Generalized Solutions of Riccati equations and inequalities

D.Z. Arov, M.A. Kaashoek, D.R. Pik

August 2017

Time-invariant system

Time-invariant system with discrete time *n*

$$\Sigma \begin{cases} x_{n+1} = Ax_n + Bu_n \\ y_n = Cx_n + Du_n \end{cases}$$

 $A: \mathcal{X} \to \mathcal{X}, \quad B: \mathcal{U} \to \mathcal{X},$ $C: \mathcal{X} \to \mathcal{Y}, \quad D: \mathcal{U} \to \mathcal{Y}$

A, B, C, D are bounded linear operators between Hilbert spaces.

Starting at time 0 with initial state x_0 and input u_0 , u_1 , u_2 ,... we compute the output y_0 , y_1 , y_2 ,...

$$y_k = CA^k x_0 + \sum_{j=0}^{k-1} CA^{k-1-j} Bu_j + Du_k.$$

$$\Sigma \begin{cases} x_{n+1} = Ax_n + Bu_n \\ y_n = Cx_n + Du_n \end{cases}$$

$$y_k = CA^k x_0 + \sum_{j=0}^{k-1} CA^{k-1-j} Bu_j + Du_k.$$

Transfer function

$$\theta_{\Sigma}(\lambda) = D + \sum_{j \ge 1} CA^{j-1}B\lambda^{j} = D + \lambda C \left(I - \lambda A\right)^{-1} B$$

Starting at time 0 with initial state $x_0 = 0$ and input u_0 , u_1 , u_2 ,... we compute the output y_0 , y_1 , y_2 ,... by multiplication

$$u(\lambda) = \sum_{j \ge 1} u_j \lambda^j$$
 $y(\lambda) = \sum_{j \ge 1} y_j \lambda^j$

$$\theta(\lambda)u(\lambda) = y(\lambda)$$

3/30

A system
$$\Sigma \begin{cases} x_{n+1} = Ax_n + Bu_n \\ y_n = Cx_n + Du_n \end{cases}$$
 is called a *realization* of θ if $\theta_{\Sigma}(\lambda) = \theta(\lambda)$ in a neighborhood of 0 .

Two fundamental subspaces of the state space

 $\operatorname{Im}\left(A|B\right) = \operatorname{span}_{n \ge 0} \operatorname{Im} A^{n}B$

$$\operatorname{Ker}\left(C|A\right) = \bigcap_{n \ge 0} \operatorname{Ker} CA^{n}$$

The system Σ is*controllable* if $\operatorname{Im}(A|B) = \mathcal{X}$ The system Σ is*observable* if $\operatorname{Ker}(C|A) = \{0\}$

The system $\tilde{\Sigma} = (\tilde{A}, \tilde{B}, \tilde{C}, D; \tilde{X}, \mathcal{U}, \mathcal{Y})$ is a *dilation* of the system $\Sigma = (A, B, C, D; \mathcal{X}, \mathcal{U}, \mathcal{Y})$ if $\tilde{X} = E \oplus \mathcal{X} \oplus E_*$ such that $\tilde{\Sigma} = \left(\begin{bmatrix} A_1 & A_2 & A_3 \\ 0 & A & A_5 \\ 0 & 0 & A_2 \end{bmatrix}, \begin{bmatrix} B_1 \\ B \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & C & C_1 \end{bmatrix}, D; E \oplus \mathcal{X} \oplus E_*, \mathcal{U}, \mathcal{Y} \right)$

The system Σ is a *restriction* of $\tilde{\Sigma}$.

A system is *minimal* if it is not a dilation of any other (different) system.

Prop. A system is minimal iff it is controllable and observable.

