Correction H. Bart (1974)

Standard Gelfand Theory gives spectral regularity
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Also spectrally regular:

Full matrix algebra Cn×n

Can be derived from Markus/Sigal (1970)

Generalizes to Fredholm valued functions

Can be derived from Gohberg/Sigal (1971)

Extends to all finite dimensional Banach algebras
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Further with finite dimensional flavor:

Approximately finite-dimensional Banach algebras

dense union of finite dimensional subalgebras

Many interesting instances

Example:

The irrational rotation algebra
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The Banach algebra generated by the compacts

LK(X) = {αIX +K | α ∈ C, K ∈ K(X)}

K(X): compact operators on Banach space X

Note:

Spectacular result Argyros/Haydon 2011:
there is a Banach space Z for which LK(Z) = L(Z)

(each bounded linear operator on Z of the form αIZ + compact)

⇒ L(Z) is spectrally regular

More about spectral regularity of L(X) later
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More positive answers / Gelfand theory flavor:

Noncommutative Gelfand Theory

Multiplicative linear functionals → matrix representations

Polynomial identity Banach algebras

Generalization of commutative Banach algebras

Uses Krupnik (1987)

Upper triangular operators on `2
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KEY QUESTION:

What about L(`2) itself?

Brings us to the last topic:
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BANACH ALGEBRAS

FAILING TO BE

SPECTRALLY REGULAR
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Indeed: L(`2) is not spectrally regular

For a long time essentially the only example we had

Goes via construction of nontrivial zero sum of idempotents

Background observation:

In a spectrally regular Banach algebra zero sums of idempotents

are trivial

(all summands zero)
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Further investigation / recent years:
determining property: `2 isomorphic to `22

In fact:
if a Banach space X is isomorphic to Xk+1 for some positive
integer k,
then L(X) features a non-trivial zero sum of idempotents
(projections),
hence the operator algebra L(X) is not spectrally regular

Yields lots of examples

In passing:
here arise issues of the type:
X is isomorphic to Xk+1 but not to Xk

Work of W.T Gowers, winner Fields Medal (1998)
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Striking illustration:

If S is an uncountable, compact, and metrizable topological

space,

and X = C(S; C) is the the Banach space of continuous complex

functions on S,

then the operator algebra L(X) is not spectrally regular

Indeed, C(S; C) = C(S; C)2

Corollary of a truly remarkable result from general topology by

A.A. Miljutin (1966):
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THEOREM.

If S is an uncountable compact metrizable topological space and

K is the usual Cantor set,

then C(S; C) and C(K; C) are isomorphic (Banach spaces).

Reformulation:

C(S; C) up to isomorphism independent of choice S

be it, for instance, K or [0,1] !

Use now that C(K; C) = C(K; C)2

Obvious from the fact that the Cantor set is homeomorphic

to the topological direct sum of 2 copies of itself
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Thank you

for

your attention!
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APPENDIX
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1) Note about the two Issues

Many problems about analytic vector-valued functions can be

reduced to the spectral pencil case λI − T via linearization by

equivalence and extension (cf. pages 7 and 12).

Not so here!

The trouble comes from the multiplicativity aspect in forming

the logarithmic derivative which features under the integral in

the definition of the logarithmic residue (see page 6).
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2)

Mentioned on page 26: W.T. Gowers gave examples of Banach
spaces X for which X is isomorphic to Xk+1 but not to Xk. Here
k may be any integer larger than or equal to 2. These examples
are complicated.

Using an alternative approach to constructing Cantor sets,
it is possible to produce relatively simple examples of Banach
spaces Y for which Y is isomorphic to Y k+1 but for which it is
not at all clear whether or not Y is isomorphic to Xk.

See: H. Bart, T. Erhardt, B. Silbermann: Zero sums of idem-
potents and Banach algebras failing to be spectrally regular,
In: Operator Theory: Advances and Applications, Vol. 237,
Birkhäuser Verlag, Springer Basel AG (2013), 41-78.
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