Truncated Hankel operators and their matrices

Małgorzata Michalska, Bartosz Łanucha

Maria Curie-Skłodowska University, Lublin, Poland
IWOTA 2017, August 14-18 Technische Universität Chemnitz

Denote:

- H^{2} - the Hardy space in the unit disk \mathbb{D},
- P - the orthogonal projection from $L^{2}:=L^{2}(\partial \mathbb{D})$ onto H^{2},
- $L^{\infty}:=L^{\infty}(\partial \mathbb{D})$.

For a symbol $\varphi \in L^{\infty}$ we define:

- T_{φ} - the Toeplitz operator

$$
T_{\varphi} f=P(\varphi f)
$$

- H_{φ} - the Hankel operator

$$
H_{\varphi} f=J(I-P)(\varphi f)
$$

$J: L^{2} \rightarrow L^{2}$ is the "flip" operator given by

$$
J f(z)=\bar{z} f(\bar{z}), \quad|z|=1
$$

We say that α is an inner function if:

- $\alpha \in H^{\infty}$,
- $|\alpha|=1$ a.e. on $\partial \mathbb{D}$.

We say that α has an angular derivative in the sense of Carathéodory (ADC) at $w \in \partial \mathbb{D}$, if there exist complex numbers $\alpha(w)$ and $\alpha^{\prime}(w)$, such that,

$$
\alpha(z) \rightarrow \alpha(w) \in \partial \mathbb{D} \quad \text { and } \quad \alpha^{\prime}(z) \rightarrow \alpha^{\prime}(w)
$$

whenever $z \rightarrow w$ nontangentially (with $\frac{|z-w|}{1-|z|}$ bounded).

Let α be an inner function.

- The corresponding model space K_{α} is the orthogonal complement of αH^{2} in H^{2}, that is,

$$
K_{\alpha}=H^{2} \ominus \alpha H^{2}
$$

- The model space K_{α} is a reproducing kernel Hilbert space with the kernel function

$$
k_{w}^{\alpha}(z)=\frac{1-\overline{\alpha(w)} \alpha(z)}{1-\bar{w} z}, \quad w, z \in \mathbb{D}
$$

(Note that since k_{w}^{α} is bounded, the set $K_{\alpha}^{\infty}=K_{\alpha} \cap H^{\infty}$ is dense in K_{α}.)

- The conjugate kernel function is the function

$$
\widetilde{k}_{w}^{\alpha}(z)=\frac{\alpha(z)-\alpha(w)}{z-w}, \quad w, z \in \mathbb{D}
$$

- If α has an ADC at $w \in \partial \mathbb{D}$, then k_{w}^{α} and $\widetilde{k}_{w}^{\alpha}$, defined as above, belong to K_{α}.

Truncated Toeplitz and Hankel operators are compressions of classical Toeplitz and Hankel operators to model spaces. More precisely:

- the truncated Toeplitz operator (TTO) $A_{\varphi}, \varphi \in L^{2}$, is densely defined on K_{α} by

$$
A_{\varphi} f=P_{\alpha}(\varphi f)
$$

where P_{α} denotes the orthogonal projection from L^{2} onto K_{α}.

- truncated Hankel operator (THO) $B_{\varphi}, \varphi \in L^{2}$, is densely defined on K_{α} by

$$
B_{\varphi}=P_{\alpha} J(I-P)(\varphi f)
$$

where J is the "flip" operator.
For an inner function α let

- $\mathscr{T}(\alpha)=\left\{A_{\varphi}: \varphi \in L^{2}\right.$ and A_{φ} is bounded $\}$,
- $\mathscr{H}(\alpha)=\left\{B_{\varphi}: \varphi \in L^{2}\right.$ and B_{φ} is bounded $\}$.