The system $\Sigma = (A, B, C, D; \mathcal{X}, \mathcal{U}, \mathcal{Y})$ is called *passive* if for each initial condition x_0 and input sequence u_0, u_1, u_2, \ldots

$$||x_{n+1}||^2 - ||x_n||^2 \le ||u_n||^2 - ||y_n||^2$$

$$\Leftrightarrow \text{ The system matrix } M_{\Sigma} = \begin{vmatrix} A & B \\ C & D \end{vmatrix} : \mathcal{X} \oplus \mathcal{U} \to \mathcal{X} \oplus \mathcal{Y} \text{ is a contraction.}$$

Two theorems

$$||M_{\Sigma}|| \leq 1 \implies \theta(\cdot)$$
 is a Schur class function

 $\begin{array}{c|c} \theta(\cdot) & \text{is a Schur class} & \Longrightarrow & \theta(\cdot) \\ & & \text{function} \end{array}$

) - appears as the transfer function of a unitary system [Br, NF]
- appears as the transfer function of a minimal and passive system. 6/30

Consider a rational $\mathbb{C}^{q \times p}$ -valued function θ , analytic in a neighborhood of 0,

and let $\Sigma = (A, B, C, D; \mathbb{C}^n, \mathbb{C}^p, \mathbb{C}^q)$ be a minimal realization of θ .

State space similarity theorem: all minimal realizations of θ are given by

$$\Sigma(S) = (SAS^{-1}, SB, CS^{-1}, D; \mathbb{C}^n, \mathbb{C}^p, \mathbb{C}^q)$$

where $S \in \mathbb{C}^{n \times n}$ is an invertible matrix.

Kalman-Yakubovich-Popov Lemma

Given a rational Schur class function with minimal realization $\theta_{\Sigma}(\lambda) = D + \lambda C (I - \lambda A)^{-1} B$

Then there exists an invertible $S \in \mathbb{C}^{n \times n}$ such that

 $\Sigma(S) = (SAS^{-1}, SB, CS^{-1}, D; \mathbb{C}^n, \mathbb{C}^p, \mathbb{C}^q)$ is passive.

This implies that for $H = S^*S$:

$$\left[\begin{array}{ccc} H-A^*HA-C^*C & -C^*D-A^*HB\\ -D^*C-B^*HA & I-D^*D-B^*HB \end{array}\right]\geq 0$$

In this case: *A* is stable.

Conversely: if *A* is stable and H > 0 satisfies the above inequality, then $\Sigma(H^{1/2})$ is a passive system and θ is in the Schur class.

Schur complement

Let \sum be a minimal system and θ a rational Schur class function. We want to find positive and invertible *H* such that

$$\begin{bmatrix} \alpha & \beta \\ \beta^* & \delta \end{bmatrix} = \begin{bmatrix} H - A^* H A - C^* C & -C^* D - A^* H B \\ -D^* C - B^* H A & I - D^* D - B^* H B \end{bmatrix} \ge 0$$

Schur complement

$$\begin{bmatrix} \alpha & \beta \\ \beta^* & \delta \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} I & \beta \delta^{[-1]} \\ 0 & I \end{bmatrix} \begin{bmatrix} \alpha - \beta \delta^{[-1]} \beta^* & 0 \\ 0 & \delta \end{bmatrix} \begin{bmatrix} I & 0 \\ \delta^{[-1]} \beta^* & I \end{bmatrix}$$
Moore-Perrose inverse: $\delta^{[-1]}$

Moore-remose inverse

Moore Penrose Inverse

Self-adjoint matrix $\delta \in \mathbb{C}^{p \times p}$

Put
$$\mathcal{X}_1 = \operatorname{Im} \delta$$
 $\mathcal{X}_2 = \operatorname{Ker} \delta$ and $\delta = \begin{bmatrix} \delta_1 & 0 \\ 0 & 0 \end{bmatrix} : \mathcal{X}_1 \oplus \mathcal{X}_2 \to \mathcal{X}_1 \oplus \mathcal{X}_2$

Then the Moore Penrose Inverse is defined by

$$\delta^{[-1]} = \begin{bmatrix} \delta_1^{-1} & 0 \\ 0 & 0 \end{bmatrix} : \mathcal{X}_1 \oplus \mathcal{X}_2 \to \mathcal{X}_1 \oplus \mathcal{X}_2$$

$$\delta \cdot \delta^{[-1]} = P_{\operatorname{Im} \delta} \qquad \delta^{[-1]} \cdot \delta = P_{\operatorname{Im} \delta}$$

