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Introduction

Denote:
H2 - the Hardy space in the unit disk D,
P - the orthogonal projection from L2 := L2(∂D) onto H2,
L∞ := L∞(∂D).

For a symbol ϕ ∈ L∞ we define:
Tϕ - the Toeplitz operator

Tϕf = P (ϕf),

Hϕ - the Hankel operator

Hϕf = J(I − P )(ϕf),

J : L2 → L2 is the ”flip” operator given by

Jf(z) = zf(z), |z| = 1.
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Inner functions

We say that α is an inner function if:
α ∈ H∞,
|α| = 1 a.e. on ∂D.

We say that α has an angular derivative in the sense of
Carathéodory (ADC) at w ∈ ∂D, if there exist complex numbers
α(w) and α′(w), such that,

α(z)→ α(w) ∈ ∂D and α′(z)→ α′(w)

whenever z → w nontangentially (with |z−w|1−|z| bounded).
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Model spaces

Let α be an inner function.
The corresponding model space Kα is the orthogonal
complement of αH2 in H2, that is,

Kα = H2 	 αH2.

The model space Kα is a reproducing kernel Hilbert space
with the kernel function

kαw(z) =
1− α(w)α(z)

1− wz
, w, z ∈ D.

(Note that since kαw is bounded, the set K∞α = Kα ∩H∞ is
dense in Kα.)
The conjugate kernel function is the function

k̃αw(z) =
α(z)− α(w)

z − w
, w, z ∈ D.

If α has an ADC at w ∈ ∂D, then kαw and k̃αw, defined as
above, belong to Kα.
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Truncated Toeplitz and Hankel operators

Truncated Toeplitz and Hankel operators are compressions of
classical Toeplitz and Hankel operators to model spaces. More
precisely:

the truncated Toeplitz operator (TTO) Aϕ, ϕ ∈ L2, is
densely defined on Kα by

Aϕf = Pα(ϕf),

where Pα denotes the orthogonal projection from L2 onto
Kα.
truncated Hankel operator (THO) Bϕ, ϕ ∈ L2, is densely
defined on Kα by

Bϕ = PαJ(I − P )(ϕf),

where J is the ”flip” operator.

For an inner function α let
T (α) = {Aϕ : ϕ ∈ L2 and Aϕ is bounded},
H (α) = {Bϕ : ϕ ∈ L2 and Bϕ is bounded}.
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Matrix representations

Classical Toeplitz and Hankel operators can be characterized in
terms of their matrix representations with respect to the
monomial basis {zk : k ≥ 0} of H2:

a bounded linear operator T : H2 → H2 is a Toeplitz
operator if and only if its matrix is a Toeplitz matrix, that is,
it has constant diagonals
a bounded linear operator T : H2 → H2 is a Hankel
operator if and only if its matrix is a Hankel matrix, that is,
its entries are constant along each skew-diagonal.

The above gives characterizations of TTO and THO in terms of
matrix representations with respect to monomial basis of Kα

when α(z) = zn.
Matrix representations of operators from T (α) for other α were
discussed by J. A. Cima, W. T. Ross and W. R. Wogen (2008)
and by B. Łanucha (2014).
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Matrix representations of THO’s with respect to kernel basis and conjugate kernel basis

Let α be a finite Blaschke product with distinct zeros a1, . . . , an.
Then the kernel functions {kαa1 , . . . , k

α
an} form a basis for Kα

and so do the conjugate kernel functions {k̃αa1 , . . . , k̃
α
an}.

Let B be any linear operator on Kα. Then:

the matrix representation MB = (rs,p) of B with respect to
the kernel basis {kαa1 , . . . , k

α
an} is given by

rs,p =
(
α′(as)

)−1
〈Bkαap , k̃

α
as〉,

the matrix representation M̃B = (ts,p) of B with respect to
the conjugate kernel basis {k̃αa1 , . . . , k̃

α
an} is given by

ts,p = α′(as)
−1〈Bk̃αap , k

α
as〉.
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Matrix representations of THO’s with respect to kernel basis and conjugate kernel basis

J. A. Cima, W. T. Ross and W. R. Wogen, 2008
Let α be a finite Blaschke product with n distinct zeros
a1, . . . , an. Let A be any linear operator on Kα. If MA = (rs,p) is
the matrix representation of A with respect to the basis
{kαa1 , . . . , k

α
an}, then A ∈ T (α) if and only if

rs,p =

(
α′(a1)

α′(as)

)(
r1,s(a1 − as) + r1,p(ap − a1)

ap − as

)

for all 1 ≤ p, s ≤ n, p 6= s.
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Matrix representations of THO’s with respect to kernel basis and conjugate kernel basis

Theorem 1
Let α be a finite Blaschke product with n distinct zeros
a1, . . . , an. Let B be any linear operator on Kα. If MB = (rs,p) is
the matrix representation of B with respect to the basis
{kαa1 , . . . , k

α
an}, then B ∈H (α) if and only if

rs,p =

(
1− asa1
1− asap

)
· rs,1 −

(
α′(a1)(1− a21)
α′(as)(1− asap)

)
· r1,1

+

(
α′(a1)(1− a1ap)
α′(as)(1− asap)

)
· r1,p

for all 1 ≤ p, s ≤ n.
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Matrix representations of THO’s with respect to kernel basis and conjugate kernel basis

C. Gu, Thm. 7.9
Let α be a finite Blaschke product with n > 0 zeros.
(a) The dimension of H (α) is 2n− 1.
(b) If λ1, . . . , λ2n−1 are distinct points from D, then the

operators kα
λj
⊗ kαλj , j = 1, . . . , 2n− 1, form a basis for

H (α).
(c) If λ1, . . . , λ2n−1 are distinct points from D, then the

operators k̃α
λj
⊗ k̃αλj , j = 1, . . . , 2n− 1, form a basis for

H (α).
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Matrix representations of THO’s with respect to kernel basis and conjugate kernel basis

