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Discrete-time linear system and its transfer function lgu

Consider a discrete-time linear system
x(n+1) = Ax(n)+ Bu(n),
y(n) = Cx(n)+ Du(n),

(nez)

with u(n) € U, x(n) € X, y(n) € Y, where U, X', Y are Hilbert spaces, and a
bounded (linear) system matrix

w2 (2] 5]

The transfer function of X is defined (and analytic) on a neighborhood of 0 by

Fs(z) = D+ zC(I — zA)"'B.



Discrete-time linear system and its transfer function \nu

Consider a discrete-time linear system
x(n+1) = Ax(n)+ Bu(n),
y(n) = Cx(n)+ Du(n),

(nez)
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The transfer function of X is defined (and analytic) on a neighborhood of 0 by

Fs(z) = D+ zC(I — zA)"'B.

Rationale of Bounded Real Lemma

Conditions under which Fs has analytic continuation to the unit disk D, also
denoted Fs, with sup,.p, [|Fs(2)|| < 1 (standard case) or sup,cp, |F=(2)]] < 1
(strict case), i.e., Fx in H5°(U, ) with ||Fs|lcc <1 or ||Fs|leo < 1.

We then say X is (strictly) dissipative, notation Fx € H5°(U, ), ||Fs]le < 1.




Sufficient conditions Lnu

State space similarity

2 is dissipative in case X is state space similar to a contractive system:
There exist ¥’ = {A’, B’, C', D’} and a boundedly invertible K : X — X’ with

KA=AK, KB=B', C=CK, D=D H{A/ B/”’<1
- ) - ) - ? - ) C/ D/ = -

Kalman-Yakubovich-Popov (KYP) inequality
Y is dissipative if there exists a H > 0 (positive and bound. invert.) with

[eelle slle s)=[T 0]

Discrete algebraic Riccati form
Taking Schur complement + invertibility assumption, this can be rewritten as:

H— A*HA— C*C — (A*HB + C*D)(I — B°"HB — D*D) Y(B*HA+ D*C) > 0
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State space similarity

2 is dissipative in case X is state space similar to a contractive system:
There exist ¥’ = {A’, B’, C', D’} and a boundedly invertible K : X — X’ with

A B
KA=AK, KB=B', C=CK, D=D, H{C D’H’Sl’

Kalman-Yakubovich-Popov (KYP) inequality
Y is dissipative if there exists a H > 0 (positive and bound. invert.) with

[eelle slle s)=[T 0]

Discrete algebraic Riccati form
Taking Schur complement + invertibility assumption, this can be rewritten as:

H— A*HA— C*C — (A*HB + C*D)(I — B°"HB — D*D) Y(B*HA+ D*C) > 0

Finite dimensional case: dimX < oo
2 minimal, then X dissipative iff KYP solution H > 0 exists.



Complications in the infinite dimensional case

Complications if dim X' = oo

e Several notions of minimality, controllable and observable.

e No (direct) generalization of the state space similarity theorem.

e Unbounded solution to KYP-inequality appear, even if My is bounded.
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Complications if dim X' = oo

e Several notions of minimality, controllable and observable.
e No (direct) generalization of the state space similarity theorem.

e Unbounded solution to KYP-inequality appear, even if My is bounded.

Various results exist

e Standard case + minimality: No bounded or boundedly invertible KYP sol.
H guaranteed. Pseudo solutions [Arov-Kaashoek-Pik '06]. Earlier work:
[Arov '74], [Helton '74], [Ball-Cohen '91].

e Standard case + 'exact’ minimality: Bounded and boundedly invertible
KYP sol. H > 0 exists.

e Strict case + rspec(A) < 1: Bounded and boundedly invertible KYP sol.
H > 0 exists. Implicitly in [Ben-Artzi-Gohberg-Kaashoek '95], variations in
[Yakubovich '74, '75].



Willems' storage function approach (1972) tﬂu

Definition A function S : X — [0, o] is called a storage function if for any
system trajectory (u(n),x(n),y(n))ncz we have

S(x(n+1)) < S(x(n)) + [lu(n)|* — [ly(n)|I* (n€Z) and 5(0)=0.

