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L Introduction

Denote:
@ H? - the Hardy space in the unit disk D,
@ P - the orthogonal projection from L? := L?(0D) onto H?,
0 L™ := L™(dD).
For a symbol ¢ € L*> we define:
@ T, - the Toeplitz operator

Tof = P(of),
@ H, - the Hankel operator
Hyf = J(I—P)(ef),
J : L? — L2 is the "flip” operator given by

Jf(z) =2f(), lz[=1.
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L Inner functions

We say that « is an inner function if:
@ ovec H,
@ |o| =1a.e.ondD.

We say that o has an angular derivative in the sense of
Carathéodory (ADC) at w € 9D, if there exist complex numbers
a(w) and o/ (w), such that,

a(z) = a(w) €D and o(z) — o/ (w)

whenever z — w nontangentially (with ‘f__“" bounded).

&
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L Model spaces

Let o be an inner function.

@ The corresponding model space K|, is the orthogonal
complement of aH? in H?, that is,

K, = H?>© aH?.

@ The model space K, is a reproducing kernel Hilbert space
with the kernel function

1—
ko (z) = M, w,z € D.
1 —wz
(Note that since k¢ is bounded, the set K3° = K, N H*® is
dense in K,.)

@ The conjugate kernel function is the function

Eo(z) = Mj w,z€D.
Z— W
@ If  has an ADC at w € 9D, then k2 and k2, defined as
above, belong to K.
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LTruncated Toeplitz and Hankel operators

Truncated Toeplitz and Hankel operators are compressions of
classical Toeplitz and Hankel operators to model spaces. More
precisely:
@ the truncated Toeplitz operator (TTO) Ay, ¢ € L?, is
densely defined on K, by

A‘Pf = Pa(QOf)7

where P, denotes the orthogonal projection from L? onto
K,.

o truncated Hankel operator (THO) B, ¢ € L?, is densely
defined on K, by

By = PoJ(I = P)(¢f),
where J is the "flip” operator.

For an inner function « let
@ J(a)={A,: ¢ € L? and A, is bounded},
o ' (a)={B,: ¢ € L? and B,, is bounded}.
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L Matrix representations

Classical Toeplitz and Hankel operators can be characterized in
terms of their matrix representations with respect to the
monomial basis {z* : k > 0} of H?:

@ a bounded linear operator T : H? — H? is a Toeplitz
operator if and only if its matrix is a Toeplitz matrix, that is,
it has constant diagonals

@ a bounded linear operator T : H> — H? is a Hankel
operator if and only if its matrix is a Hankel matrix, that is,
its entries are constant along each skew-diagonal.

The above gives characterizations of TTO and THO in terms of
matrix representations with respect to monomial basis of K|,
when a(z) = 2".

Matrix representations of operators from .7 («) for other o were
discussed by J. A. Cima, W. T. Ross and W. R. Wogen (2008)
and by B. tanucha (2014).
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L Matrix representations of THO's with respect to kernel basis and conjugate kernel basis

Let a be a finite Blaschke product with distinct zeros a4, ..., ay,.
Then the kernel functions {kg , ..., kg } form a basis for K,

and so do the conjugate kernel functions {k% ..., k% }.
Let B be any linear operator on K. Then:

@ the matrix representation Mp = () of B with respect to
the kernel basis {7 ,..., kg } is given by

rop = (7a)  (BRG, FL),

o the matrix representation Mp = (ts,p) of B with respect to

the conjugate kernel basis {%31, ..., kg }is given by

tap = o (as)"H(BES  KS.).
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L Matrix representations of THO's with respect to kernel basis and conjugate kernel basis

J. A. Cima, W. T. Ross and W. R. Wogen, 2008

Let « be a finite Blaschke product with n distinct zeros
ai,...,an. Let A be any linear operator on K. If M4 = (r5,) is
the matrix representation of A with respect to the basis

{kg ... kg },then A € 7 (a) if and only if

al?
S o(a1) [ rislar —as) +riplap —a1)
S,p O/(as) ap — Qs

forall1 <p,s <n,p#s.
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L Matrix representations of THO's with respect to kernel basis and conjugate kernel basis

Theorem 1

Let « be a finite Blaschke product with n. distinct zeros
ai,...,an. Let B be any linear operator on K. If Mp = (r,) is
the matrix representation of B with respect to the basis
{kg,,..., k3 }, then B € () if and only if

A - GEE)
T

o'(as)(1 — asap)

foralll1 < p,s <n.
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L Matrix representations of THO's with respect to kernel basis and conjugate kernel basis

C. Gu, Thm. 7.9

Let « be a finite Blaschke product with n > 0 zeros.
(a) The dimension of .77 («a) is 2n — 1.
(b) If A1, ..., X1 are distinct points from D, then the
operators k:% ® k“j, j=1,...,2n— 1, form a basis for
J
H ().
(c) If Ay, ..., Aon—1 are distinct points from D, then the
operators k% ® k:ofj, j=1,...,2n — 1, form a basis for
J
H ().




