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The divergence form elliptic equation

divA∇u = 0, u : R1+n
+ → C.

The coefficients A(t, x) = A(x) ∈ L∞(Rn : L(C1+n)) are

t-independent,

uniformly elliptic: there exists κ > 0 such that

Re(A(x)v, v) ≥ κ|v|2 ∀v ∈ C1+n, x ∈ Rn,

not assumed to be real, symmetric, or smooth in any way.

Maximum principle, existence of fundamental solutions, local Hölder
regularity of solutions all fail.
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Boundary value problems

For θ ∈ [−1, 0) and p > 1, formulate the Neumann problem

(N)pθ,A :


divA∇u = 0 in R1+n

+ ,
||∇u||Tpθ . ||∂νAf ||Ḣpθ ,
limt→∞∇‖u(t, ·) = 0 in (S ′/P)(Rn : Cn),
limt→0 ∂νAu(t, ·) = ∂νAf ∈ Ḣ

p
θ (Rn : C).

T pθ : weighted tent space (definition on next slide)

Ḣp
θ : homogeneous Hardy–Sobolev space of order θ

tangential gradient: ∇‖u = (∂1u, . . . , ∂nu)
A-conormal derivative: ∂νAu = e0 ·A∇u (e0: unit vector in the t-direction).

Say (N)pθ,A is well-posed if for every boundary data ∂νAf there exists a unique
solution u satisfying the given conditions.

Goal: find a useful characterisation of well-posedness of (N)pθ,A.
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Weighted tent spaces

||F ||Tpθ :=

(∫
Rn

(∫ ∞
0

∫
B(x,t)

|t−θF (t, y)|2 dy dt
tn+1

)p/2
dx

)1/p

.

a solution u to (N)pθ,A with boundary data ∂νAf must satisfy

||∇u||Tpθ . ||∂νAf ||Ḣpθ .

History of tent spaces:

Unweighted tent spaces (θ = 0): Coifman–Meyer–Stein 1985.

First definition with θ 6= 0: Hofmann–Mayboroda–McIntosh 2011.

‘General theory’: Huang 2016 (complex interpolation and factorisation), A.
2017 (real interpolation and embeddings).

Weighted tent spaces satisfy Hardy–Littlewood–Sobolev-type embeddings:

T p0θ0 ↪→ T p1θ1 (p1 − p0) =
1

n
(θ1 − θ0), p1 ≥ p0.
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History of tent spaces:

Unweighted tent spaces (θ = 0): Coifman–Meyer–Stein 1985.

First definition with θ 6= 0: Hofmann–Mayboroda–McIntosh 2011.

‘General theory’: Huang 2016 (complex interpolation and factorisation), A.
2017 (real interpolation and embeddings).

Weighted tent spaces satisfy Hardy–Littlewood–Sobolev-type embeddings:

T p0θ0 ↪→ T p1θ1 (p1 − p0) =
1

n
(θ1 − θ0), p1 ≥ p0.

Alex Amenta (TU Delft) BVP / L∞ coefficients / fractional regularity data August 18, 2017 4 / 17



Weighted tent spaces

||F ||Tpθ :=

(∫
Rn

(∫ ∞
0

∫
B(x,t)

|t−θF (t, y)|2 dy dt
tn+1

)p/2
dx

)1/p

.

a solution u to (N)pθ,A with boundary data ∂νAf must satisfy

||∇u||Tpθ . ||∂νAf ||Ḣpθ .
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The first-order approach to elliptic BVPs

Approach initiated by Auscher–Axelsson–McIntosh 2010.

Key steps of the approach:

Identify the second-order equation divA∇u = 0 with a first-order evolution
equation (a ‘Cauchy–Riemann system’)

Classify solutions to Cauchy–Riemann systems in various function spaces (eg.
tent spaces) via functional calculus/semigroups

See boundary data for (N)pθ,A as a projection NA,p,θ of the initial value of a
Cauchy–Riemann system.

‘Theorem’: For a range of parameters (p, θ) depending on A,

(N)pθ,A is well-posed ⇔ NA,p,θ is an isomorphism.
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Dirac operators and Cauchy–Riemann systems

the Dirac operator D acts on distributions F : R1+n
+ → C1+n:

DF =

[
0 div
−∇‖ 0

] [
F⊥
F‖

]
=

[
divF‖
−∇‖F⊥

]
.

(here F⊥ : R1+n
+ → C and F‖ : R1+n

+ → Cn)

Let B ∈ L∞(Rn : L(C1+n)) satisfy the same assumptions as A (elliptic,
t-independent), and define the perturbed Dirac operator DB as an unbounded
operator on L2(Rn : C1+n) with natural domain.