Proposition Assume the system ¥ has a storage function. Then Fx has an
analytic continuation to D with ||Fs|lec < 1.
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Definition A function S : X — [0, o] is called a storage function if for any
system trajectory (u(n),x(n),y(n))ncz we have

S(x(n+1)) < S(x(n)) + Ju(n)|* = lly(n)|* (n€Z) and $(0) = 0.

Proposition Assume the system ¥ has a storage function. Then Fx has an
analytic continuation to D with ||Fs|lec < 1.

Available storage, required supply
Assume the system X has a storage function. Then we can define storages
functions S, (available storage) and S, (required supply) by

-1

Sil0) = sup > (Iv(MIF = (M) S = inf >= (llu(m)I* ~ lly(n)|)

n=n_1

with inf and sup going over all system trajectories satisfying x(0) = xo, with
additional constraint x(n_1) = 0 for the inf. For any storage function S we have

Sa(x0) < S(x0) < S/(x0) (on a dense domain).



Quadratic storage functions and KYP pseudo-solutions Lnu

A storage function S for X is called quadratic if it has the form
S(x) = (Hx,x) = |[H>x[” (x € D(H?))
where H is a closed, densely defined, injective, positive operator on X’ such that

AD(H?) C D(H?) and BU C D(H?).
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A storage function S for ¥ is called quadratic if it has the form
S(x) = (Hx,x) = |[H>x[” (x € D(H?))
where H is a closed, densely defined, injective, positive operator on X’ such that
AD(H?) C D(H?) and BU C D(H?).
In that case H satisfied the spatial form of the KYP inequality
I RIS 2 e 2
0 he| |u 0 | |C Dj|u

Any closed, densely defined, injective, positive operator H on X satisfying this
inequality is called a positive pseudo-solution to the spatial KYP inequality for
3.

2
>0  (xeD(H?), ueld).
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A storage function S for X is called quadratic if it has the form
S(x) = (Hx,x) = |[H>x[” (x € D(H?))

where H is a closed, densely defined, injective, positive operator on X’ such that
AD(H?) C D(H?) and BU C D(H?).

In that case H satisfied the spatial form of the KYP inequality

H72 o] [x]|[F_|I[H> o][A B][x
0 lz,( u 0 /y C D u
Any closed, densely defined, injective, positive operator H on X satisfying this

inequality is called a positive pseudo-solution to the spatial KYP inequality for
3.

2
>0  (xeD(H?), ueld).

Conversely, any positive pseudo-solution H to the spatial KYP inequality for X
provides a quadratic storage function Sy(x) = (Hx, x).



The observability and controllability operators tﬂu

With ¥ we associate its observability operator W, : D(W,) — £5,(Z) by

D(W,) = {x € X: {CA"x}n>0 € 53(Z+)}, Wox = {CAx}n50 (x € D(W,))
and the adjoint controllability operator W : D(W}) — £2,(Z_) by

D(W;) = {x € X: {B"A" " Ix}oc 1 € (4(Z-)}, Wix={B"A"" Ix},c,
N.B. It can happen that D(W,) = {0} or D(W.) = {0} (C=B=1 A=2).
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The observability and controllability operators nu

With ¥ we associate its observability operator W, : D(W,) — £5,(Z) by

D(W,) = {x € X: {CA"x}n>0 € 53(Z+)}, Wox = {CAx}n50 (x € D(W,))
and the adjoint controllability operator W : D(W}) — £(Z_) by

DW]) = {xe X: {B"A " x},c 1 € (2-)}, Wix={B"A"x},.,

N.B. It can happen that D(W,) = {0} or D(W.) = {0} (C=B=1 A=2).

Proposition For W, and W defined above:
(1) W, is a closed operator on D(W,).
(2) Assume that D(W,) is dense in X. Then the adjoint W} of W, exists and

is a closed, densely defined operator with domain D(W}) containing the
linear manifold €5n,y(Z+) of finitely supported sequences in £3,(Z..).

(3) The adjoint controllability operator W is closed on D(W?).

