# Bounded $H_{\infty}$-calculus for <br> Closed Extensions of <br> Cone Differential Operators 

Jörg Seiler<br>Università di Torino

(joint work with Elmar Schrohe)

## Bounded $H_{\infty}$-calculus (sketch)

Throughout the talk, $\Lambda \subset \mathbb{C}$ is a closed sector with vertex in 0 :


Let $A: \mathscr{D}(A) \subset X \rightarrow X$ be a sectorial operator, in particular,

$$
\sup _{0 \neq \lambda \in \Lambda}\left\|\lambda(\lambda-A)^{-1}\right\|_{\mathscr{L}(X)}<+\infty
$$

Definition: $A$ admits a bounded $H_{\infty}$-calculus if

$$
\|f(A)\|_{\mathscr{L}(X)} \leq c\|f\|_{\infty}
$$

for all holomorphic and bounded $f: \mathbb{C} \backslash \Lambda \rightarrow \mathbb{C}$.

## Bounded $H_{\infty}$-calculus (sketch)

Remark: For $f$ decaying to some $\varepsilon$-rate both at 0 and infinity,

$$
f(A)=\frac{1}{2 \pi i} \int_{\partial \Lambda} f(\lambda)(\lambda-A)^{-1} d \lambda \in \mathscr{L}(X)
$$

BUT: For the estimate in terms of $\|f\|_{\infty}$, sectoriality is not enough. One needs "additional structure of the resolvent".

Approach: If $A$ is a (pseudo-)differential operator, show that suitable ellipticity asumptions on $A$ imply that the resolvent has the structure of a parameter-dependent pseudodifferential operator.

Note: How the "ellipticity asumptions" and "pseudodifferential structure" look like depends heavily on what $A$ is.

## Bounded $H_{\infty}$-calculus (advertisement)

- Escher-S. (Trans. AMS 2005):

Pseudo's of Hörmander-class $S_{1, \delta}^{m}$ with symbols of low regularity; in particular, the Dirichlet-Neumann-Operator for domains with $\mathscr{C}^{1+\varepsilon}$-boundary.

- Denk-Saal-S. (Math. Nachr. 2009): Douglis-Nirenberg systems (of low regularity).
- Bilyj-Schrohe-S. (Proc. AMS 2010): Hypo-elliptic pseudo's from Weyl-Hörmander calculus.
- Coriasco/Schrohe-S. (Math. Z. 2003, Canad. J. Math. 2005, Comm. PDE 2007, Preprint 2017): BIP and $H_{\infty}$-calculus for differential operators on manifolds with conic singularity.


## Cone Differential Operators (for simplicity scalar)

Differential operators on the interior of a smooth compact manifold with boundary $\mathbb{B}$ with a specific "degenerate" structure near the boundary $X:=\partial \mathbb{B}$ :

In a collar-neighborhood $U \cong[0, \varepsilon) \times X$ of the boundary,

$$
A=t^{-\mu} \sum_{j=0}^{\mu} a_{j}(t)\left(-t \partial_{t}\right)^{j}, \quad \mu=\operatorname{ord} A
$$

with $a_{j}(t) \in \operatorname{Diff}^{\mu-j}(X)$ depending smoothly on $t \in[0, \varepsilon)$.
Example (warped metric cone): The Laplacian with respect to a metric $g=d t^{2}+t^{2} g_{X}(t)$ is

$$
\Delta=t^{-2}\left\{\left(t \partial_{t}\right)^{2}+(\operatorname{dim} X-1+a(t)) t \partial_{t}+\Delta_{X, t}\right\}
$$

where $a(t)=t \partial_{t}\left(\log \operatorname{det} g_{X}(t)\right) / 2$.

## Weighted Sobolev spaces

$A$ acts in a scale of weighted Sobolev spaces

$$
\mathcal{H}_{p}^{s, \gamma}(\mathbb{B}), \quad s, \gamma \in \mathbb{R}, 1<p<+\infty
$$

Definition $(s \in \mathbb{N}): u \in \mathcal{H}_{p}^{s, \gamma}(\mathbb{B})$ iff $u \in H_{p, l o c}^{s}(\operatorname{int} \mathbb{B})$ and

$$
t^{\frac{n+1}{2}-\gamma}\left(t \partial_{t}\right)^{j} D_{x}^{\alpha} u(t, x) \in L^{p}\left(\mathbb{B}, \frac{d t}{t} d x\right), \quad j+|\alpha| \leq s
$$