The Cauchy–Riemann system for DB is

(CR)DB :

{
∂tF +DBF = 0 in R1+n

+ ,

F‖ ∈ R(D),

with solutions considered in the usual weak sense.
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The Cauchy–Riemann system for DB is

(CR)DB :

{
∂tF +DBF = 0 in R1+n

+ ,

F‖ ∈ R(D),

with solutions considered in the usual weak sense.
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CR-systems vs. elliptic equations

A-Conormal gradient: ∇Au :=

[
∂νAu
∇‖u

]

This transforms solutions of divA∇u = 0 to solutions of (CR)DÂ, where Â is a
transformed coefficient matrix, and conversely:

Theorem (Auscher–Axelsson–McIntosh 2010)

F solves (CR)DÂ ⇔ F = ∇Au for a (unique) u such that divA∇u = 0.

In the splitting C1+n = C⊕ Cn, Â is defined by

A =:

[
A⊥⊥ A⊥‖
A‖⊥ A‖‖

]
, Â :=

[
I 0

A‖⊥ A‖‖

] [
A⊥⊥ A⊥‖
0 I

]−1
.
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A =:

[
A⊥⊥ A⊥‖
A‖⊥ A‖‖

]
, Â :=
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The first-order approach to elliptic BVPs

Approach initiated by Auscher–Axelsson–McIntosh 2010.

Key steps of the approach:

Identify the second-order equation divA∇u = 0 with a first-order evolution
equation (a ‘Cauchy–Riemann system’)

Classify solutions to Cauchy–Riemann systems in various function
spaces (eg. tent spaces) via functional calculus/semigroups

See boundary data for (N)pθ,A as a projection NA,p,θ of the initial value of a
Cauchy–Riemann system.

‘Theorem’: For a range of parameters (p, θ) depending on A,

(N)pθ,A is well-posed ⇔ NA,p,θ is an isomorphism.
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DB-adapted Hardy–Sobolev spaces

DB is bisectorial, with bounded H∞ functional calculus on R(DB) ⊂ L2(Rn)
(Axelsson–Keith–McIntosh 2006, Auscher–Axelsson–McIntosh 2010)

For every ϕ ∈ H∞(Sµ) we can define ϕ(DB) ∈ B(R(DB)), and an ‘extension
operator’

(Qϕ,DBf)(t, x) = (ϕ(tDB)f)(x) (t > 0, f ∈ R(DB)).

DB-adapted Hardy–Sobolev spaces Hp
θ,DB are formally defined by

||f ||Hp
θ,DB

:= ||Qϕ,DBf ||Tpθ .

The norm is (almost) independent of ϕ.

D-adapted spaces are ‘classical’:

Hp
θ,D = Ḣp

θ (R
n)⊕ (Ḣp

θ (R
n : Cn) ∩N (curl))
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θ (R
n : Cn) ∩N (curl))

Alex Amenta (TU Delft) BVP / L∞ coefficients / fractional regularity data August 18, 2017 10 / 17



DB-adapted Hardy–Sobolev spaces

DB is bisectorial, with bounded H∞ functional calculus on R(DB) ⊂ L2(Rn)
(Axelsson–Keith–McIntosh 2006, Auscher–Axelsson–McIntosh 2010)

For every ϕ ∈ H∞(Sµ) we can define ϕ(DB) ∈ B(R(DB)), and an ‘extension
operator’

(Qϕ,DBf)(t, x) = (ϕ(tDB)f)(x) (t > 0, f ∈ R(DB)).

DB-adapted Hardy–Sobolev spaces Hp
θ,DB are formally defined by

||f ||Hp
θ,DB

:= ||Qϕ,DBf ||Tpθ .

The norm is (almost) independent of ϕ.

D-adapted spaces are ‘classical’:

Hp
θ,D = Ḣp
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Spectral subspaces and Cauchy extensions

Bounded H∞ calculus of DB on R(DB) extends to adapted spaces Hp
θ,DB .

Useful operators can be constructed:

The spectral projections χ+(DB) and χ−(DB) defined via

χ+(z) := 1z:Re(z)>0, χ−(z) := 1z:Re(z)<0,

which induce a decomposition

Hp
θ,DB = Hp,+

θ,DB ⊕Hp,−
θ,DB .

The Cauchy extension

CDBf(t) := e−tDBχ+(DB)f (t > 0)

which acts as a strongly continuous semigroup on Hp,+
θ,DB .
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Classification of solutions to (CR)DB: endpoint cases

Theorem (Auscher–Mourgoglou 2015, Auscher–Stahlhut 2016)

Fix p ∈ (1,∞) such that Hp
−1,DB ' Hp

−1,D.

(This identification has a precise, technical interpretation.)
Then

F solves (CR)DB , F ∈ T p−1 and limt→∞ F (t)‖ = 0 in S ′/P
m

F = CDBf for some (unique) f ∈ Hp,+
−1,DB ⊂ Hp

−1,D.

In this correspondence, ‖f‖Ḣp−1
' ‖F‖Tp−1

.

θ = 0 case: replace T p−1 with a certain nontangential maximal function norm.

Hölder space results (‘p ≥ ∞’) are also available.
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Classification of solutions to (CR)DB: endpoint cases

Theorem (A.–Auscher 2017)

Let θ ∈ (−1, 0) and p ∈ (1,∞) be such that Hp
θ,DB ' Hp

θ,D.