Schur complement

Let \sum be a minimal system and θ a rational Schur class function. We want to find positive and invertible *H* such that

$$\begin{bmatrix} \alpha & \beta \\ \beta^* & \delta \end{bmatrix} = \begin{bmatrix} H - A^* H A - C^* C & -C^* D - A^* H B \\ -D^* C - B^* H A & I - D^* D - B^* H B \end{bmatrix} \ge 0$$

Schur complement

$$\begin{bmatrix} \alpha & \beta \\ \beta^* & \delta \end{bmatrix} = \begin{bmatrix} I & \beta \delta^{[-1]} \\ 0 & I \end{bmatrix} \begin{bmatrix} \alpha - \beta \delta^{[-1]} \beta^* & 0 \\ 0 & \delta \end{bmatrix} \begin{bmatrix} I & 0 \\ \delta^{[-1]} \beta^* & I \end{bmatrix}$$

Moore-Penrose inverse: $\delta^{[-1]} = \delta \cdot \delta^{[-1]} = P_{\text{Im } \delta}$

Condition: Im $\beta^* \subset \operatorname{Im} \delta$ 11/30

We want to find positive and invertible *H* such that

$$\begin{bmatrix} \alpha & \beta \\ \beta^* & \delta \end{bmatrix} = \begin{bmatrix} H - A^*HA - C^*C & -C^*D - A^*HB \\ -D^*C - B^*HA & I - D^*D - B^*HB \end{bmatrix} \ge 0$$

Schur complement

$$\begin{bmatrix} \alpha & \beta \\ \beta^* & \delta \end{bmatrix} = \begin{bmatrix} I & \beta \delta^{[-1]} \\ 0 & I \end{bmatrix} \begin{bmatrix} \alpha - \beta \delta^{[-1]} \beta^* & 0 \\ 0 & \delta \end{bmatrix} \begin{bmatrix} I & 0 \\ \delta^{[-1]} \beta^* & I \end{bmatrix}$$

Condition: $\operatorname{Im} \beta^* \subset \operatorname{Im} \delta$

$$\begin{split} & \operatorname{Im} \beta^* \subset \operatorname{Im} \delta \\ & \alpha - \beta \delta^{[-1]} \beta^* \geq 0 \\ & \delta \geq 0 \end{split}$$

$$\begin{bmatrix} \alpha & \beta \\ \beta^* & \delta \end{bmatrix} = \begin{bmatrix} H - A^* H A - C^* C & -C^* D - A^* H B \\ -D^* C - B^* H A & I - D^* D - B^* H B \end{bmatrix} \ge 0$$
$$\begin{bmatrix} \alpha & \beta \\ \beta^* & \delta \end{bmatrix} \ge 0 \qquad \Longleftrightarrow \qquad \begin{cases} \operatorname{Im} \beta^* \subset \operatorname{Im} \delta \\ \delta \ge 0 \\ \alpha - \beta \delta^{[-1]} \beta^* \ge 0 \end{cases}$$

Definition: (finite dimensional case)

 $H: \mathbb{C}^n \to \mathbb{C}^n$ is a generalized solution of the Riccati inequality associated with Σ if

1.
$$\langle Hx, x \rangle > 0$$
 $x \neq 0$

- 2. $(D^*C + B^*HA)\mathbb{C}^n \subset \delta_{\Sigma}(H)\mathbb{C}^p$
- 3. $\delta_{\Sigma}(H) = I D^*D B^*HB \ge 0$

4. $H - A^*HA - C^*C - (C^*D + A^*HB)\delta_{\Sigma}(H)^{[-1]}(D^*C + B^*HA) \ge 0$

$$\begin{bmatrix} \alpha & \beta \\ \beta^* & \delta \end{bmatrix} = \begin{bmatrix} H - A^* H A - C^* C & -C^* D - A^* H B \\ -D^* C - B^* H A & I - D^* D - B^* H B \end{bmatrix} \ge 0$$
$$\left\{ \begin{array}{c} \lim \beta^* \subset \operatorname{Im} \delta \\ \delta \ge 0 \\ \alpha - \beta \delta^{[-1]} \beta^* \ge 0 \end{array} \right.$$

