Bounded and unbounded solutions to the discrete-time KYP inequality

Sanne ter Horst ¹ North-West University

IWOTA 2017 Chemnitz, Germany

Joint work with J.A. Ball and G.J. Groenewald

Discrete-time linear system and its transfer function

(日) (日) (日) (日) (日) (日) (日) (日)

Consider a discrete-time linear system

$$\Sigma := \begin{cases} \mathbf{x}(n+1) &= A\mathbf{x}(n) + B\mathbf{u}(n), \\ \mathbf{y}(n) &= C\mathbf{x}(n) + D\mathbf{u}(n), \end{cases} \quad (n \in \mathbb{Z})$$

with $\mathbf{u}(n) \in \mathcal{U}$, $\mathbf{x}(n) \in \mathcal{X}$, $\mathbf{y}(n) \in \mathcal{Y}$, where \mathcal{U} , \mathcal{X} , \mathcal{Y} are Hilbert spaces, and a bounded (linear) system matrix

$$M_{\Sigma} := \begin{bmatrix} A & B \\ C & D \end{bmatrix} : \begin{bmatrix} \mathcal{X} \\ \mathcal{U} \end{bmatrix} \to \begin{bmatrix} \mathcal{X} \\ \mathcal{Y} \end{bmatrix}.$$

The transfer function of Σ is defined (and analytic) on a neighborhood of 0 by

$$F_{\Sigma}(z) = D + zC(I - zA)^{-1}B.$$

Discrete-time linear system and its transfer function

Consider a discrete-time linear system

$$\Sigma := \begin{cases} \mathbf{x}(n+1) &= A\mathbf{x}(n) + B\mathbf{u}(n), \\ \mathbf{y}(n) &= C\mathbf{x}(n) + D\mathbf{u}(n), \end{cases} \quad (n \in \mathbb{Z})$$

with $\mathbf{u}(n) \in \mathcal{U}$, $\mathbf{x}(n) \in \mathcal{X}$, $\mathbf{y}(n) \in \mathcal{Y}$, where \mathcal{U} , \mathcal{X} , \mathcal{Y} are Hilbert spaces, and a bounded (linear) system matrix

$$M_{\Sigma} := \left[egin{array}{cc} A & B \ C & D \end{array}
ight] : \left[egin{array}{cc} \mathcal{X} \ \mathcal{U} \end{array}
ight]
ightarrow \left[egin{array}{cc} \mathcal{X} \ \mathcal{Y} \end{array}
ight].$$

The transfer function of Σ is defined (and analytic) on a neighborhood of 0 by

$$F_{\Sigma}(z) = D + zC(I - zA)^{-1}B.$$

Rationale of Bounded Real Lemma

Conditions under which F_{Σ} has analytic continuation to the unit disk \mathbb{D} , also denoted F_{Σ} , with $\sup_{z \in \mathbb{D}} \|F_{\Sigma}(z)\| \leq 1$ (standard case) or $\sup_{z \in \mathbb{D}} \|F_{\Sigma}(z)\| < 1$ (strict case), i.e., F_{Σ} in $H_{\mathbb{D}}^{\infty}(\mathcal{U}, \mathcal{Y})$ with $\|F_{\Sigma}\|_{\infty} \leq 1$ or $\|F_{\Sigma}\|_{\infty} < 1$.

We then say Σ is *(strictly) dissipative*, notation $F_{\Sigma} \in H^{\infty}_{\mathbb{D}}(\mathcal{U}, \mathcal{Y})$, $||F_{\Sigma}||_{\infty} \leq 1$.

Sufficient conditions

State space similarity

 Σ is dissipative in case Σ is state space similar to a contractive system: There exist $\Sigma' = \{A', B', C', D'\}$ and a boundedly invertible $K : \mathcal{X} \to \mathcal{X}'$ with

$$KA = A'K, \quad KB = B', \quad C = C'K, \quad D = D', \quad \left\| \begin{bmatrix} A' & B' \\ C' & D' \end{bmatrix} \right\| \le 1.$$

Kalman-Yakubovich-Popov (KYP) inequality

 Σ is dissipative if there exists a H > 0 (positive and bound. invert.) with

$$\left[\begin{array}{cc}A & B\\C & D\end{array}\right]^*\left[\begin{array}{cc}H & 0\\0 & I_{\mathcal{Y}}\end{array}\right]\left[\begin{array}{cc}A & B\\C & D\end{array}\right] \leq \left[\begin{array}{cc}H & 0\\0 & I_{\mathcal{U}}\end{array}\right].$$

Discrete algebraic Riccati form

Taking Schur complement + invertibility assumption, this can be rewritten as:

$$H - A^*HA - C^*C - (A^*HB + C^*D)(I - B^*HB - D^*D)^{-1}(B^*HA + D^*C) \ge 0$$

Sufficient conditions

State space similarity

 Σ is dissipative in case Σ is state space similar to a contractive system: There exist $\Sigma' = \{A', B', C', D'\}$ and a boundedly invertible $K : \mathcal{X} \to \mathcal{X}'$ with

$$KA = A'K, \quad KB = B', \quad C = C'K, \quad D = D', \quad \left\| \begin{bmatrix} A' & B' \\ C' & D' \end{bmatrix} \right\| \le 1.$$

Kalman-Yakubovich-Popov (KYP) inequality

 Σ is dissipative if there exists a H > 0 (positive and bound. invert.) with

$$\left[\begin{array}{cc}A & B\\C & D\end{array}\right]^*\left[\begin{array}{cc}H & 0\\0 & I_{\mathcal{Y}}\end{array}\right]\left[\begin{array}{cc}A & B\\C & D\end{array}\right] \leq \left[\begin{array}{cc}H & 0\\0 & I_{\mathcal{U}}\end{array}\right].$$

Discrete algebraic Riccati form

Taking Schur complement + invertibility assumption, this can be rewritten as:

$$H - A^*HA - C^*C - (A^*HB + C^*D)(I - B^*HB - D^*D)^{-1}(B^*HA + D^*C) \ge 0$$

Finite dimensional case: dim $\mathcal{X} < \infty$ Σ minimal, then Σ dissipative iff KYP solution H > 0 exists.