Classical Toeplitz and Hankel operators can be characterized in terms of their matrix representations with respect to the monomial basis $\left\{z^{k}: k \geq 0\right\}$ of H^{2} :

- a bounded linear operator $T: H^{2} \rightarrow H^{2}$ is a Toeplitz operator if and only if its matrix is a Toeplitz matrix, that is, it has constant diagonals
- a bounded linear operator $T: H^{2} \rightarrow H^{2}$ is a Hankel operator if and only if its matrix is a Hankel matrix, that is, its entries are constant along each skew-diagonal.
The above gives characterizations of TTO and THO in terms of matrix representations with respect to monomial basis of K_{α} when $\alpha(z)=z^{n}$.
Matrix representations of operators from $\mathscr{T}(\alpha)$ for other α were discussed by J. A. Cima, W. T. Ross and W. R. Wogen (2008) and by B. Łanucha (2014).

Let α be a finite Blaschke product with distinct zeros a_{1}, \ldots, a_{n}. Then the kernel functions $\left\{k_{a_{1}}^{\alpha}, \ldots, k_{a_{n}}^{\alpha}\right\}$ form a basis for K_{α} and so do the conjugate kernel functions $\left\{\widetilde{k}_{a_{1}}^{\alpha}, \ldots, \widetilde{k}_{a_{n}}^{\alpha}\right\}$. Let B be any linear operator on K_{α}. Then:

- the matrix representation $M_{B}=\left(r_{s, p}\right)$ of B with respect to the kernel basis $\left\{k_{a_{1}}^{\alpha}, \ldots, k_{a_{n}}^{\alpha}\right\}$ is given by

$$
r_{s, p}=\left(\overline{\alpha^{\prime}\left(a_{s}\right)}\right)^{-1}\left\langle B k_{a_{p}}^{\alpha}, \widetilde{k}_{a_{s}}^{\alpha}\right\rangle
$$

- the matrix representation $\widetilde{M}_{B}=\left(t_{s, p}\right)$ of B with respect to the conjugate kernel basis $\left\{\widetilde{k}_{a_{1}}^{\alpha}, \ldots, \widetilde{k}_{a_{n}}^{\alpha}\right\}$ is given by

$$
t_{s, p}=\alpha^{\prime}\left(a_{s}\right)^{-1}\left\langle B \widetilde{k}_{a_{p}}^{\alpha}, k_{a_{s}}^{\alpha}\right\rangle
$$

J. A. Cima, W. T. Ross and W. R. Wogen, 2008

Let α be a finite Blaschke product with n distinct zeros a_{1}, \ldots, a_{n}. Let A be any linear operator on K_{α}. If $M_{A}=\left(r_{s, p}\right)$ is the matrix representation of A with respect to the basis $\left\{k_{a_{1}}^{\alpha}, \ldots, k_{a_{n}}^{\alpha}\right\}$, then $A \in \mathscr{T}(\alpha)$ if and only if

$$
r_{s, p}=\overline{\left(\frac{\alpha^{\prime}\left(a_{1}\right)}{\alpha^{\prime}\left(a_{s}\right)}\right)}\left(\frac{r_{1, s} \overline{\left(a_{1}-a_{s}\right)}+r_{1, p} \overline{\left(a_{p}-a_{1}\right)}}{\overline{a_{p}-a_{s}}}\right)
$$

for all $1 \leq p, s \leq n, p \neq s$.

Theorem 1

Let α be a finite Blaschke product with n distinct zeros a_{1}, \ldots, a_{n}. Let B be any linear operator on K_{α}. If $M_{B}=\left(r_{s, p}\right)$ is the matrix representation of B with respect to the basis $\left\{k_{a_{1}}^{\alpha}, \ldots, k_{a_{n}}^{\alpha}\right\}$, then $B \in \mathscr{H}(\alpha)$ if and only if

$$
\begin{aligned}
r_{s, p}= & \overline{\left(\frac{1-a_{s} a_{1}}{1-a_{s} a_{p}}\right)} \cdot r_{s, 1}-\overline{\left(\frac{\alpha^{\prime}\left(a_{1}\right)\left(1-a_{1}^{2}\right)}{\alpha^{\prime}\left(a_{s}\right)\left(1-a_{s} a_{p}\right)}\right)} \cdot r_{1,1} \\
& +\overline{\left(\frac{\alpha^{\prime}\left(a_{1}\right)\left(1-a_{1} a_{p}\right)}{\alpha^{\prime}\left(a_{s}\right)\left(1-a_{s} a_{p}\right)}\right)} \cdot r_{1, p}
\end{aligned}
$$

for all $1 \leq p, s \leq n$.