Definition: (finite dimensional case)

 $H: \mathbb{C}^n \to \mathbb{C}^n$ is a generalized solution of the Riccati equality associated with Σ if

$$\begin{array}{c} 1. \\ \langle Hx, x \rangle > 0 \\ x \neq 0 \end{array}$$

2. $(D^*C + B^*HA)\mathbb{C}^n \subset \delta_{\Sigma}(H)\mathbb{C}^p$

3.
$$\delta_{\Sigma}(H) = I - D^*D - B^*HB \ge 0$$

4. $H - A^*HA - C^*C - (C^*D + A^*HB)\delta_{\Sigma}(H)^{[-1]}(D^*C + B^*HA) = 0$

Example 1

$$M_{\Sigma} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} -\frac{1}{8} & 1 \\ \frac{3}{16} & \frac{1}{2} \end{bmatrix}$$

$$\theta(\lambda) = \frac{2\lambda + 4}{\lambda + 8}.$$

Notation

lpha(H)	=	$H - A^*HA - C^*C$	
$\beta(H)$	=	$C^*D + A^*HB$	
$\delta(H)$	=	$I - D^*D - B^*HB$	

$$|\theta(\lambda)| \leq 6/7 < 1 \text{ for all } \lambda \in \mathbb{D}$$

$$R_{\Sigma}(H) = \alpha(H) - \beta(H)\delta(H)^{[-1]}\beta(H)^*$$

$$\begin{aligned} \alpha(H) &= \frac{9}{64} \left(7H - \frac{1}{4} \right), \\ \beta(H) &= \frac{1}{8} \left(\frac{3}{4} - H \right), \\ \delta(H) &= \frac{3}{4} - H. \end{aligned}$$

Moore Penrose inverse

$$\delta(H)^{[-1]} = \begin{cases} \left(\frac{3}{4} - H\right)^{-1} & (H \neq 3/4) \\ 0 & (H = 3/4) \end{cases} : \mathbb{C} \to \mathbb{C}.$$

Example 1 (continued)

$$M_{\Sigma} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} -\frac{1}{8} & 1 \\ \frac{3}{16} & \frac{1}{2} \end{bmatrix} \qquad \theta(\lambda) = \frac{2\lambda + 4}{\lambda + 8}.$$

 $\begin{aligned} \alpha(H) &= \frac{9}{64} \left(7H - \frac{1}{4} \right), \\ \beta(H) &= \frac{1}{8} \left(\frac{3}{4} - H \right), \\ \delta(H) &= \frac{3}{4} - H. \end{aligned}$

 $\begin{array}{ll} \text{Moore Penrose}\\ \text{inverse} \end{array} \delta(H)^{[-1]} = \left\{ \begin{array}{ll} \left(\frac{3}{4} - H\right)^{-1} & (H \neq 3/4)\\ 0 & (H = 3/4) \end{array} \right. : \mathbb{C} \to \mathbb{C}. \end{array}$

Riccati function.

ion:
$$R_{\Sigma}(H) = \alpha(H) - \beta(H)^* \delta(H)^{[-1]} \beta(H)$$

1. $\langle Hx, x \rangle > 0$ $x \neq 0$ 2. $\operatorname{Im} \beta^* \subset \operatorname{Im} \delta$: no conditions on H. 3. The condition $\delta(H) \ge 0$ is the same as $H \le \frac{3}{4}$ $\int 0 < H \le \frac{3}{4}$

Riccati function:
$$R_{\Sigma}(H) = \begin{cases} H - \frac{3}{64} & (0 < H < 3/4) \\ \frac{9}{64}(7H - \frac{1}{4}) = \frac{45}{64} & (H = 3/4) \end{cases}$$

