Elliptic boundary value problems with complex coefficients and fractional regularity data

 (the first order approach)Alex Amenta (joint work with Pascal Auscher)
Delft University of Technology, Netherlands

August 18, 2017

The divergence form elliptic equation

$$
\operatorname{div} A \nabla u=0, \quad u: \mathbb{R}_{+}^{1+n} \rightarrow \mathbb{C}
$$

The divergence form elliptic equation

$$
\operatorname{div} A \nabla u=0, \quad u: \mathbb{R}_{+}^{1+n} \rightarrow \mathbb{C}
$$

The coefficients $A(t, x)=A(x) \in L^{\infty}\left(\mathbb{R}^{n}: \mathcal{L}\left(\mathbb{C}^{1+n}\right)\right)$ are

- t-independent,

The divergence form elliptic equation

$$
\operatorname{div} A \nabla u=0, \quad u: \mathbb{R}_{+}^{1+n} \rightarrow \mathbb{C} .
$$

The coefficients $A(t, x)=A(x) \in L^{\infty}\left(\mathbb{R}^{n}: \mathcal{L}\left(\mathbb{C}^{1+n}\right)\right)$ are

- t-independent,
- uniformly elliptic: there exists $\kappa>0$ such that

$$
\operatorname{Re}(A(x) v, v) \geq \kappa|v|^{2} \quad \forall v \in \mathbb{C}^{1+n}, x \in \mathbb{R}^{n},
$$

The divergence form elliptic equation

$$
\operatorname{div} A \nabla u=0, \quad u: \mathbb{R}_{+}^{1+n} \rightarrow \mathbb{C}
$$

The coefficients $A(t, x)=A(x) \in L^{\infty}\left(\mathbb{R}^{n}: \mathcal{L}\left(\mathbb{C}^{1+n}\right)\right)$ are

- t-independent,
- uniformly elliptic: there exists $\kappa>0$ such that

$$
\operatorname{Re}(A(x) v, v) \geq \kappa|v|^{2} \quad \forall v \in \mathbb{C}^{1+n}, x \in \mathbb{R}^{n},
$$

- not assumed to be real, symmetric, or smooth in any way.

The divergence form elliptic equation

$$
\operatorname{div} A \nabla u=0, \quad u: \mathbb{R}_{+}^{1+n} \rightarrow \mathbb{C}
$$

The coefficients $A(t, x)=A(x) \in L^{\infty}\left(\mathbb{R}^{n}: \mathcal{L}\left(\mathbb{C}^{1+n}\right)\right)$ are

- t-independent,
- uniformly elliptic: there exists $\kappa>0$ such that

$$
\operatorname{Re}(A(x) v, v) \geq \kappa|v|^{2} \quad \forall v \in \mathbb{C}^{1+n}, x \in \mathbb{R}^{n},
$$

- not assumed to be real, symmetric, or smooth in any way.
- Maximum principle, existence of fundamental solutions, local Hölder regularity of solutions all fail.

Boundary value problems

For $\theta \in[-1,0)$ and $p>1$, formulate the Neumann problem

Boundary value problems

For $\theta \in[-1,0)$ and $p>1$, formulate the Neumann problem

$$
(N)_{\theta, A}^{p}:\left\{\begin{array}{l}
\operatorname{div} A \nabla u=0 \text { in } \mathbb{R}_{+}^{1+n}, \\
\|\nabla u\|_{T_{\theta}^{p}} \lesssim\left\|\partial_{\nu_{A}} f\right\|_{\dot{H}_{\theta}^{p}}, \\
\lim _{t \rightarrow \infty} \nabla_{\|} u(t, \cdot)=0 \text { in }\left(\mathcal{S}^{\prime} / \mathcal{P}\right)\left(\mathbb{R}^{n}: \mathbb{C}^{n}\right), \\
\lim _{t \rightarrow 0} \partial_{\nu_{A}} u(t, \cdot)=\partial_{\nu_{A}} f \in \dot{H}_{\theta}^{p}\left(\mathbb{R}^{n}: \mathbb{C}\right) .
\end{array}\right.
$$