Truncated Hankel operators and their matrices M. Michalska, B. tanucha 11/20

L Matrix representations of THO's with respect to kernel basis and conjugate kernel basis

Theorem 2

Let « be a finite Blaschke product with n distinct zeros
ai,...,an. Let B be any linear operator on K. If Mp = (ts,) is
the matrix representation of B with respect to the basis

{kal, ..., k3 Y, then B € 2 («) if and only if

1—asa; o (a1)(1 — a?)
— ts1—

1
-t
Il = @y o'(as)(1 — asap) L1

o(a)(l —arap)
)

o/ (as)(1 — asay

tsp =

forall1 < p,s <n.
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L Matrix representations of THO's with respect to kernel basis and conjugate kernel basis

Let « be an infinite Blaschke product with uniformly separated
zeros {an, }, that is,

m — a
m Tk >

)

1nf H

m;ék

1 —anak

for some § > 0. Then the family of kernel functions {k7 } forms
a basis for K, and so does the family of conjugate kernel
functions {7 }.

This means that each f € K, can be written as

and
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L Matrix representations of THO's with respect to kernel basis and conjugate kernel basis

Theorem 3

Let o be an infinite Blaschke product with uniformly separated
zeros {a,,} and let B be a bounded linear operator on K,,. If
Mp = (rs,p) is the matrix representation of B with respect to the
basis {ky }, then B € 7 («) if and only if

:G:—> et ( << ><)£1 )>)

WEOTEDR

forallp,s > 1.
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L Matrix representations of THO's with respect to kernel basis and conjugate kernel basis

Theorem 4

Let « be an infinite Blaschke product with uniformly separated
zeros {a,, } and let B be a bounded linear operator on K,,. If
Mg = (ts,p) is the matrix representation of B with respect to the
basis {'/-Egm}, then B € 7 («) if and only if

forall p,s > 1.
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L Clark basis and modified Clark basis

@ For any \ € 9D the so-called Clark operator U, is the
operator from K, onto K, defined by

a(0) + A
1 —|a(0)?
@ The operator U, is unitary and the set of its eigenvalues

consists of n € 9D such that o has an ADC at n with

a(n) =ay = M.
1+ a(0)A
The eigenvector corresponding to 7 is the reproducing
kernel ky (D. N. Clark, 1972).

@ If Uy has a pure point spectrum, then the set {v,,, }, where
{vn, } = {llkg [I7'kg }, is an orthonormal basis for K,
called the Clark basis corresponding to .

@ The modified Clark basis is defined by

Up=A, + kS @ kS

K3

— 5 (ar, —arg A
enpm = WUy, Where w, =e 3 (argnm—arg )
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L Matrix representations of THO’s with respect to Clark basis and modified Clark basis

Theorem 5

Let « be a finite Blaschke product with n. > 0 (not necessarily
different) zeros and let {v,,, ..., vy, } be the Clark basis for K,
corresponding to A € OD. Let B be any linear operator on K,,. If
Mp = (rs,p) is the matrix representation of B with respect to the
basis {vy,,...,v,,}, then B € 7 («) if and only if

V()| ns — 71 o/ (1) m—T

S7p - rou 87

1— —T1,1
|/ (1p)| Ms — Tlp Vi ()1 (ns)| Ms = Tip

&/ ()l m =Ty
|/ (ns)] s = T

1p

foralll1 < p,s <n.
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L Matrix representations of THO’s with respect to Clark basis and modified Clark basis

Theorem 6

Let « be a finite Blaschke product with n. > 0 (not necessarily
different) zeros and let {e,,, ..., ey, } be the modified Clark
basis for K, corresponding to A € OD. Let B be any linear
operator on K. If Mp = (ts,) is the matrix representation of B
with respect to the basis {e,,, ..., ey, }, then B € 7 («) if and
only if

g VIlm)lwpns i, o/ ()| Wy ~T,
S,p — —vS, — y
? V |a/(77p)| Wi ls — Tp \/‘ np ’\/’ 7]5 |Ws TNls — Mp

7 e
4 | (m)!ﬂm @tl,p
o/ (ns)| Ws Ts — Tip

forall1 < p,s <n.
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L Matrix representations of THO’s with respect to Clark basis and modified Clark basis

Theorems 5 and 6 remain true when « is an inner function such
that K, has a Clark basis {v,,, }.
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