C. Gu, Thm. 7.9

Let α be a finite Blaschke product with $n>0$ zeros.
(a) The dimension of $\mathscr{H}(\alpha)$ is $2 n-1$.
(b) If $\lambda_{1}, \ldots, \lambda_{2 n-1}$ are distinct points from $\overline{\mathbb{D}}$, then the operators $k_{\lambda_{j}}^{\alpha} \otimes k_{\lambda_{j}}^{\alpha}, j=1, \ldots, 2 n-1$, form a basis for $\mathscr{H}(\alpha)$.
(c) If $\lambda_{1}, \ldots, \lambda_{2 n-1}$ are distinct points from $\overline{\mathbb{D}}$, then the operators $\widetilde{k}_{\lambda_{j}}^{\alpha} \otimes \widetilde{k}_{\lambda_{j}}^{\alpha}, j=1, \ldots, 2 n-1$, form a basis for $\mathscr{H}(\alpha)$.

Theorem 2

Let α be a finite Blaschke product with n distinct zeros a_{1}, \ldots, a_{n}. Let B be any linear operator on K_{α}. If $\widetilde{M}_{B}=\left(t_{s, p}\right)$ is the matrix representation of B with respect to the basis $\left\{\widetilde{k}_{a_{1}}^{\alpha}, \ldots, \widetilde{k}_{a_{n}}^{\alpha}\right\}$, then $B \in \mathscr{H}(\alpha)$ if and only if

$$
\begin{aligned}
t_{s, p}= & \frac{1-a_{s} a_{1}}{1-a_{s} a_{p}} \cdot t_{s, 1}-\frac{\alpha^{\prime}\left(a_{1}\right)\left(1-a_{1}^{2}\right)}{\alpha^{\prime}\left(a_{s}\right)\left(1-a_{s} a_{p}\right)} \cdot t_{1,1} \\
& +\frac{\alpha^{\prime}\left(a_{1}\right)\left(1-a_{1} a_{p}\right)}{\alpha^{\prime}\left(a_{s}\right)\left(1-a_{s} a_{p}\right)} \cdot t_{1, p}
\end{aligned}
$$

for all $1 \leq p, s \leq n$.

Let α be an infinite Blaschke product with uniformly separated zeros $\left\{a_{m}\right\}$, that is,

$$
\inf _{k} \prod_{m \neq k}\left|\frac{a_{m}-a_{k}}{1-\overline{a_{m}} a_{k}}\right| \geq \delta
$$

for some $\delta>0$. Then the family of kernel functions $\left\{k_{a_{m}}^{\alpha}\right\}$ forms a basis for K_{α} and so does the family of conjugate kernel functions $\left\{\widetilde{k}_{a_{m}}^{\alpha}\right\}$.
This means that each $f \in K_{\alpha}$ can be written as

$$
f=\sum_{m=1}^{\infty} \frac{\left\langle f, \widetilde{k}_{a_{m}}^{\alpha}\right\rangle}{\overline{\alpha^{\prime}\left(a_{m}\right)}} k_{a_{m}}^{\alpha},
$$

and

$$
f=\sum_{m=1}^{\infty} \frac{\left\langle f, k_{a_{m}}^{\alpha}\right\rangle}{\alpha^{\prime}\left(a_{m}\right)} \widetilde{k}_{a_{m}}^{\alpha}
$$

Theorem 3

Let α be an infinite Blaschke product with uniformly separated zeros $\left\{a_{m}\right\}$ and let B be a bounded linear operator on K_{α}. If $M_{B}=\left(r_{s, p}\right)$ is the matrix representation of B with respect to the basis $\left\{k_{a_{m}}^{\alpha}\right\}$, then $B \in \mathscr{H}(\alpha)$ if and only if

$$
\begin{aligned}
r_{s, p}= & \overline{\left(\frac{1-a_{s} a_{1}}{1-a_{s} a_{p}}\right)} \cdot r_{s, 1}-\overline{\left(\frac{\alpha^{\prime}\left(a_{1}\right)\left(1-a_{1}^{2}\right)}{\alpha^{\prime}\left(a_{s}\right)\left(1-a_{s} a_{p}\right)}\right)} \cdot r_{1,1} \\
& +\overline{\left(\frac{\alpha^{\prime}\left(a_{1}\right)\left(1-a_{1} a_{p}\right)}{\alpha^{\prime}\left(a_{s}\right)\left(1-a_{s} a_{p}\right)}\right)} \cdot r_{1, p}
\end{aligned}
$$

for all $p, s \geq 1$.