・ロト ・ 日・ ・ 田・ ・ 日・ うらぐ

Complications in the infinite dimensional case

Complications if $\dim \mathcal{X} = \infty$

- Several notions of minimality, controllable and observable.
- No (direct) generalization of the state space similarity theorem.
- Unbounded solution to KYP-inequality appear, even if M_{Σ} is bounded.

Complications in the infinite dimensional case

Complications if $\dim \mathcal{X} = \infty$

- Several notions of minimality, controllable and observable.
- No (direct) generalization of the state space similarity theorem.
- Unbounded solution to KYP-inequality appear, even if M_{Σ} is bounded.

Various results exist

- Standard case + minimality: No bounded or boundedly invertible KYP sol. *H* guaranteed. Pseudo solutions [Arov-Kaashoek-Pik '06]. Earlier work: [Arov '74], [Helton '74], [Ball-Cohen '91].
- Standard case + 'exact' minimality: Bounded and boundedly invertible KYP sol. H > 0 exists.
- Strict case $+ r_{spec}(A) < 1$: Bounded and boundedly invertible KYP sol. H > 0 exists. Implicitly in [Ben-Artzi-Gohberg-Kaashoek '95], variations in [Yakubovich '74, '75].

Willems' storage function approach (1972)

Definition A function $S : \mathcal{X} \to [0, \infty]$ is called a *storage function* if for any system trajectory $(\mathbf{u}(n), \mathbf{x}(n), \mathbf{y}(n))_{n \in \mathbb{Z}}$ we have

 $S(\mathbf{x}(n+1)) \leq S(\mathbf{x}(n)) + \|\mathbf{u}(n)\|^2 - \|\mathbf{y}(n)\|^2 \quad (n \in \mathbb{Z}) \quad \text{and} \quad S(0) = 0.$

Proposition Assume the system Σ has a storage function. Then F_{Σ} has an analytic continuation to \mathbb{D} with $\|F_{\Sigma}\|_{\infty} \leq 1$.

Willems' storage function approach (1972)

Definition A function $S : \mathcal{X} \to [0, \infty]$ is called a *storage function* if for any system trajectory $(\mathbf{u}(n), \mathbf{x}(n), \mathbf{y}(n))_{n \in \mathbb{Z}}$ we have

 $S(\mathbf{x}(n+1)) \leq S(\mathbf{x}(n)) + \|\mathbf{u}(n)\|^2 - \|\mathbf{y}(n)\|^2 \quad (n \in \mathbb{Z}) \quad ext{and} \quad S(0) = 0.$

Proposition Assume the system Σ has a storage function. Then F_{Σ} has an analytic continuation to \mathbb{D} with $\|F_{\Sigma}\|_{\infty} \leq 1$.

Available storage, required supply

Assume the system Σ has a storage function. Then we can define storages functions S_a (available storage) and S_r (required supply) by

$$S_{a}(x_{0}) = \sup_{n_{1} \geq 0} \sum_{n=0}^{n_{1}} \left(\|\mathbf{y}(n)\|^{2} - \|\mathbf{u}(n)\|^{2} \right), \quad S_{r}(x_{0}) = \inf_{n_{-1} < 0} \sum_{n=n_{-1}}^{-1} \left(\|\mathbf{u}(n)\|^{2} - \|\mathbf{y}(n)\|^{2} \right)$$

with inf and sup going over all system trajectories satisfying $\mathbf{x}(0) = x_0$, with additional constraint $\mathbf{x}(n_{-1}) = 0$ for the inf. For any storage function S we have

$$S_a(x_0) \leq S(x_0) \leq S_r(x_0)$$
 (on a dense domain).

Quadratic storage functions and KYP pseudo-solutions

A storage function S for Σ is called *quadratic* if it has the form

$$S(x) = \langle Hx, x \rangle = \|H^{\frac{1}{2}}x\|^2 \quad (x \in \mathcal{D}(H^{\frac{1}{2}}))$$

where H is a closed, densely defined, injective, positive operator on \mathcal{X} such that $A\mathcal{D}(H^{\frac{1}{2}}) \subset \mathcal{D}(H^{\frac{1}{2}})$ and $B\mathcal{U} \subset \mathcal{D}(H^{\frac{1}{2}}).$

Quadratic storage functions and KYP pseudo-solutions

A storage function S for Σ is called *quadratic* if it has the form

$$S(x) = \langle Hx, x \rangle = \|H^{\frac{1}{2}}x\|^2 \quad (x \in \mathcal{D}(H^{\frac{1}{2}}))$$

where H is a closed, densely defined, injective, positive operator on $\mathcal X$ such that

 $A\mathcal{D}(H^{\frac{1}{2}})\subset \mathcal{D}(H^{\frac{1}{2}}) \quad \text{and} \quad B\mathcal{U}\subset \mathcal{D}(H^{\frac{1}{2}}).$

In that case H satisfied the spatial form of the KYP inequality

$$\left\| \begin{bmatrix} H^{1/2} & 0 \\ 0 & l_{\mathcal{U}} \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} \right\|^2 - \left\| \begin{bmatrix} H^{1/2} & 0 \\ 0 & l_{\mathcal{Y}} \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} \right\|^2 \ge 0 \qquad (x \in \mathcal{D}(H^{\frac{1}{2}}), \ u \in \mathcal{U}).$$

Any closed, densely defined, injective, positive operator H on \mathcal{X} satisfying this inequality is called a positive pseudo-solution to the spatial KYP inequality for Σ .