Boundary value problems

For $\theta \in[-1,0)$ and $p>1$, formulate the Neumann problem

$$
(N)_{\theta, A}^{p}:\left\{\begin{array}{l}
\operatorname{div} A \nabla u=0 \text { in } \mathbb{R}_{+}^{1+n}, \\
\|\nabla u\|_{T_{\theta}^{p}} \lesssim\left\|\partial_{\nu_{A}} f\right\|_{\dot{H}_{\theta}^{p}}, \\
\lim _{t \rightarrow \infty} \nabla_{\|} u(t, \cdot)=0 \quad \text { in }\left(\mathcal{S}^{\prime} / \mathcal{P}\right)\left(\mathbb{R}^{n}: \mathbb{C}^{n}\right), \\
\lim _{t \rightarrow 0} \partial_{\nu_{A}} u(t, \cdot)=\partial_{\nu_{A}} f \in \dot{H}_{\theta}^{p}\left(\mathbb{R}^{n}: \mathbb{C}\right)
\end{array}\right.
$$

T_{θ}^{p} : weighted tent space (definition on next slide)

Boundary value problems

For $\theta \in[-1,0)$ and $p>1$, formulate the Neumann problem

$$
(N)_{\theta, A}^{p}:\left\{\begin{array}{l}
\operatorname{div} A \nabla u=0 \text { in } \mathbb{R}_{+}^{1+n}, \\
\|\nabla u\|_{T_{\theta}^{p}} \lesssim\left\|\partial_{\nu_{A}} f\right\|_{\dot{H}_{\theta}^{p}}, \\
\lim _{t \rightarrow \infty} \nabla_{\|} u(t, \cdot)=0 \quad \text { in }\left(\mathcal{S}^{\prime} / \mathcal{P}\right)\left(\mathbb{R}^{n}: \mathbb{C}^{n}\right), \\
\lim _{t \rightarrow 0} \partial_{\nu_{A}} u(t, \cdot)=\partial_{\nu_{A}} f \in \dot{H}_{\theta}^{p}\left(\mathbb{R}^{n}: \mathbb{C}\right)
\end{array}\right.
$$

T_{θ}^{p} : weighted tent space (definition on next slide)
\dot{H}_{θ}^{p} : homogeneous Hardy-Sobolev space of order θ

Boundary value problems

For $\theta \in[-1,0)$ and $p>1$, formulate the Neumann problem

$$
(N)_{\theta, A}^{p}:\left\{\begin{array}{l}
\operatorname{div} A \nabla u=0 \text { in } \mathbb{R}_{+}^{1+n}, \\
\|\nabla u\|_{T_{\theta}^{p}} \lesssim\left\|\partial_{\nu_{A}} f\right\|_{\dot{H}_{\theta}^{p}}, \\
\lim _{t \rightarrow \infty} \nabla_{\|} u(t, \cdot)=0 \quad \text { in }\left(\mathcal{S}^{\prime} / \mathcal{P}\right)\left(\mathbb{R}^{n}: \mathbb{C}^{n}\right), \\
\lim _{t \rightarrow 0} \partial_{\nu_{A}} u(t, \cdot)=\partial_{\nu_{A}} f \in \dot{H}_{\theta}^{p}\left(\mathbb{R}^{n}: \mathbb{C}\right)
\end{array}\right.
$$

T_{θ}^{p} : weighted tent space (definition on next slide)
\dot{H}_{θ}^{p} : homogeneous Hardy-Sobolev space of order θ tangential gradient: $\nabla_{\|} u=\left(\partial_{1} u, \ldots, \partial_{n} u\right)$

Boundary value problems

For $\theta \in[-1,0)$ and $p>1$, formulate the Neumann problem

$$
(N)_{\theta, A}^{p}:\left\{\begin{array}{l}
\operatorname{div} A \nabla u=0 \text { in } \mathbb{R}_{+}^{1+n}, \\
\|\nabla u\|_{T_{\theta}^{p}} \lesssim\left\|\partial_{\nu_{A}} f\right\|_{\dot{H}_{\theta}^{p}}, \\
\lim _{t \rightarrow \infty} \nabla_{\|} u(t, \cdot)=0 \quad \text { in }\left(\mathcal{S}^{\prime} / \mathcal{P}\right)\left(\mathbb{R}^{n}: \mathbb{C}^{n}\right), \\
\lim _{t \rightarrow 0} \partial_{\nu_{A}} u(t, \cdot)=\partial_{\nu_{A}} f \in \dot{H}_{\theta}^{p}\left(\mathbb{R}^{n}: \mathbb{C}\right)
\end{array}\right.
$$

T_{θ}^{p} : weighted tent space (definition on next slide)
\dot{H}_{θ}^{p} : homogeneous Hardy-Sobolev space of order θ
tangential gradient: $\nabla_{\|} u=\left(\partial_{1} u, \ldots, \partial_{n} u\right)$
A-conormal derivative: $\partial_{\nu_{A}} u=e_{0} \cdot A \nabla u$ (e_{0} : unit vector in the t-direction).