Theorem 4

Let α be an infinite Blaschke product with uniformly separated zeros $\left\{a_{m}\right\}$ and let B be a bounded linear operator on K_{α}. If $\widetilde{M}_{B}=\left(t_{s, p}\right)$ is the matrix representation of B with respect to the basis $\left\{\widetilde{k}_{a_{m}}^{\alpha}\right\}$, then $B \in \mathscr{H}(\alpha)$ if and only if

$$
\begin{aligned}
t_{s, p}= & \frac{1-a_{s} a_{1}}{1-a_{s} a_{p}} \cdot t_{s, 1}-\frac{\alpha^{\prime}\left(a_{1}\right)\left(1-a_{1}^{2}\right)}{\alpha^{\prime}\left(a_{s}\right)\left(1-a_{s} a_{p}\right)} \cdot t_{1,1} \\
& +\frac{\alpha^{\prime}\left(a_{1}\right)\left(1-a_{1} a_{p}\right)}{\alpha^{\prime}\left(a_{s}\right)\left(1-a_{s} a_{p}\right)} \cdot t_{1, p}
\end{aligned}
$$

for all $p, s \geq 1$.

- For any $\lambda \in \partial \mathbb{D}$ the so-called Clark operator U_{λ} is the operator from K_{α} onto K_{α} defined by

$$
U_{\lambda}=A_{z}+\frac{\alpha(0)+\lambda}{1-|\alpha(0)|^{2}} \cdot k_{0}^{\alpha} \otimes \widetilde{k}_{0}^{\alpha}
$$

- The operator U_{λ} is unitary and the set of its eigenvalues consists of $\eta \in \partial \mathbb{D}$ such that α has an ADC at η with

$$
\alpha(\eta)=\alpha_{\lambda}=\frac{\alpha(0)+\lambda}{1+\overline{\alpha(0)} \lambda}
$$

The eigenvector corresponding to η is the reproducing kernel k_{η}^{α} (D. N. Clark, 1972).

- If U_{λ} has a pure point spectrum, then the set $\left\{v_{\eta_{m}}\right\}$, where $\left\{v_{\eta_{m}}\right\}=\left\{\left\|k_{\eta_{m}}^{\alpha}\right\|^{-1} k_{\eta_{m}}^{\alpha}\right\}$, is an orthonormal basis for K_{α}, called the Clark basis corresponding to λ.
- The modified Clark basis is defined by

$$
e_{\eta_{m}}=\omega_{m} v_{\eta_{m}}, \quad \text { where } \quad \omega_{m}=e^{-\frac{i}{2}\left(\arg \eta_{m}-\arg \lambda\right)}
$$

Theorem 5

Let α be a finite Blaschke product with $n>0$ (not necessarily different) zeros and let $\left\{v_{\eta_{1}}, \ldots, v_{\eta_{n}}\right\}$ be the Clark basis for K_{α} corresponding to $\lambda \in \partial \mathbb{D}$. Let B be any linear operator on K_{α}. If $M_{B}=\left(r_{s, p}\right)$ is the matrix representation of B with respect to the basis $\left\{v_{\eta_{1}}, \ldots, v_{\eta_{n}}\right\}$, then $B \in \mathscr{H}(\alpha)$ if and only if