Quadratic storage functions and KYP pseudo-solutions

A storage function S for Σ is called *quadratic* if it has the form

$$S(x) = \langle Hx, x \rangle = \|H^{\frac{1}{2}}x\|^2 \quad (x \in \mathcal{D}(H^{\frac{1}{2}}))$$

where H is a closed, densely defined, injective, positive operator on $\mathcal X$ such that

 $A\mathcal{D}(H^{\frac{1}{2}})\subset \mathcal{D}(H^{\frac{1}{2}}) \quad \text{and} \quad B\mathcal{U}\subset \mathcal{D}(H^{\frac{1}{2}}).$

In that case H satisfied the spatial form of the KYP inequality

$$\left\| \begin{bmatrix} H^{1/2} & 0 \\ 0 & I_{\mathcal{U}} \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} \right\|^2 - \left\| \begin{bmatrix} H^{1/2} & 0 \\ 0 & I_{\mathcal{Y}} \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} \right\|^2 \ge 0 \qquad (x \in \mathcal{D}(H^{\frac{1}{2}}), \ u \in \mathcal{U}).$$

Any closed, densely defined, injective, positive operator H on \mathcal{X} satisfying this inequality is called a positive pseudo-solution to the spatial KYP inequality for Σ .

Conversely, any positive pseudo-solution H to the spatial KYP inequality for Σ provides a quadratic storage function $S_H(x) = \langle Hx, x \rangle$.

The observability and controllability operators

With Σ we associate its observability operator $\mathbf{W}_o : \mathcal{D}(\mathbf{W}_o) \to \ell_{\mathcal{Y}}^2(\mathbb{Z}_+)$ by $\mathcal{D}(\mathbf{W}_o) = \{x \in \mathcal{X} : \{CA^n x\}_{n \ge 0} \in \ell_{\mathcal{Y}}^2(\mathbb{Z}_+)\}, \quad \mathbf{W}_o x = \{CA^n x\}_{n \ge 0} \quad (x \in \mathcal{D}(\mathbf{W}_o))$ and the adjoint controllability operator $\mathbf{W}_c^* : \mathcal{D}(\mathbf{W}_c^*) \to \ell_{\mathcal{U}}^2(\mathbb{Z}_-)$ by $\mathcal{D}(\mathbf{W}_c^*) = \{x \in \mathcal{X} : \{B^*A^{*(-n-1)}x\}_{n \le -1} \in \ell_{\mathcal{U}}^2(\mathbb{Z}_-)\}, \quad \mathbf{W}_c^* x = \{B^*A^{*(-n-1)}x\}_{n \le -1}$

N.B. It can happen that $\mathcal{D}(\mathbf{W}_o) = \{0\}$ or $\mathcal{D}(\mathbf{W}_c) = \{0\}$ (C = B = 1, A = 2).

The observability and controllability operators

With Σ we associate its observability operator $\mathbf{W}_o : \mathcal{D}(\mathbf{W}_o) \to \ell_{\mathcal{Y}}^2(\mathbb{Z}_+)$ by $\mathcal{D}(\mathbf{W}_o) = \{x \in \mathcal{X} : \{CA^n x\}_{n \ge 0} \in \ell_{\mathcal{Y}}^2(\mathbb{Z}_+)\}, \quad \mathbf{W}_o x = \{CA^n x\}_{n \ge 0} \quad (x \in \mathcal{D}(\mathbf{W}_o))$ and the adjoint controllability operator $\mathbf{W}_c^* : \mathcal{D}(\mathbf{W}_c^*) \to \ell_{\mathcal{U}}^2(\mathbb{Z}_-)$ by $\mathcal{D}(\mathbf{W}_c^*) = \{x \in \mathcal{X} : \{B^*A^{*(-n-1)}x\}_{n \le -1} \in \ell_{\mathcal{U}}^2(\mathbb{Z}_-)\}, \quad \mathbf{W}_c^* x = \{B^*A^{*(-n-1)}x\}_{n \le -1}$

N.B. It can happen that $\mathcal{D}(\mathbf{W}_o) = \{0\}$ or $\mathcal{D}(\mathbf{W}_c) = \{0\}$ (C = B = 1, A = 2).

Proposition For W_o and W_c^* defined above:

- (1) \mathbf{W}_{o} is a closed operator on $\mathcal{D}(\mathbf{W}_{o})$.
- (2) Assume that D(W_o) is dense in X. Then the adjoint W^{*}_o of W_o exists and is a closed, densely defined operator with domain D(W^{*}_o) containing the linear manifold ℓ_{fin,V}(Z₊) of finitely supported sequences in ℓ²_V(Z₊).
- (3) The adjoint controllability operator \mathbf{W}_c^* is closed on $\mathcal{D}(\mathbf{W}_c^*)$.
- (4) Assume D(W^{*}_c) is dense in X. Then W^{*}_c has an adjoint, the controllability operator W_c, which is a closed, densely defined operator with domain D(W_c) containing the linear manifold ℓ_{fin,U}(Z₋) of finitely supported sequences in ℓ²_U(Z₋).

Notions of minimality, controllability, observability

Definition Set

Rea (A|B) = span{Im $A^k B$: k = 0, 1, 2, ...} and Obs (C|A) = Rea $(A^*|C^*)$.