Note: $s$ measures smoothness, $\gamma$ decay/growth-rate for $t \rightarrow 0$.
Note: $A$ of order $\mu$ induces continuous maps

$$
A: \mathcal{H}_{p}^{s, \gamma}(\mathbb{B}) \longrightarrow \mathcal{H}_{p}^{s-\mu, \gamma-\mu}(\mathbb{B})
$$

## Principal symbol(s) and conormal symbols

Principal symbol: $\sigma(A) \in \mathscr{C}^{\infty}\left(T^{*}\right.$ int $\left.\mathbb{B} \backslash 0\right)$
Rescaled principal symbol: $\widetilde{\sigma}(A) \in \mathscr{C}^{\infty}\left(\left(T^{*} X \times \mathbb{R}\right) \backslash 0\right)$ defined by

$$
\widetilde{\sigma}(A)(x, \xi ; \tau)=\lim _{t \rightarrow 0} t^{\mu} \sigma(A)\left(t, x, \xi ; t^{-1} \tau\right)
$$

Conormal symbols: Operator-valued polynomials

$$
h_{k}(z)=\frac{1}{k!} \sum_{j=0}^{\mu} \frac{d^{k} a_{j}}{d t^{k}}(0) z^{j}: \mathbb{C} \longrightarrow \operatorname{Diff}^{\mu}(X) \subset L_{\mathrm{cl}}^{\mu}(X)
$$

Ellipticity: $\boldsymbol{A}$ elliptic with respect to $\gamma \in \mathbb{R}$ if
(a) (rescaled) principal symbol never vanishing,
(b) $h_{0}(z)$ invertible for every $z$ with $\operatorname{Re} z=\frac{n+1}{2}-\gamma$.

Note: $(\mathrm{a}) \Rightarrow h_{0}(z)^{-1}$ meromorphic with values in $L_{\mathrm{cl}}^{-\mu}(X)$

## Closed extensions of elliptic operators

Let $A$ be elliptic w.r.t. $\gamma+\mu$ and consider

$$
A: \mathscr{C}_{\text {comp }}^{\infty}(\operatorname{int} \mathbb{B}) \subset \mathcal{H}_{p}^{s, \gamma}(\mathbb{B}) \longrightarrow \mathcal{H}_{p}^{s, \gamma}(\mathbb{B})
$$

- closure/minimal extension given by $\mathscr{D}_{\text {min }}(A)=\mathcal{H}_{p}^{s+\mu, \gamma+\mu}(\mathbb{B})$
- maximal extension given by

$$
\mathscr{D}_{\max }(A)=\mathcal{H}_{p}^{s+\mu, \gamma+\mu}(\mathbb{B}) \oplus \omega \mathscr{E}
$$

where $\omega(t)$ is both $\equiv 1$ and supported near the boundary, and $\mathscr{E}$ is a finite-dimensional space of smooth functions not depending on $s$ and $p$.

- An arbitrary closed extension $\underline{A}$ of $A$ is given by a domain

$$
\mathscr{D}(\underline{A})=\mathcal{H}_{p}^{s+\mu, \gamma+\mu}(\mathbb{B}) \oplus \underline{\mathscr{E}}, \quad \underline{\mathscr{E}} \subset \mathscr{E}
$$

## The space $\mathscr{E} \cong \mathscr{D}_{\max }(A) / \mathscr{D}_{\min }(A)$

Definition: The model-cone operator associated with $A$ is

$$
\widehat{A}=t^{-\mu} \sum_{j=0}^{\mu} a_{j}(0)\left(-t \partial_{t}\right)^{j}
$$

It is a differential operator on $X^{\wedge}:=(0,+\infty) \times X$. Let

$$
\widehat{\mathscr{E}}=\operatorname{span}\left\{u=t^{-p} \sum_{k} c_{k}(x) \ln ^{k} t \mid \widehat{A} u=0, \frac{n+1}{2}-\operatorname{Re} p \in(\gamma, \gamma+\mu)\right\}
$$

(determined by the poles of $h_{0}(z)^{-1}$ with $\frac{n+1}{2}-\operatorname{Re} z \in(\gamma, \gamma+\mu)$ ).
Proposition (Gil-Krainer-Mendoza 2006, S. 2010): $\mathscr{E}$ is determined by $h_{0}(z)^{-1}$ and $h_{1}(z), \ldots, h_{\mu}(z)$. It has the same dimension as $\widehat{\mathscr{E}}$ and there is a canonical isomorphism

$$
\Theta: \operatorname{Gr}(\widehat{\mathscr{E}}) \longrightarrow \operatorname{Gr}(\mathscr{E})
$$

(Grassmannians)