$$
\begin{aligned}
r_{s, p}= & \frac{\sqrt{\left|\alpha^{\prime}\left(\eta_{1}\right)\right|}}{\sqrt{\left|\alpha^{\prime}\left(\eta_{p}\right)\right|}} \frac{\eta_{s}-\overline{\eta_{1}}}{\eta_{s}-\overline{\eta_{p}}} r_{s, 1}-\frac{\left|\alpha^{\prime}\left(\eta_{1}\right)\right|}{\sqrt{\left|\alpha^{\prime}\left(\eta_{p}\right)\right|} \sqrt{\left|\alpha^{\prime}\left(\eta_{s}\right)\right|}} \frac{\eta_{1}-\overline{\eta_{1}}}{\eta_{s}-\overline{\eta_{p}}} r_{1,1} \\
& +\frac{\sqrt{\left|\alpha^{\prime}\left(\eta_{1}\right)\right|}}{\sqrt{\left|\alpha^{\prime}\left(\eta_{s}\right)\right|}} \frac{\eta_{1}-\overline{\eta_{p}}}{\eta_{s}-\overline{\eta_{p}}} r_{1, p}
\end{aligned}
$$

for all $1 \leq p, s \leq n$.

Theorem 6

Let α be a finite Blaschke product with $n>0$ (not necessarily different) zeros and let $\left\{e_{\eta_{1}}, \ldots, e_{\eta_{n}}\right\}$ be the modified Clark basis for K_{α} corresponding to $\lambda \in \partial \mathbb{D}$. Let B be any linear operator on K_{α}. If $M_{B}=\left(t_{s, p}\right)$ is the matrix representation of B with respect to the basis $\left\{e_{\eta_{1}}, \ldots, e_{\eta_{n}}\right\}$, then $B \in \mathscr{H}(\alpha)$ if and only if

$$
\begin{aligned}
t_{s, p}= & \frac{\sqrt{\left|\alpha^{\prime}\left(\eta_{1}\right)\right|}}{\sqrt{\left|\alpha^{\prime}\left(\eta_{p}\right)\right|}} \frac{\omega_{p}}{\omega_{1}} \frac{\eta_{s}-\overline{\eta_{1}}}{\eta_{s}-\overline{\eta_{p}}} t_{s, 1}-\frac{\left|\alpha^{\prime}\left(\eta_{1}\right)\right|}{\sqrt{\left|\alpha^{\prime}\left(\eta_{p}\right)\right|} \sqrt{\left|\alpha^{\prime}\left(\eta_{s}\right)\right|}} \frac{\omega_{p}}{\omega_{s}} \frac{\eta_{1}-\overline{\eta_{1}}}{\eta_{s}-\overline{\eta_{p}}} t_{1,1} \\
& +\frac{\sqrt{\left|\alpha^{\prime}\left(\eta_{1}\right)\right|}}{\sqrt{\left|\alpha^{\prime}\left(\eta_{s}\right)\right|}} \frac{\omega_{1}}{\omega_{s}} \frac{\eta_{1}-\overline{\eta_{p}}}{\eta_{s}-\overline{\eta_{p}}} t_{1, p}
\end{aligned}
$$

for all $1 \leq p, s \leq n$.

Remark 1

Theorems 5 and 6 remain true when α is an inner function such that K_{α} has a Clark basis $\left\{v_{\eta_{m}}\right\}$.

嗇 J．A．Cima，W．T．Ross，W．R．Wogen，Truncated Toeplitz operators on finite dimensional spaces，Operators and Matrices 2 （2008），no．3，357－369．

圊 D．N．Clark，One dimensional perturbations of restricted shifts，J．Anal．Math． 25 （1972），169－191．

围 C．Gu，Algebraic properties of truncated Hankel operators， preprint．

R．B．Łanucha，Matrix representations of truncated Toeplitz operators，J．Math．Anal．Appl． 413 （2014），430－437．

R．B．Łanucha，M．Michalska Truncated Hankel operators and their matrices，preprint．

R．Darason，Algebraic properties of truncated Toeplitz operators，Operators and Matrices 1 （2007），no．4， 491－526．
A. Böttcher, B. Silbermann, Analysis of Toeplitz operators, Springer-Verlage, Berlin, Heidelberg, 2006.
R. A. Martinez-Avendano, P. Rosenthal, An introduction to operators on the Hardy-Hilbert space, Springer Science+Business Media, LLC, New York, 2007.