The system Σ (or pair $\{A, B\}$) is called:

- Exactly controllable if $\operatorname{Rea}(A|B) = \mathcal{X}$;
- (Approximately) controllable if Rea (A|B) is dense in \mathcal{X} .
- ℓ^2 -exactly controllable if $\mathcal{D}(\mathbf{W}_c^*)$ is dense in \mathcal{X} and Im $\mathbf{W}_c = \mathcal{X}$.

The system Σ (or pair $\{C, A\}$) is called:

- Exactly observable if $Obs(C|A) = \mathcal{X}$;
- (Approximately) observable if Obs(C|A) is dense in \mathcal{X} .
- ℓ^2 -exactly observable if $\mathcal{D}(\mathbf{W}_0)$ is dense in \mathcal{X} and Im $\mathbf{W}_o^* = \mathcal{X}$.

We call Σ (exactly/ ℓ^2 -exactly) minimal if Σ is (exactly/ ℓ^2 -exactly) controllable and observable.

Notions of minimality, controllability, observability

Definition Set

Rea (A|B) = span{Im $A^k B$: k = 0, 1, 2, ...} and Obs (C|A) = Rea $(A^*|C^*)$.

The system Σ (or pair $\{A, B\}$) is called:

- Exactly controllable if Rea $(A|B) = \mathcal{X}$;
- (Approximately) controllable if Rea(A|B) is dense in \mathcal{X} .
- ℓ^2 -exactly controllable if $\mathcal{D}(\mathbf{W}_c^*)$ is dense in \mathcal{X} and Im $\mathbf{W}_c = \mathcal{X}$.

The system Σ (or pair $\{C, A\}$) is called:

- Exactly observable if Obs(C|A) = X;
- (Approximately) observable if Obs(C|A) is dense in \mathcal{X} .
- ℓ^2 -exactly observable if $\mathcal{D}(\mathbf{W}_0)$ is dense in \mathcal{X} and Im $\mathbf{W}_o^* = \mathcal{X}$.

We call Σ (exactly/ ℓ^2 -exactly) minimal if Σ is (exactly/ ℓ^2 -exactly) controllable and observable.

Note: if $\mathcal{D}(\mathbf{W}_c^*)$ and $\mathcal{D}(\mathbf{W}_o)$ are dense in \mathcal{X} , then

 $\mathsf{Rea}\,(A|B) = \mathbf{W}_{c}\ell_{\mathit{fin},\mathcal{U}}(\mathbb{Z}_{-}) \quad \mathsf{and} \quad \mathsf{Obs}\,(\mathit{C}|A) = \mathbf{W}_{o}^{*}\ell_{\mathit{fin},\mathcal{U}}(\mathbb{Z}_{+}).$

Proposition

- It can happen that (A, B) is exactly controllable but not l²-exactly controllable.
- (2) It can happen that (A, B) is l²-exactly controllable but not exactly controllable.
- (3) If (A, B) is exactly controllable, then (A, B) is controllable.
- (4) If (A, B) is ℓ²-exactly controllable with D(W^{*}_c) = X, then (A, B) is controllable.
- (5) If (A, B) is exactly controllable and $\mathcal{D}(\mathbf{W}_c^*)$ is dense, then (A, B) is ℓ^2 -exactly controllable.
- (6) It can happen that (C, A) is exactly observable but not l²-exactly observable.
- (7) It can happen that (C, A) is l²-exactly observable but not exactly observable.
- (8) If (C, A) is exactly observable, then (C, A) is observable.
- (9) If (C, A) is ℓ²-exactly observable and D(W_o) = X, then (C, A) is observable.
- (10) If (C, A) is exactly observable and $\mathcal{D}(\mathbf{W}_o)$ is dense, then (C, A) is ℓ^2 -exactly observable.

・ロト・西ト・モン・モー うへぐ

Laurent, Toeplitz, Hankel

Assume $F_{\Sigma} \in H_{\mathbb{D}}^{\infty}(\mathcal{U}, \mathcal{Y})$ with $\|F_{\Sigma}\|_{\infty} \leq 1$. Let $(\mathbf{u}, \mathbf{x}, \mathbf{y})$ be a system trajectory for Σ with $\mathbf{u} \in \ell_{\mathcal{U}}^2(\mathbb{Z})$. Then

 $\mathbf{y} = L_{F_{\Sigma}}\mathbf{u}$

with $L_{F_{\Sigma}}$ the Laurent operator defined by F_{Σ} :

$$L_{F_{\Sigma}} = \begin{bmatrix} \ddots & \ddots & \vdots & \vdots & \vdots & \\ \cdots & F_{0} & 0 & 0 & 0 & \cdots \\ \cdots & F_{1} & F_{0} & 0 & 0 & \cdots \\ \cdots & F_{2} & F_{1} & F_{0} & 0 & 0 & \cdots \\ \cdots & F_{3} & F_{2} & F_{1} & F_{0} & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots & \ddots \end{bmatrix} = \begin{bmatrix} \widetilde{T}_{F_{\Sigma}} & 0 \\ H_{F_{\Sigma}} & T_{F_{\Sigma}} \end{bmatrix} : \begin{bmatrix} \ell_{\mathcal{U}}^{2}(\mathbb{Z}_{-}) \\ \ell_{\mathcal{U}}^{2}(\mathbb{Z}_{+}) \end{bmatrix}$$

and $\|H_{F_{\Sigma}}\| \leq \|T_{F_{\Sigma}}\| = \|\widetilde{T}_{F_{\Sigma}}\| = \|L_{F_{\Sigma}}\| = \|F_{\Sigma}\|_{\infty} \leq 1.$