## Example: Laplacian in dimension 2

$$
\Delta=t^{-2}\left(\left(t \partial_{t}\right)^{2}+a(t)\left(t \partial_{t}\right)+\Delta_{t, X}\right) \quad \text { in }
$$

Conormal symbols: $h_{0}(z)=z^{2}+\Delta_{0}, \quad h_{1}(z)=-\dot{a}(0) z+\dot{\Delta}_{0}$
Poles of $h_{0}(z)^{-1}: 0$ double pole, $\pm \sqrt{-\lambda_{j}}$ simple poles
Passage from $\widehat{\mathscr{E}}$ to $\mathscr{E}:$ Assume $-\lambda_{j}>1$. The function

$$
c_{0}+c_{1} \ln t \in \widehat{\mathscr{E}}, \quad c_{0}, c_{1} \in \mathbb{C},
$$

generates

$$
c_{0}+c_{1}(\ln t+t c(x)) \in \mathscr{E}, \quad c(\cdot)=h_{0}(-1)^{-1} \dot{a}(0)
$$

## Parameter-ellipticity: The minimal extension

The minimal extension falls into Schulze's calculus of parameter-dependent cone pseudodifferential operators ("cone algebra" ):
(1) Both $\sigma(A)$ and $\widetilde{\sigma}(A)$ do not take values in $\Lambda$,
(2) $A$ is elliptic w.r.t. $\gamma+\mu$,
(3) $\widehat{A}: \mathcal{K}_{2}^{\mu, \gamma+\mu}\left(X^{\wedge}\right) \subset \mathcal{K}_{2}^{0, \gamma}\left(X^{\wedge}\right) \longrightarrow \mathcal{K}_{2}^{0, \gamma}\left(X^{\wedge}\right)$ has no spectrum in $\Lambda \backslash 0$.

Note: (3) is a kind of "Shapiro-Lopatinskij condition"
Theorem (Schulze): In this case, there exists a $c \geq 0$ such that $A_{\text {min }}+c$ in $\mathcal{H}_{p}^{0, \gamma}(\mathbb{B})$ is sectorial and its resolvent has a certain pseudodifferential structure.

Theorem (Coriasco-Schrohe-S. 03): In this case, $A_{\text {min }}+c$ has BIP in $\mathcal{H}_{p}^{0, \gamma}(\mathbb{B})$.

## Parameter-ellipticity: Scaling invariant extensions

Let $A$ have $t$-independent coefficients. Let $\underline{A}$ have a domain

$$
\mathscr{D}(\underline{A})=\mathcal{H}_{p}^{\mu, \gamma+\mu}(\mathbb{B})+\omega \underline{\mathscr{E}}
$$

Assumptions:

- $\underline{\mathscr{E}}$ is invariant under dilations:

$$
u(t, x) \in \underline{\mathscr{E}} \Rightarrow u(s t, x) \in \underline{\mathscr{E}} \quad \forall s>0
$$

- $A$ satisfies (1), (2) from above and
(3) $\widehat{A}: \mathcal{K}_{2}^{\mu, \gamma+\mu}\left(X^{\wedge}\right) \oplus \omega \mathscr{\mathscr { E }} \subset \mathcal{K}_{2}^{0, \gamma}\left(X^{\wedge}\right) \longrightarrow \mathcal{K}_{2}^{0, \gamma}\left(X^{\wedge}\right)$ has no spectrum in $\Lambda \backslash 0$.

Theorem (Schrohe-S. 05): In this case, there exists a $c \geq 0$ such that $\underline{A}+c$ in $\mathcal{H}_{p}^{0, \gamma}(\mathbb{B})$ is sectorial and its resolvent has a certain pseudodifferential structure. Moreover, $\underline{A}+c$ has BIP.

## Parameter-ellipticity: General extensions

Theorem (Schrohe-S. 2005/07): Let $\underline{A}$ be a closed extension of $A$ in $\mathcal{H}_{p}^{0, \gamma}(\mathbb{B})$. Assume that the resolvent exists and has a certain pseudodifferential structure. Then $\underline{A}$ has a bounded $H_{\infty}$-calculus.

Theorem (Schrohe-Roidos 2014): The previous theorem remains true for extensions $\underline{A}$ of $A$ in $\mathcal{H}_{p}^{s, \gamma}(\mathbb{B}), s \geq 0$.