(4) Assume D(WY() is dense in X. Then W} has an adjoint, the controllability
operator W., which is a closed, densely defined operator with domain

D(W.) containing the linear manifold lsin1/(Z—) of finitely supported
sequences in (3,(Z._).



Notions of minimality, controllability, observability [ nu

| =
A

Definition Set
Rea (A|B) = span{ImA*B: k =0,1,2,...} and Obs(C|A) = Rea (A*|C").

The system X (or pair {A, B}) is called:

e Exactly controllable if Rea (A|B) = X;

e (Approximately) controllable if Rea (A|B) is dense in X.

e (*-exactly controllable if D(W}) is dense in X and ImW, = X’
The system X (or pair {C, A}) is called:

e Exactly observable if Obs (C|A) = X;

e (Approximately) observable if Obs (C|A) is dense in X.

e (*-exactly observable if D(Wy) is dense in X and ImW} = X’

We call ¥ (exactly/f*-exactly) minimal if ¥ is (exactly/¢*-exactly) controllable
and observable.
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Definition Set
Rea (A|B) = span{ImA*B: k =0,1,2,...} and Obs(C|A) = Rea (A*|C").

The system X (or pair {A, B}) is called:

e Exactly controllable if Rea (A|B) = X;

e (Approximately) controllable if Rea (A|B) is dense in X.

e (*-exactly controllable if D(W}) is dense in X and ImW, = X’
The system X (or pair {C, A}) is called:

e Exactly observable if Obs (C|A) = X

e (Approximately) observable if Obs (C|A) is dense in X.

e (*-exactly observable if D(Wy) is dense in X and ImW} = X’

We call ¥ (exactly/f*-exactly) minimal if ¥ is (exactly/¢*-exactly) controllable
and observable.

Note: if D(W}) and D(W,) are dense in X, then
Rea (A|B) = Wlfinu(Z—) and  Obs(C|A) = W Lfinu(Z+).



Notions of minimality, controllability, observability Il nu

Proposition

(1) It can happen that (A, B) is exactly controllable but not £*-exactly
controllable.

(2) It can happen that (A, B) is £*>-exactly controllable but not exactly
controllable.

(3) If (A, B) is exactly controllable, then (A, B) is controllable.

(4) If (A, B) is £*-exactly controllable with D(W}) = X, then (A, B) is
controllable.

(5) If (A, B) is exactly controllable and D(W?Y) is dense, then (A, B) is
P*-exactly controllable.

(6) It can happen that (C, A) is exactly observable but not £>-exactly
observable.

(7) It can happen that (C, A) is £*-exactly observable but not exactly
observable.

(8) If(C, A) is exactly observable, then (C, A) is observable.

(9) If (C, A) is *-exactly observable and D(W,) = X, then (C, A) is
observable.

(10) If (C, A) is exactly observable and D(W,) is dense, then (C,A) is

0%-exactly observable.



Laurent, Toeplitz, Hanke

Assume Fy € H°(U,Y) with ||Fs||oo < 1. Let (u,x,y) be a system trajectory

for ¥ with u € £%(Z). Then

with Lg; the Laurent operator defined by Fr:

Fo

Lr, =

0
FR Fb| 0O O
F, Fi|F O
Fs R | Fo

y=Lru

|

Tr,
Hr,

0
Tk

and [[He || < (| Trcll = ([ Trell = LRl = 1 Feloe < 1.

']

t4(2-)

L

2
u

(Z+)

I~

G(2-)
¢(Z+)

|



Laurent, Toeplitz, Hankel

Assume Fy € H°(U,Y) with ||Fs||oo < 1. Let (u,x,y) be a system trajectory
for ¥ with u € £%(Z). Then
y=Lru

with Lg; the Laurent operator defined by Fr:

Fb O

0
.. R FR|0 O F 2 :
7 o T,':z 0 ) EZ/{(Z*) EM(Zf)
LFZ = . F2 Fl Fo 0 - |: HFZ TFZ :| . |:ZZ2/{(Z+) - ZZ%{(Z+)

Fs R | Fo

and |[|He || < || TRl = H7~—FXH = ||Le || = ||Fx]|oo < 1. Assume X is minimal.