Laurent, Toeplitz, Hankel

Assume $F_{\Sigma} \in H_{\mathbb{D}}^{\infty}(\mathcal{U}, \mathcal{Y})$ with $\|F_{\Sigma}\|_{\infty} \leq 1$. Let $(\mathbf{u}, \mathbf{x}, \mathbf{y})$ be a system trajectory for Σ with $\mathbf{u} \in \ell_{\mathcal{U}}^2(\mathbb{Z})$. Then

$$\mathbf{y} = L_{F_{\Sigma}}\mathbf{u}$$

with $L_{F_{\Sigma}}$ the Laurent operator defined by F_{Σ} :

$$L_{F_{\Sigma}} = \begin{bmatrix} \ddots & \ddots & \vdots & \vdots & \vdots & \ddots \\ \cdots & F_{0} & 0 & 0 & 0 & \cdots \\ \cdots & F_{1} & F_{0} & 0 & 0 & \cdots \\ \cdots & F_{2} & F_{1} & F_{0} & 0 & \cdots \\ \cdots & F_{3} & F_{2} & F_{1} & F_{0} & \ddots \\ \vdots & \vdots & \vdots & \ddots & \ddots \end{bmatrix} = \begin{bmatrix} \widetilde{T}_{F_{\Sigma}} & 0 \\ H_{F_{\Sigma}} & T_{F_{\Sigma}} \end{bmatrix} : \begin{bmatrix} \ell_{\mathcal{U}}^{2}(\mathbb{Z}_{-}) \\ \ell_{\mathcal{U}}^{2}(\mathbb{Z}_{+}) \end{bmatrix} \rightarrow \begin{bmatrix} \ell_{\mathcal{U}}^{2}(\mathbb{Z}_{-}) \\ \ell_{\mathcal{U}}^{2}(\mathbb{Z}_{+}) \end{bmatrix}$$

and $\|H_{F_{\Sigma}}\| \leq \|T_{F_{\Sigma}}\| = \|\widetilde{T}_{F_{\Sigma}}\| = \|L_{F_{\Sigma}}\| = \|F_{\Sigma}\|_{\infty} \leq 1$. Assume Σ is minimal. Then $\mathcal{D}(\mathbf{W}_o)$ and $\mathcal{D}(\mathbf{W}_c^*)$ are dense and the Hankel operator $H_{F_{\Sigma}}$ factors as

$$H_{F_{\Sigma}}|_{\mathcal{D}(\mathbf{W}_c)} = \mathbf{W}_o \mathbf{W}_c$$
 and $H^*_{F_{\Sigma}}|_{\mathcal{D}(\mathbf{W}^*_o)} = \mathbf{W}^*_c \mathbf{W}^*_o$

and we have the inclusions

 $\operatorname{Rea}(A|B) \subset \operatorname{Im} \mathbf{W}_c \subset \mathcal{D}(\mathbf{W}_c) \quad \text{and} \quad \operatorname{Obs}(C|A) \subset \operatorname{Im} \mathbf{W}_o^* \subset \mathcal{D}(\mathbf{W}_c^*).$

Operator forms S_a and S_r

Proposition Assume Σ is minimal with $F_{\Sigma} \in H^{\infty}_{\mathbb{D}}(\mathcal{U}, \mathcal{Y})$ with $\|F_{\Sigma}\|_{\infty} \leq 1$. Then

$$S_{\mathfrak{a}}(x_{0}) = \sup_{\mathbf{u}_{+} \in \ell_{\mathcal{U}}^{2}(\mathbb{Z}_{+})} \|\mathbf{W}_{\mathfrak{o}}x_{0} + T_{F_{\Sigma}}\mathbf{u}_{+}\|_{\ell_{\mathcal{V}}^{2}(\mathbb{Z}_{+})}^{2} - \|\mathbf{u}_{+}\|_{\ell_{\mathcal{U}}^{2}(\mathbb{Z}_{+})}^{2},$$
$$S_{r}(x_{0}) = \inf_{\mathbf{u}_{-} \in \ell_{\mathrm{fin},\mathcal{U}}(\mathbb{Z}_{-}), x_{0} = \mathbf{W}_{\mathfrak{o}}\mathbf{u}_{-}} \|(I - \widetilde{T}_{F_{\Sigma}}^{*}\widetilde{T}_{F_{\Sigma}})^{\frac{1}{2}}\mathbf{u}_{-}\|^{2}.$$

Thus $S_a(x_0) = \infty$ if $x_0 \notin \mathcal{D}(\mathbf{W}_o)$ and $S_r(x_0) < \infty$ if and only if $x_0 \in \text{Rea}(A|B)$.

Operator forms S_a and S_r

Proposition Assume Σ is minimal with $F_{\Sigma} \in H^{\infty}_{\mathbb{D}}(\mathcal{U}, \mathcal{Y})$ with $||F_{\Sigma}||_{\infty} \leq 1$. Then

$$\begin{split} S_{a}(x_{0}) &= \sup_{\mathbf{u}_{+} \in \ell_{\mathcal{U}}^{2}(\mathbb{Z}_{+})} \left\| \mathbf{W}_{o} x_{0} + \mathcal{T}_{F_{\Sigma}} \mathbf{u}_{+} \right\|_{\ell_{\mathcal{Y}}^{2}(\mathbb{Z}_{+})}^{2} - \left\| \mathbf{u}_{+} \right\|_{\ell_{\mathcal{U}}^{2}(\mathbb{Z}_{+})}^{2}, \\ S_{r}(x_{0}) &= \inf_{\mathbf{u}_{-} \in \ell_{\text{fin},\mathcal{U}}(\mathbb{Z}_{-}), x_{0} = \mathbf{W}_{o} \mathbf{u}_{-}} \left\| (I - \widetilde{T}_{F_{\Sigma}}^{*} \widetilde{T}_{F_{\Sigma}})^{\frac{1}{2}} \mathbf{u}_{-} \right\|^{2}. \end{split}$$

Thus $S_a(x_0) = \infty$ if $x_0 \notin \mathcal{D}(W_o)$ and $S_r(x_0) < \infty$ if and only if $x_0 \in \text{Rea}(A|B)$.