Theorem (Gil-Krainer-Mendoza 2006): Let $A$ satisfy (1), (2) and let $\underline{A}$ be an extension in $\mathcal{H}_{2}^{0, \gamma}(\mathbb{B})$ such that
(3) $\widehat{A}: \mathcal{K}_{2}^{\mu, \gamma+\mu}\left(X^{\wedge}\right) \oplus \omega\left(\Theta^{-1} \underset{\mathscr{E}}{ }\right) \subset \mathcal{K}_{2}^{0, \gamma}\left(X^{\wedge}\right) \longrightarrow \mathcal{K}_{2}^{0, \gamma}\left(X^{\wedge}\right)$ is invertible for large $\lambda \in \Lambda$ with $\left\|\lambda(\lambda-\widehat{A})^{-1}\right\|$ uniformly bounded.
Then there exists a $c \geq 0$ such that $\underline{A}+c$ is sectorial in $\mathcal{H}_{2}^{0, \gamma}(\mathbb{B})$.
Note: Resolvent has a slightly different pseudodifferential structure.

## Parameter-ellipticity: General extensions

Theorem (Schrohe-S. 2017): Let $\underline{A}$ be an extension of $A$ in $\mathcal{H}_{p}^{s, \gamma}(\mathbb{B}), s \geq 0$, such that
(1) Both $\sigma(A)$ and $\widetilde{\sigma}(A)$ do not take values in $\Lambda$,
(2) $A$ is elliptic with respect to $\gamma+\mu$ and $\gamma$,
(3) Gil-Krainer-Mendoza's condition on the model-cone operator $\widehat{A}$ holds true.

Then there exists a $c \geq 0$ such that $\underline{A}+c$ is sectorial, the resolvent has a certain pseudodifferential structure, and $\underline{A}+c$ has a bounded $H_{\infty}$-calculus.

Note: Condition (2) means that $A$ and $A^{*}$ are elliptic w.r.t. $\gamma+\mu$

## The pseudodifferential structure

Fourier transform: $D_{x}^{\alpha} \longrightarrow \xi^{\alpha}$
Mellin transform: $\left(-t \partial_{t}\right)^{k} \longrightarrow z^{k}$
Rough idea: The resolvent is of the form

$$
(\lambda-\underline{A})^{-1}=t^{\mu} H(\lambda)+P(\lambda)+G(\lambda)
$$

- $H(\lambda)$ parameter-dependent Mellin pseudo of order $-\mu$ with holomorphic symbol, supported near the boundary;
- $P(\lambda)$ parameter-dependent Fourier pseudo of order $-\mu$, supported away from the boundary;
- $G(\lambda)$ parameter-dependent Green operator (smoothing).

Note: • $t^{\mu} H(\lambda)+P(\lambda)$ maps into $\mathcal{H}_{p}^{s+\mu, \gamma+\mu}(\mathbb{B})$

- $G(\lambda)$ "generates" $\underline{\mathscr{E}}$.


## Parameter-dependent Green operators

Fact: $\mathscr{D}_{\max }(A) \subset \mathcal{H}_{p}^{s+\mu, \gamma+\varepsilon}(\mathbb{B})$ for some $\varepsilon>0$.
Green operators: Are of the form

$$
G(\lambda)=\omega K(\lambda) \omega+R(\lambda)
$$

- $R(\lambda)$ is an integral operator with smooth kernel $r\left(y, y^{\prime} ; \lambda\right)$ vanishing at $\partial \mathbb{B}$ to order $\gamma+\varepsilon$ in $y$, to order $-\gamma+\varepsilon$ in $y^{\prime}$, and vanishes of infinite order for $|\lambda| \rightarrow+\infty$;
- $K(\lambda)$ is an integral operator on $X^{\wedge}$ with smooth kernel

$$
k\left(t, x, t^{\prime}, x^{\prime} ; \lambda\right)=\widetilde{k}\left(t[\lambda]^{1 / \mu}, x, t^{\prime}[\lambda]^{1 / \mu}, x^{\prime} ; \lambda\right)
$$

where $\widetilde{k}\left(s, x, s^{\prime}, x^{\prime} ; \lambda\right)$ vanishes at $s=0 / s^{\prime}=0$ of rate $\gamma+\varepsilon /-\gamma+\varepsilon$ and at $s=+\infty / s^{\prime}=+\infty$ of infinite order, and behaves in $\lambda$ as a pseudodifferential symbol of order -1 .

## Bounded $H_{\infty}$-calculus

Estimate the Dunford-integral for $f(\underline{A})$ using the above structure of the resolvent:

- $P(\lambda)$ and $t^{\mu} H(\lambda)$ produce Fourier/Mellin pseudo's of order 0 with symbol estimates involving only $\|f\|_{\infty}$,
- $G(\lambda)$ is treated using a certain Hardy integral inequality.


Thank you for your attention!
Vielen Dank für Ihre Aufmerksamkeit!
Grazie per la vostra attenzione!