Then D(W,) and D(W{) are dense and the Hankel operator Hg; factors as
HF):"D(WC) = WOWC and H;:'D(W;) = W:W:

and we have the inclusions

Rea (A|B) C ImW, C D(W,) and Obs(C|A) C ImW; C D(W;).



Operator forms S; and S,

Proposition Assume X is minimal with Fs € H5°(U,Y) with |Fs|lcc < 1. Then

2 2
Sa(x0) = sup  [[Woxo + Tru|j () — HU+H£§4(Z+)7
uy €62,(Zy) Y

5(x0) = inf 10— T Tr) Pu |2

u_ €L 1y (Z_ ), xo=Wou _

Thus Si(x0) = oo if xo &€ D(W,) and S,(x0) < oo if and only if xo € Rea (A|B).
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Proposition Assume X is minimal with Fs € H5°(U,Y) with |Fs|lcc < 1. Then

2 2
Sa(x0) = sup  [[Woxo + Tru|j () — H“+H£§4(Z+)v
uy €62,(Zy) Y

5(x0) = inf 10— T Tr) Pu |2

u_ €L 1y (Z_ ), xo=Wou _

Thus Si(x0) = oo if xo &€ D(W,) and S,(x0) < oo if and only if xo € Rea (A|B).

Proof formula S, Write P, and P_ for the projections on ¢%(Z.) and ¢%(Z_)
for any Z. Set ux = P1u, y+ = P1y. Note x(0) = Wcu_. One can show

Sa(x0) = sup [y = fue .
uEZZZ/{(Z),XO:WCu_

Note
Y+ =Pilru=Hru 4+ Trur = WWeu_ + Trrup = Woxo 4+ Trouyg,
which only relies on uy. We then find

So) = sup [Woxo+ Trgue | — s C
ur €2 (24)



Operator forms S; and S,

Proposition Assume X is minimal with Fs € H5°(U,Y) with |Fs|lcc < 1. Then

2 2
Sa(x0) = sup  [[Woxo + Tru|j () — H“+H£§4(Z+)v
uy €62,(Zy) Y

~, ~ 1
H(x0) = inf I — T T )2u_ |2
S0) = i e N0 TR Te) 0]

Thus Si(x0) = oo if xo &€ D(W,) and S,(x0) < oo if and only if xo € Rea (A|B).

Proof formula S, Similarly as for S, one finds

S = inf =yl
00) = 0w ==y
In this case B
y-=P_Lru= Tru_
so that
2 2 2 = 2 Zx F 2 2
Ju—|I" = lly-1I" = lu—|I" = [ Trru-[I" = [(/ = Tr TR ) >u—|".

and the formula for S, follows.
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Question
Are S, and S, quadratic storage functions?
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To find quadratic storage functions we modify S, in the following way

~, ~ .1
(I = Th Tr) 2|

5:(x0) = inf

n
u_€D(W.), xo=Wou_



Quadratic forms

Question
Are S, and S, quadratic storage functions?

Extended version S,
To find quadratic storage functions we modify S, in the following way

S5(x) = (= T4 Tr)2u |

inf
u_€D(W.), xo=Wou_

Theorem Assume X is minimal with Fs € H5°(U,Y) with ||Fs||cc < 1. Then
there exist closed, densely defined, injective, positive operators H, and H, with
Im W, contained in their domains, such that

S.(x0) = (Haxo, xo), §,(Xo) = (Hrx0,%0) (%0 € ImW,).

Thus H, and H, are positive pseudo-solutions to the spatial KYP inequality.
Moreover, if |Fs||oo < 1 and X is £*>-exactly minimal, then

Ho=Wj(I = T TA) 'Wo  and  H;' =W (I — T/ T ) "W}

and H, and H, both bounded and boundedly invertible, and hence strictly
positive solutions to the KYP inequality.