Theorem 2
Let α be a finite Blaschke product with n distinct zeros
a1, . . . , an. Let B be any linear operator on Kα. If M̃B = (ts,p) is
the matrix representation of B with respect to the basis
{k̃αa1 , . . . , k̃

α
an}, then B ∈H (α) if and only if

ts,p =
1− asa1
1− asap

· ts,1 −
α′(a1)(1− a21)
α′(as)(1− asap)

· t1,1

+
α′(a1)(1− a1ap)
α′(as)(1− asap)

· t1,p

for all 1 ≤ p, s ≤ n.
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Matrix representations of THO’s with respect to kernel basis and conjugate kernel basis

Let α be an infinite Blaschke product with uniformly separated
zeros {am}, that is,

inf
k

∏
m 6=k

∣∣∣∣ am − ak1− amak

∣∣∣∣ ≥ δ,
for some δ > 0. Then the family of kernel functions {kαam} forms
a basis for Kα and so does the family of conjugate kernel
functions {k̃αam}.
This means that each f ∈ Kα can be written as

f =
∞∑
m=1

〈f, k̃αam〉
α′(am)

kαam ,

and

f =

∞∑
m=1

〈f, kαam〉
α′(am)

k̃αam .
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Matrix representations of THO’s with respect to kernel basis and conjugate kernel basis

Theorem 3
Let α be an infinite Blaschke product with uniformly separated
zeros {am} and let B be a bounded linear operator on Kα. If
MB = (rs,p) is the matrix representation of B with respect to the
basis {kαam}, then B ∈H (α) if and only if

rs,p =

(
1− asa1
1− asap

)
· rs,1 −

(
α′(a1)(1− a21)
α′(as)(1− asap)

)
· r1,1

+

(
α′(a1)(1− a1ap)
α′(as)(1− asap)

)
· r1,p

for all p, s ≥ 1.
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Matrix representations of THO’s with respect to kernel basis and conjugate kernel basis

Theorem 4
Let α be an infinite Blaschke product with uniformly separated
zeros {am} and let B be a bounded linear operator on Kα. If
M̃B = (ts,p) is the matrix representation of B with respect to the
basis {k̃αam}, then B ∈H (α) if and only if

ts,p =
1− asa1
1− asap

· ts,1 −
α′(a1)(1− a21)
α′(as)(1− asap)

· t1,1

+
α′(a1)(1− a1ap)
α′(as)(1− asap)

· t1,p

for all p, s ≥ 1.
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Clark basis and modified Clark basis

For any λ ∈ ∂D the so-called Clark operator Uλ is the
operator from Kα onto Kα defined by

Uλ = Az +
α(0) + λ

1− |α(0)|2
· kα0 ⊗ k̃α0 .

The operator Uλ is unitary and the set of its eigenvalues
consists of η ∈ ∂D such that α has an ADC at η with

α(η) = αλ =
α(0) + λ

1 + α(0)λ
.

The eigenvector corresponding to η is the reproducing
kernel kαη (D. N. Clark, 1972).
If Uλ has a pure point spectrum, then the set {vηm}, where
{vηm} = {‖kαηm‖

−1kαηm}, is an orthonormal basis for Kα,
called the Clark basis corresponding to λ.
The modified Clark basis is defined by

eηm = ωmvηm , where ωm = e−
i
2
(arg ηm−arg λ).
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Matrix representations of THO’s with respect to Clark basis and modified Clark basis

Theorem 5

Let α be a finite Blaschke product with n > 0 (not necessarily
different) zeros and let {vη1 , . . . , vηn} be the Clark basis for Kα

corresponding to λ ∈ ∂D. Let B be any linear operator on Kα. If
MB = (rs,p) is the matrix representation of B with respect to the
basis {vη1 , . . . , vηn}, then B ∈H (α) if and only if

rs,p =

√
|α′(η1)|√
|α′(ηp)|

ηs − η1
ηs − ηp

rs,1 −
|α′(η1)|√

|α′(ηp)|
√
|α′(ηs)|

η1 − η1
ηs − ηp

r1,1

+

√
|α′(η1)|√
|α′(ηs)|

η1 − ηp
ηs − ηp

r1,p

for all 1 ≤ p, s ≤ n.
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Matrix representations of THO’s with respect to Clark basis and modified Clark basis

Theorem 6

Let α be a finite Blaschke product with n > 0 (not necessarily
different) zeros and let {eη1 , . . . , eηn} be the modified Clark
basis for Kα corresponding to λ ∈ ∂D. Let B be any linear
operator on Kα. If M̃B = (ts,p) is the matrix representation of B
with respect to the basis {eη1 , . . . , eηn}, then B ∈H (α) if and
only if

ts,p =

√
|α′(η1)|√
|α′(ηp)|

ωp
ω1

ηs − η1
ηs − ηp

ts,1 −
|α′(η1)|√

|α′(ηp)|
√
|α′(ηs)|

ωp
ωs

η1 − η1
ηs − ηp

t1,1

+

√
|α′(η1)|√
|α′(ηs)|

ω1

ωs

η1 − ηp
ηs − ηp

t1,p

for all 1 ≤ p, s ≤ n.
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Matrix representations of THO’s with respect to Clark basis and modified Clark basis

Remark 1
Theorems 5 and 6 remain true when α is an inner function such
that Kα has a Clark basis {vηm}.
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