Proof formula S_a Write P_+ and P_- for the projections on $\ell^2_{\mathcal{Z}}(\mathbb{Z}_+)$ and $\ell^2_{\mathcal{Z}}(\mathbb{Z}_-)$ for any \mathcal{Z} . Set $\mathbf{u}_{\pm} = P_{\pm}\mathbf{u}$, $\mathbf{y}_{\pm} = P_{\pm}\mathbf{y}$. Note $\mathbf{x}(0) = \mathbf{W}_c \mathbf{u}_-$. One can show

$$S_a(x_0) = \sup_{\mathbf{u} \in \ell^2_{\mathcal{U}}(\mathbb{Z}), x_0 = \mathbf{W}_c \mathbf{u}_-} \|\mathbf{y}_+\|^2 - \|\mathbf{u}_+\|^2.$$

Note

$$\mathbf{y}_{+} = P_{+}L_{F_{\Sigma}}\mathbf{u} = H_{F_{\Sigma}}\mathbf{u}_{-} + T_{F_{\Sigma}}\mathbf{u}_{+} = \mathbf{W}_{o}\mathbf{W}_{c}\mathbf{u}_{-} + T_{F_{\Sigma}}\mathbf{u}_{+} = \mathbf{W}_{o}\mathbf{x}_{0} + T_{F_{\Sigma}}\mathbf{u}_{+},$$

which only relies on \mathbf{u}_+ . We then find

$$S_{a}(x_{0}) = \sup_{\mathbf{u}_{+} \in \ell^{2}_{\mathcal{U}}(\mathbb{Z}_{+})} \| \mathbf{W}_{o}x_{0} + T_{F_{\Sigma}}\mathbf{u}_{+} \|^{2} - \|\mathbf{u}_{+}\|^{2}.$$

Operator forms S_a and S_r

Proposition Assume Σ is minimal with $F_{\Sigma} \in H^{\infty}_{\mathbb{D}}(\mathcal{U}, \mathcal{Y})$ with $\|F_{\Sigma}\|_{\infty} \leq 1$. Then

$$S_{a}(x_{0}) = \sup_{\mathbf{u}_{+} \in \ell_{\mathcal{U}}^{2}(\mathbb{Z}_{+})} \|\mathbf{W}_{o}x_{0} + T_{F_{\Sigma}}\mathbf{u}_{+}\|_{\ell_{\mathcal{Y}}^{2}(\mathbb{Z}_{+})}^{2} - \|\mathbf{u}_{+}\|_{\ell_{\mathcal{U}}^{2}(\mathbb{Z}_{+})}^{2},$$
$$S_{r}(x_{0}) = \inf_{\mathbf{u}_{-} \in \ell_{\mathrm{fin},\mathcal{U}}(\mathbb{Z}_{-}), x_{0} = \mathbf{W}_{o}\mathbf{u}_{-}} \|(I - \widetilde{T}_{F_{\Sigma}}^{*}\widetilde{T}_{F_{\Sigma}})^{\frac{1}{2}}\mathbf{u}_{-}\|^{2}.$$

 $\textit{Thus } S_a(x_0) = \infty \textit{ if } x_0 \not\in \mathcal{D}(\textbf{W}_o) \textit{ and } S_r(x_0) < \infty \textit{ if and only if } x_0 \in \mathsf{Rea}\,(A|B).$

Proof formula S_r Similarly as for S_a one finds

$$S_r(x_0) = \inf_{u \in \ell_{fin,\mathcal{U}}(\mathbb{Z}), x_0 = \mathbf{W}_c \mathbf{u}_-} \|\mathbf{u}_-\|^2 - \|\mathbf{y}_-\|^2.$$

In this case

$$\mathbf{y}_{-}=P_{-}L_{F_{\Sigma}}\mathbf{u}=\widetilde{T}_{F_{\Sigma}}\mathbf{u}_{-}$$

so that

$$\|\mathbf{u}_{-}\|^{2} - \|\mathbf{y}_{-}\|^{2} = \|\mathbf{u}_{-}\|^{2} - \|\widetilde{T}_{F_{\Sigma}}\mathbf{u}_{-}\|^{2} = \|(I - \widetilde{T}_{F_{\Sigma}}^{*}\widetilde{T}_{F_{\Sigma}})^{\frac{1}{2}}\mathbf{u}_{-}\|^{2}$$

and the formula for S_r follows.

Quadratic forms

Question

Are S_a and S_r quadratic storage functions?

Quadratic forms

Question

Are S_a and S_r quadratic storage functions?

Extended version S_r

To find quadratic storage functions we modify S_r in the following way

$$\widetilde{S}_r(x_0) = \inf_{\mathbf{u}_- \in \mathcal{D}(\mathbf{W}_c), \, x_0 = \mathbf{W}_o \mathbf{u}_-} \| (I - \widetilde{T}^*_{F_{\Sigma}} \widetilde{T}_{F_{\Sigma}})^{\frac{1}{2}} \mathbf{u}_- \|^2.$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Quadratic forms

Question

Are S_a and S_r quadratic storage functions?