Then

F solves (CR)DB , F ∈ T pθ and limt→∞ F (t)‖ = 0 in S ′/P
m

F = CDBf for some (unique) f ∈ Hp,+
θ,DB ⊂ Hp

θ,D.

In this correspondence, ‖f‖Ḣpθ ' ‖F‖Tpθ .

This does not follow from the previous theorem by interpolation!

Our proof only works for θ ∈ (−1, 0).
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The first-order approach to elliptic BVPs

Approach initiated by Auscher–Axelsson–McIntosh 2010.

Key steps of the approach:

Identify the second-order equation divA∇u = 0 with a first-order evolution
equation (a ‘Cauchy–Riemann system’)

Classify solutions to Cauchy–Riemann systems in various function spaces (eg.
tent spaces) via functional calculus/semigroups

See boundary data for (N)pθ,A as a projection NA,p,θ of the initial value
of a Cauchy–Riemann system.

‘Theorem’: For a range of parameters (p, θ) depending on A,

(N)pθ,A is well-posed ⇔ NA,p,θ is an isomorphism.
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Classification of well-posedness

Suppose θ ∈ [−1, 0], p ∈ (1,∞), and Hp

θ,DÂ
= Hp

θ,D.
(required to classify solutions to (CR)

DÂ
in T

p
θ

)

N⊥ : Hp
θ,D = Ḣp

θ (R
n)⊕ (Ḣp

θ (R
n : Cn) ∩N (curl)))→ Ḣp

θ (R
n).

Identify Hp,+

θ,DÂ
⊂ Hp

θ,D and restrict the projection N⊥ to define

NA,p,θ : H
p,+

θ,DÂ
→ Ḣp

θ (R
n).

Theorem (Auscher–Mourgoglou 2014, A.–Auscher 2017)

(N)pθ,A is well-posed ⇔ NA,p,θ is an isomorphism.

Idea: every F0 ∈ Hp,+

θ,DÂ
is the initial value of a solution F = ∇Au of (CR)DÂ,

and NA,p,θF0 = (∇Au|t=0)⊥ = ∂νAu|t=0.
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→ Ḣp
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and NA,p,θF0 = (∇Au|t=0)⊥ = ∂νAu|t=0.

Alex Amenta (TU Delft) BVP / L∞ coefficients / fractional regularity data August 18, 2017 15 / 17



Classification of well-posedness

Suppose θ ∈ [−1, 0], p ∈ (1,∞), and Hp

θ,DÂ
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and NA,p,θF0 = (∇Au|t=0)⊥ = ∂νAu|t=0.
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θ (R
n).

Identify Hp,+

θ,DÂ
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Consequences

Duality: well-posedness of (N)pθ,A implies well-posedness of (N)p
′

−1−θ,A∗

Interpolation of (compatible) well-posedness (takes too much effort to write rigorously)

Extrapolation: well-posedness of (N)pθ,A implies well-posedness of (N)p̃
θ̃,A

for

(p̃, θ̃) near (p, θ)

Some stability in coefficients: w-p of (N)pθ,A implies w-p of (N)p
θ,Ã

for

‖Ã−A‖∞ sufficiently small (with some restrictions on (p, θ)).
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for
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‖Ã−A‖∞ sufficiently small (with some restrictions on (p, θ)).

Alex Amenta (TU Delft) BVP / L∞ coefficients / fractional regularity data August 18, 2017 16 / 17



What about Besov spaces?

Replace Hardy–Sobolev spaces Ḣp
θ with Besov spaces Ḃp,pθ , and tent spaces T pθ

with Z-spaces Zpθ ,

||F ||Zpθ :=

(∫∫
R1+n

+

(∫ 2t

t/2

∫
B(x,t)

|τ−θF (τ, ξ)|2 dξ dτ
)p/2

dx
dt

t

)1/p

.

Note that

(Ḣp0
θ0
, Ḣp1

θ1
)α,p ' Ḃp,pθ (classical)

(T p0θ0 , T
p1
θ1
)α,p ' Zpθ (A. 2017).

Our whole theory works identically for θ ∈ (−1, 0).

By interpolation, w-p of (N)p00,A and (N)p1−1,A implies w-p of corresponding

Neumann problems with boundary data in Ḃp,pθ and gradient in Zp,pθ .

Thanks for your attention!
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, Ḣp1

θ1
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, Ḣp1

θ1
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Thanks for your attention!

Alex Amenta (TU Delft) BVP / L∞ coefficients / fractional regularity data August 18, 2017 17 / 17



What about Besov spaces?

Replace Hardy–Sobolev spaces Ḣp
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)α,p ' Ḃp,pθ (classical)

(T p0θ0 , T
p1
θ1
)α,p ' Zpθ (A. 2017).

Our whole theory works identically for θ ∈ (−1, 0).

By interpolation, w-p of (N)p00,A and (N)p1−1,A implies w-p of corresponding

Neumann problems with boundary data in Ḃp,pθ and gradient in Zp,pθ .
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