Special cases |

Note: if ¥ is minimal with ||Fr||s < 1 and X is f*-exactly minimal, then
Ho=Wj(l = T TA) 'Wo  and  H;' = W (I — TA T ) "W}

are bounded, strictly positive solutions to the KYP inequality.
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Note: if ¥ is minimal with ||Fr||s < 1 and X is f*-exactly minimal, then
Ho=Wj(l = T TA) 'Wo  and  H;' = W (I — TA T ) "W}
are bounded, strictly positive solutions to the KYP inequality.
Lemma Assume Fs is in H5°(U,Y). Then
o Y (?-exactly controllable = W, bounded

o X 52—exactly observable = W, bounded
o X Ez-exactly minimal = W, and W both bounded and bounded below.
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Note: if ¥ is minimal with ||Fr||s < 1 and X is f*-exactly minimal, then
Ho=Wj(l = T TA) 'Wo  and  H;' = W (I — TA T ) "W}
are bounded, strictly positive solutions to the KYP inequality.

Lemma Assume Fs is in H3°(U,Y). Then
o Y (?-exactly controllable = W, bounded
o X 52—exactly observable = W, bounded
o X Ez-exactly minimal = W, and W both bounded and bounded below.

Lemma Assume X is minimal with Fx is in H5°(U,Y) with ||Fs|lec < 1.
o X Ez-exactly controllable = H, bounded
o Y {?-exactly observable = H; " bounded

o X €2-exactly minimal = H, & H, both bounded and boundedly invertible.
In that case all positive pseudo-solutions H to the spatial KYP inequality
satisfy H, < H < H,. Hence they are in fact bounded, strictly positive
solutions to the KYP inequality.



Special cases Il

Regular case: (/ — Tr. T ) and (/ — ?;_52 Tr, ) closed range

In that case generalized inverses (I — T T7.)" and (/ — 'IN',;*Z T, )" exist and

Hy=Wj( — TR TA) "W, and  H; ' = We(l — TE Tr ) "WE.
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In that case generalized inverses (I — T T7.)" and (/ — fﬁz T, )" exist and
Hy=Wj( — TR TA) "W, and  H; ' = We(l — TE Tr ) "WE.

Then:
o W, (resp. W;) is bounded if and only if H, (resp. H; %) is bounded.
o W, (resp. W}) is bounded below if and only if H;! (resp. H,) is bounded.

The regular case includes ||Fx||o < 1 but also the case with Fs inner.



Special cases Il

Regular case: (/ — Tr. T ) and (/ — T’,’_fz Tr, ) closed range

In that case generalized inverses (I — T T7.)" and (/ — fﬁz T, )" exist and
Hy=Wj( — TR TA) "W, and  H; ' = We(l — TE Tr ) "WE.

Then:
o W, (resp. W;) is bounded if and only if H, (resp. H; %) is bounded.
o W, (resp. W}) is bounded below if and only if H;! (resp. H,) is bounded.

The regular case includes ||Fx||o < 1 but also the case with Fs inner.

Fs inner
Then (I = Tr TE) = Prer T and (I = TA Tk ) = Py, 7 and one obtains
PN

H,=W:XW, and H™'=W.W:.

[Fslloe <1

Without #2-minimality there still exists a bounded strictly positive solution H to
the KYP solution with H, < H < H,, so H, is bounded and H, boundedly
invertible. However, H, need not be boundedly invertible and H, need not be
bounded.



Infinite dimensional bounded real lemmas

Theorem (Standard Bounded Real Lemma I)

Assume the system ¥ is minimal. Then Fx has an analytic continuation to D
with ||Fz|lec < 1 if and only if there exists a positive pseudo-solution H of the
spatial KYP-inequality defined by ¥.

Theorem (Standard Bounded Real Lemma II)

Assume the system X is (£2—)exactly controllable and (£2—)exactly observable.
Then Fs has an analytic continuation to D with ||Fs|js < 1 if and only if there
exists a positive definite solution H of the KYP-inequality defined by . In that
case rfspec(A) < 1 and hence Fx is analytic on D.

Theorem (Strict Bounded Real Lemma)

Assume the state operator of X satisfies ripec(A) < 1. Then Fx is in H5®(U,))
with ||Fx|leo < 1 if and only if there exists a bounded positive definite solution
H of the strict KYP-inequality:

Nt Rt
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