Extended version S_r

To find quadratic storage functions we modify S_r in the following way

$$\widetilde{S}_r(x_0) = \inf_{\mathbf{u}_- \in \mathcal{D}(\mathbf{W}_c), \, x_0 = \mathbf{W}_o \mathbf{u}_-} \| (I - \widetilde{T}^*_{F_{\Sigma}} \widetilde{T}_{F_{\Sigma}})^{\frac{1}{2}} \mathbf{u}_- \|^2.$$

Theorem Assume Σ is minimal with $F_{\Sigma} \in H_{\mathbb{D}}^{\infty}(\mathcal{U}, \mathcal{Y})$ with $||F_{\Sigma}||_{\infty} \leq 1$. Then there exist closed, densely defined, injective, positive operators H_a and H_r with $\operatorname{Im} \mathbf{W}_c$ contained in their domains, such that

$$S_a(x_0) = \langle H_a x_0, x_0 \rangle, \quad \widetilde{S}_r(x_0) = \langle H_r x_0, x_0 \rangle \quad (x_0 \in \operatorname{Im} \mathbf{W}_c).$$

Thus H_a and H_r are positive pseudo-solutions to the spatial KYP inequality. Moreover, if $\|F_{\Sigma}\|_{\infty} < 1$ and Σ is ℓ^2 -exactly minimal, then

$$H_a = \mathbf{W}_o^* (I - T_{F_{\Sigma}} T_{F_{\Sigma}}^*)^{-1} \mathbf{W}_o \quad \text{and} \quad H_r^{-1} = \mathbf{W}_c (I - \widetilde{T}_{F_{\Sigma}}^* \widetilde{T}_{F_{\Sigma}})^{-1} \mathbf{W}_c^*$$

and H_a and H_r both bounded and boundedly invertible, and hence strictly positive solutions to the KYP inequality.

Special cases I

Note: if Σ is minimal with $\| F_{\Sigma} \|_{\infty} < 1$ and Σ is $\ell^2\text{-exactly minimal, then$

$$H_a = \mathbf{W}_o^* (I - T_{F_{\Sigma}} T_{F_{\Sigma}}^*)^{-1} \mathbf{W}_o \text{ and } H_r^{-1} = \mathbf{W}_c (I - \widetilde{T}_{F_{\Sigma}}^* \widetilde{T}_{F_{\Sigma}})^{-1} \mathbf{W}_c^*$$

are bounded, strictly positive solutions to the KYP inequality.

Special cases I

Note: if Σ is minimal with $\|F_{\Sigma}\|_{\infty} < 1$ and Σ is $\ell^2\text{-exactly minimal, then$

$$H_a = \mathbf{W}_o^* (I - T_{F_{\Sigma}} T_{F_{\Sigma}}^*)^{-1} \mathbf{W}_o \quad \text{and} \quad H_r^{-1} = \mathbf{W}_c (I - \widetilde{T}_{F_{\Sigma}}^* \widetilde{T}_{F_{\Sigma}})^{-1} \mathbf{W}_c^*$$

are bounded, strictly positive solutions to the KYP inequality.

Lemma Assume F_{Σ} is in $H^{\infty}_{\mathbb{D}}(\mathcal{U}, \mathcal{Y})$. Then

- $\Sigma \ell^2$ -exactly controllable $\Rightarrow W_o$ bounded
- $\Sigma \ell^2$ -exactly observable $\Rightarrow W_c$ bounded
- $\Sigma \ell^2$ -exactly minimal $\Rightarrow W_o$ and W_c^* both bounded and bounded below.

Special cases I

Note: if Σ is minimal with $\|F_{\Sigma}\|_{\infty} < 1$ and Σ is ℓ^2 -exactly minimal, then

$$H_a = \mathbf{W}_o^* (I - T_{F_{\Sigma}} T_{F_{\Sigma}}^*)^{-1} \mathbf{W}_o \text{ and } H_r^{-1} = \mathbf{W}_c (I - \widetilde{T}_{F_{\Sigma}}^* \widetilde{T}_{F_{\Sigma}})^{-1} \mathbf{W}_c^*$$

are bounded, strictly positive solutions to the KYP inequality.

Lemma Assume F_{Σ} is in $H^{\infty}_{\mathbb{D}}(\mathcal{U}, \mathcal{Y})$. Then

- $\Sigma \ \ell^2$ -exactly controllable $\Rightarrow W_o$ bounded
- $\Sigma \ell^2$ -exactly observable $\Rightarrow W_c$ bounded
- $\Sigma \ell^2$ -exactly minimal $\Rightarrow W_o$ and W_c^* both bounded and bounded below.

Lemma Assume Σ is minimal with F_{Σ} is in $H^{\infty}_{\mathbb{D}}(\mathcal{U},\mathcal{Y})$ with $\|F_{\Sigma}\|_{\infty} \leq 1$.

- $\Sigma \ell^2$ -exactly controllable $\Rightarrow H_a$ bounded
- $\Sigma \ \ell^2$ -exactly observable $\Rightarrow H_r^{-1}$ bounded
- $\Sigma \ell^2$ -exactly minimal $\Rightarrow H_a \& H_r$ both bounded and boundedly invertible. In that case all positive pseudo-solutions H to the spatial KYP inequality satisfy $H_a \le H \le H_r$. Hence they are in fact bounded, strictly positive solutions to the KYP inequality.