4. The Riccati equation $R_{\Sigma}(H) = 0$ has one solution: H = 3/64.

Europeale 2	Finite dimensions
Example 2	1.0
$M_{\Sigma} = \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{5}{6} \end{bmatrix} \qquad \theta_{\Sigma}(\lambda) = \frac{4\lambda - 5}{3(2 - \lambda)}$	0.5
$\alpha(H) = -\frac{1}{4} + \frac{3}{4}H$ $ \theta_{\Sigma}(\lambda) \le 1 \text{ for all } \lambda \in \mathbb{D}$	-0.5
$\beta(H) = -\frac{5}{12} + \frac{1}{4}H$ Moore Penrose inverse $\delta(H)^{[-1]} = \begin{cases} \left(\frac{11}{36} - \frac{1}{4}H\right)^{-1} & (H \neq \frac{11}{9}) \\ 0 & (H = \frac{11}{9}) \end{cases}$	$\left(\frac{1}{2} \right) : \mathbb{C} \to \mathbb{C}$
$\delta(H) = \frac{11}{36} - \frac{1}{4}H$ $1 \langle Hx, x \rangle > 0 x \neq 0$	
$\mathbf{I} = (\mathbf{I} + \mathbf{I} + \mathbf{I}) + \mathbf{I} $	
2. Im $\beta^* \subset \text{Im } \delta$: for $H = \frac{11}{9}$ we have	11
$\beta\left(\frac{11}{9}\right) = -\frac{1}{9} \text{and} \delta\left(\frac{11}{9}\right) = 0 \text{ so } H \neq \frac{11}{9} $ 3 The condition $\delta(H) > 0$ yields $H \neq \frac{11}{9}$	$H < \frac{11}{9}$
$H \le \frac{1}{9}$	

Riccati function: $R_{\Sigma}(H) = \frac{9(H-1)^2}{9H-11}$

18/30

$$R_{\Sigma}(H) = \frac{9(H-1)^2}{9H-11} \qquad \qquad H = 1$$
$$R_{\Sigma}(H) \ge 0 \qquad \qquad H = 1$$

Example 3

$$\theta(\lambda) = \frac{\lambda a b}{1 - \lambda^2 a b}$$

0 < a < b < 1, $a^2 + b^2 = 1$ Schur class function

$$M_{\Sigma} = \begin{bmatrix} 0 & a & 0 \\ b & 0 & a \\ \hline 0 & b & 0 \end{bmatrix}$$

$$a = \frac{3}{5}, \ b = \frac{4}{5}$$

$$a = \frac{1}{2}\sqrt{2}, \ b = \frac{1}{2}\sqrt{2}$$

20/30

Example 3, continued

$$\theta(\lambda) = \frac{\lambda ab}{1 - \lambda^2 ab} \qquad 0 < a < b < 1, \quad a^2 + b^2 = 1 \qquad \text{Schur class function}$$
$$M_{\Sigma} = \begin{bmatrix} 0 & a & 0 \\ \frac{b}{0} & a & 0 \\ 0 & b & 0 \end{bmatrix}$$

$$H_{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad H_{2} = \frac{1}{a^{2}} \begin{bmatrix} (1-ab)\frac{b}{a} & (b-a)\sqrt{\frac{b}{a}} \\ (b-a)\sqrt{\frac{b}{a}} & 1-ab \end{bmatrix} \quad H_{3} = \frac{1}{a^{2}} \begin{bmatrix} (1-ab)\frac{b}{a} & -(b-a)\sqrt{\frac{b}{a}} \\ -(b-a)\sqrt{\frac{b}{a}} & 1-ab \end{bmatrix}$$
$$H_{4} = \frac{1}{a^{4}} \begin{bmatrix} b^{4} & 0 \\ 0 & a^{2}b^{2} \end{bmatrix}$$

 $H_1 \le H_j \le H_4 \quad (j = 1, 2)$

Set of solutions to Riccati equation: $RE_{\Sigma} = \{H_1, H_2, H_3, H_4\}$

Set of solutions to Riccati inequality, RI_{Σ} , it has minimal element H_1 and maximal element H_4 .

$H_1 \le H_j \le H_4 \quad (j = 1, 2)$

Set of solutions to Riccati equation: $RE_{\Sigma} = \{H_1, H_2, H_3, H_4\}$

Set of solutions to Riccati inequality, RI_{Σ} , has minimal element H_1 and maximal element H_4 .

0.5

-0.5

0.5

-0.5

Example 3, continued

$$\theta(\lambda) = \frac{\lambda ab}{1 - \lambda^2 ab}$$
$$M_{\Sigma} = \begin{bmatrix} 0 & a & 0 \\ b & 0 & a \\ \hline 0 & b & 0 \end{bmatrix}$$

$$a = \frac{1}{2}\sqrt{2}, \quad b = \frac{1}{2}\sqrt{2}$$

One single solution $H_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ to the Riccati equation

and the inequality.

Infinite dimensions: obstacles

- Two minimal systems with same transfer function need not be similar So: we use pseudo-similarity (Helton 1974; Arov 1974)
- Minimality not preserved under pseudo-similarity
- For two minimal systems with same transfer function, pseudo-similarity need not be unique

Arov, Kaashoek, Pik: Minimal representations of a contractive operator as a product of two bounded operators, *Acta Sci. Math. (Szeged)* 71, (2005)
Arov, Kaashoek, Pik: The Kalman-Yakubovich-Popov inequality and infinite dimensional Discrete time Dissipative Systems, *J. Operator Theory* 55, (2006)
Arlinskiī: The Kalman Yakubovich Popov inequality (*OAM*), 2008
Arov, Kaashoek, Pik: Generalized solutions of Riccati equalities and inequalities, *Methods of Functional Analysis and Topology* (2016)

Definition: (finite dimensional case)

 $H: \mathbb{C}^n \to \mathbb{C}^n$ is a generalized solution of the Riccati equation associated with Σ if

1. $\langle Hx, x \rangle > 0$ $x \neq 0$

2. -

3.
$$\delta_{\Sigma}(H) = I - D^*D - B^*HB \ge 0$$

and $(D^*C + B^*HA)\mathbb{C}^n \subset \delta_{\Sigma}(H)\mathbb{C}^p$

4. $H - A^*HA - C^*C - (C^*D + A^*HB)\delta_{\Sigma}(H)^{[-1]}(D^*C + B^*HA) = 0$

Definition: (infinite dimensional case)

 $H(\mathcal{X} \to \mathcal{X})$ is a generalized solution of the Riccati equation associated with Σ if

1. $H(\mathcal{X} \to \mathcal{X}), \quad H > 0$ ($\langle Hx, x \rangle > 0 \quad x \neq 0, x \in \mathcal{D}(H)$)

2. $A \mathcal{D}(H^{1/2}) \subset \mathcal{D}(H^{1/2}), \quad B \mathcal{U} \subset \mathcal{D}(H^{1/2})$

3. $\delta_{\Sigma}(H) = I_{\mathcal{U}} - D^*D - (H^{1/2}B)^*H^{1/2}B$ is bounded, nonnegative and $\left(D^*C + (H^{1/2}B)^*H^{1/2}A\right)\mathcal{D}(H^{1/2}) \subset \delta_{\Sigma}(H)^{1/2}\mathcal{U}$ 4. $\forall x \in \mathcal{D}(H^{1/2}): \|H^{1/2}x\|^2 - \|H^{1/2}Ax\|^2 - \|Cx\|^2$

 $= \| \left(\delta_{\Sigma}(H)^{1/2} \right)^{[-1]} \left(D^* C + (H^{1/2}B)^* H^{1/2}A \right) x \|^2$

Moore Penrose Inverse

Bounded, self-adjoint operator $\delta: \mathcal{X} \to \mathcal{X}$

Put
$$\mathcal{X}_1 = \overline{\delta \mathcal{X}}, \quad \mathcal{X}_2 = \operatorname{Ker} \delta$$
 and $\delta = \begin{bmatrix} \delta_1 & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{X}_1 \\ \mathcal{X}_2 \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{X}_1 \\ \mathcal{X}_2 \end{bmatrix}$

Then the Moore Penrose Inverse is defined by

$$\delta^{[-1]} = \begin{bmatrix} \delta_1^{-1} & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \operatorname{Im} \delta_1 \\ \mathcal{X}_2 \end{bmatrix} \to \begin{bmatrix} \mathcal{X}_1 \\ \mathcal{X}_2 \end{bmatrix}$$

 $\mathcal{D}(\delta^{[-1]}) = \operatorname{Im} \delta_1 \oplus \mathcal{X}_2$

27/30

Theorem 1

Let $\Sigma = (A, B, C, D; \mathcal{X}, \mathcal{U}, \mathcal{Y})$ be a minimal system.