Special cases II

Regular case: $(I - T_{F_{\Sigma}} T^*_{F_{\Sigma}})$ and $(I - \widetilde{T}^*_{F_{\Sigma}} \widetilde{T}_{F_{\Sigma}})$ closed range In that case generalized inverses $(I - T_{F_{\Sigma}} T^*_{F_{\Sigma}})^+$ and $(I - \widetilde{T}^*_{F_{\Sigma}} \widetilde{T}_{F_{\Sigma}})^+$ exist and

 $H_a = \mathbf{W}_o^* (I - T_{F_{\Sigma}} T_{F_{\Sigma}}^*)^+ \mathbf{W}_o \text{ and } H_r^{-1} = \mathbf{W}_c (I - \widetilde{T}_{F_{\Sigma}}^* \widetilde{T}_{F_{\Sigma}})^+ \mathbf{W}_c^*.$

Special cases II

Regular case: $(I - T_{F_{\Sigma}} T_{F_{\Sigma}}^{*})$ and $(I - \widetilde{T}_{F_{\Sigma}}^{*} \widetilde{T}_{F_{\Sigma}})$ closed range In that case generalized inverses $(I - T_{F_{\Sigma}} T_{F_{\Sigma}}^{*})^{+}$ and $(I - \widetilde{T}_{F_{\Sigma}}^{*} \widetilde{T}_{F_{\Sigma}})^{+}$ exist and $H_{a} = \mathbf{W}_{o}^{*} (I - T_{F_{\Sigma}} T_{F_{\Sigma}}^{*})^{+} \mathbf{W}_{o}$ and $H_{r}^{-1} = \mathbf{W}_{c} (I - \widetilde{T}_{F_{\Sigma}}^{*} \widetilde{T}_{F_{\Sigma}})^{+} \mathbf{W}_{c}^{*}$.

Then:

- \mathbf{W}_o (resp. \mathbf{W}_c^*) is bounded if and only if H_a (resp. H_r^{-1}) is bounded.
- \mathbf{W}_o (resp. \mathbf{W}_c^*) is bounded below if and only if H_a^{-1} (resp. H_r) is bounded.

(日) (同) (三) (三) (三) (○) (○)

The regular case includes $\|F_{\Sigma}\|_{\infty} < 1$ but also the case with F_{Σ} inner.

Special cases II

Regular case: $(I - T_{F_{\Sigma}} T_{F_{\Sigma}}^{*})$ and $(I - \widetilde{T}_{F_{\Sigma}}^{*} \widetilde{T}_{F_{\Sigma}})$ closed range In that case generalized inverses $(I - T_{F_{\Sigma}} T_{F_{\Sigma}}^{*})^{+}$ and $(I - \widetilde{T}_{F_{\Sigma}}^{*} \widetilde{T}_{F_{\Sigma}})^{+}$ exist and $H_{a} = \mathbf{W}_{o}^{*} (I - T_{F_{\Sigma}} T_{F_{\Sigma}}^{*})^{+} \mathbf{W}_{o}$ and $H_{r}^{-1} = \mathbf{W}_{c} (I - \widetilde{T}_{F_{\Sigma}}^{*} \widetilde{T}_{F_{\Sigma}})^{+} \mathbf{W}_{c}^{*}$.

Then:

- **W**_o (resp. **W**^{*}_c) is bounded if and only if *H*_a (resp. *H*⁻¹_r) is bounded.
- \mathbf{W}_o (resp. \mathbf{W}_c^*) is bounded below if and only if H_a^{-1} (resp. H_r) is bounded.

The regular case includes $\|F_{\Sigma}\|_{\infty} < 1$ but also the case with F_{Σ} inner.

F_{Σ} inner

Then $(I - T_{F_{\Sigma}} T^*_{F_{\Sigma}}) = P_{\text{Ker } T^*_{F_{\Sigma}}}$ and $(I - \widetilde{T}^*_{F_{\Sigma}} \widetilde{T}_{F_{\Sigma}}) = P_{\text{Ker } \widetilde{T}_{F_{\Sigma}}}$ and one obtains

$$H_a = \mathbf{W}_o^* \mathbf{W}_o$$
 and $H_r^{-1} = \mathbf{W}_c \mathbf{W}_c^*$.

$\|\textit{F}_{\Sigma}\|_{\infty} < 1$

Without ℓ^2 -minimality there still exists a bounded strictly positive solution H to the KYP solution with $H_a \leq H \leq H_r$, so H_a is bounded and H_r boundedly invertible. However, H_a need not be boundedly invertible and H_r need not be bounded.

Infinite dimensional bounded real lemmas

Theorem (Standard Bounded Real Lemma I)

Assume the system Σ is minimal. Then F_{Σ} has an analytic continuation to \mathbb{D} with $||F_{\Sigma}||_{\infty} \leq 1$ if and only if there exists a positive pseudo-solution H of the spatial KYP-inequality defined by Σ .

Theorem (Standard Bounded Real Lemma II)

Assume the system Σ is (ℓ^2-) exactly controllable and (ℓ^2-) exactly observable. Then F_{Σ} has an analytic continuation to \mathbb{D} with $\|F_{\Sigma}\|_{\infty} \leq 1$ if and only if there exists a positive definite solution H of the KYP-inequality defined by Σ . In that case $r_{\text{spec}}(A) \leq 1$ and hence F_{Σ} is analytic on \mathbb{D} .

Theorem (Strict Bounded Real Lemma)

Assume the state operator of Σ satisfies $r_{\text{spec}}(A) < 1$. Then F_{Σ} is in $H_{\mathbb{D}}^{\infty}(\mathcal{U}, \mathcal{Y})$ with $\|F_{\Sigma}\|_{\infty} < 1$ if and only if there exists a bounded positive definite solution H of the strict KYP-inequality:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^* \begin{bmatrix} H & 0 \\ 0 & I_{\mathcal{Y}} \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} \prec \begin{bmatrix} H & 0 \\ 0 & I_{\mathcal{U}} \end{bmatrix}$$

THANK YOU FOR YOUR ATTENTION