If there exists a generalized solution to the Riccati equation associated with $\sum_{i=1}^{n} p_{i}$,

then the transfer function

$$\theta_{\Sigma}(\lambda) = D + \lambda C \left(I - \lambda A\right)^{-1} B$$

coincides with a Schur class function in a neighborhood of 0.

Definition: (infinite dimensional case)

 $H(\mathcal{X} \to \mathcal{X}) \text{ is a generalized solution of the Riccati equation}$ associated with Σ if 1. $H(\mathcal{X} \to \mathcal{X}), \quad H > 0$ $(\langle Hx, x \rangle > 0 \quad x \neq 0, x \in \mathcal{D}(H) \rangle$ 2. $A \mathcal{D}(H^{1/2}) \subset \mathcal{D}(H^{1/2}), \quad B \mathcal{U} \subset \mathcal{D}(H^{1/2})$ 3. $\delta_{\Sigma}(H) = I_{\mathcal{U}} - D^*D - (H^{1/2}B)^*H^{1/2}B$ is bounded, nonnegative and $(D^*C + (H^{1/2}B)^*H^{1/2}A) \mathcal{D}(H^{1/2}) \subset \delta_{\Sigma}(H)^{1/2}\mathcal{U}$ 4. $\forall x \in \mathcal{D}(H^{1/2}): \quad ||H^{1/2}x||^2 - ||H^{1/2}Ax||^2 - ||Cx||^2$ $= ||(\delta_{\Sigma}(H)^{1/2})^{[-1]} (D^*C + (H^{1/2}B)^*H^{1/2}A) x||^2$

Theorem 2

Let Σ be a minimal system such that its transfer function

 $\theta_{\Sigma}(\lambda) = D + \lambda C (I - \lambda A)^{-1} B$

coincides with a Schur class function in a neighborhood of 0.

Then there exists a generalized solution $H(X \rightarrow X)$ to the Riccati equation.

Moreover, the set of all generalized solutions to the Riccati equation has a minimal element.

Definition: (infinite dimensional case)

 $H(\mathcal{X} \to \mathcal{X})$ is a generalized solution of the <u>Riccati</u> equation associated with Σ if

1. $H(\mathcal{X} \to \mathcal{X}), \quad H > 0$ ($\langle Hx, x \rangle > 0 \quad x \neq 0, x \in \mathcal{D}(H)$)

2. $A \mathcal{D}(H^{1/2}) \subset \mathcal{D}(H^{1/2}), \quad B \mathcal{U} \subset \mathcal{D}(H^{1/2})$

3. $\delta_{\Sigma}(H) = I_{\mathcal{U}} - D^*D - (H^{1/2}B)^*H^{1/2}B$ is bounded, nonnegative and

 $(D^*C + (H^{1/2}B)^*H^{1/2}A) \mathcal{D}(H^{1/2}) \subset \delta_{\Sigma}(H)^{1/2}\mathcal{U}$

4. $\forall x \in \mathcal{D}(H^{1/2}): \|H^{1/2}x\|^2 - \|H^{1/2}Ax\|^2 - \|Cx\|^2$

 $= \| \left(\delta_{\Sigma}(H)^{1/2} \right)^{[-1]} \left(D^* C + (H^{1/2}B)^* H^{1/2} A \right) x \|^2$

Final remarks

- We have finite and infinite dimensional examples (but we wish for more)
- * When does the generalized Riccati equality have one unique solution? (We have theorems in terms of θ)
- What properties do the sets of solutions of the Riccati equality *RE*_Σ and of the Riccati inequality *RI*_Σ have? Descriptions in the paper.