Boundary value problems

For $\theta \in[-1,0)$ and $p>1$, formulate the Neumann problem

$$
(N)_{\theta, A}^{p}:\left\{\begin{array}{l}
\operatorname{div} A \nabla u=0 \text { in } \mathbb{R}_{+}^{1+n}, \\
\|\nabla u\|_{T_{\theta}^{p}} \lesssim\left\|\partial_{\nu_{A}} f\right\|_{\dot{H}_{\theta}^{p}}, \\
\lim _{t \rightarrow \infty} \nabla_{\|} u(t, \cdot)=0 \quad \text { in }\left(\mathcal{S}^{\prime} / \mathcal{P}\right)\left(\mathbb{R}^{n}: \mathbb{C}^{n}\right), \\
\lim _{t \rightarrow 0} \partial_{\nu_{A}} u(t, \cdot)=\partial_{\nu_{A}} f \in \dot{H}_{\theta}^{p}\left(\mathbb{R}^{n}: \mathbb{C}\right) .
\end{array}\right.
$$

T_{θ}^{p} : weighted tent space (definition on next slide)
\dot{H}_{θ}^{p} : homogeneous Hardy-Sobolev space of order θ
tangential gradient: $\nabla_{\|} u=\left(\partial_{1} u, \ldots, \partial_{n} u\right)$
A-conormal derivative: $\partial_{\nu_{A}} u=e_{0} \cdot A \nabla u$ (e_{0} : unit vector in the t-direction).
Say $(N)_{\theta, A}^{p}$ is well-posed if for every boundary data $\partial_{\nu_{A}} f$ there exists a unique solution u satisfying the given conditions.

Boundary value problems

For $\theta \in[-1,0)$ and $p>1$, formulate the Neumann problem

$$
(N)_{\theta, A}^{p}:\left\{\begin{array}{l}
\operatorname{div} A \nabla u=0 \text { in } \mathbb{R}_{+}^{1+n}, \\
\|\nabla u\|_{T_{\theta}^{p}} \lesssim\left\|\partial_{\nu_{A}} f\right\|_{\dot{H}_{\theta}^{p}}, \\
\lim _{t \rightarrow \infty} \nabla_{\|} u(t, \cdot)=0 \quad \text { in }\left(\mathcal{S}^{\prime} / \mathcal{P}\right)\left(\mathbb{R}^{n}: \mathbb{C}^{n}\right), \\
\lim _{t \rightarrow 0} \partial_{\nu_{A}} u(t, \cdot)=\partial_{\nu_{A}} f \in \dot{H}_{\theta}^{p}\left(\mathbb{R}^{n}: \mathbb{C}\right) .
\end{array}\right.
$$

T_{θ}^{p} : weighted tent space (definition on next slide)
\dot{H}_{θ}^{p} : homogeneous Hardy-Sobolev space of order θ
tangential gradient: $\nabla_{\|} u=\left(\partial_{1} u, \ldots, \partial_{n} u\right)$
A-conormal derivative: $\partial_{\nu_{A}} u=e_{0} \cdot A \nabla u$ (e_{0} : unit vector in the t-direction).
Say $(N)_{\theta, A}^{p}$ is well-posed if for every boundary data $\partial_{\nu_{A}} f$ there exists a unique solution u satisfying the given conditions.

Goal: find a useful characterisation of well-posedness of $(N)_{\theta, A}^{p}$.

Weighted tent spaces

$$
\|F\|_{T_{\theta}^{p}}:=\left(\int_{\mathbb{R}^{n}}\left(\int_{0}^{\infty} \int_{B(x, t)}\left|t^{-\theta} F(t, y)\right|^{2} \frac{d y d t}{t^{n+1}}\right)^{p / 2} d x\right)^{1 / p}
$$

Weighted tent spaces

$$
\|F\|_{T_{\theta}^{p}}:=\left(\int_{\mathbb{R}^{n}}\left(\int_{0}^{\infty} \int_{B(x, t)}\left|t^{-\theta} F(t, y)\right|^{2} \frac{d y d t}{t^{n+1}}\right)^{p / 2} d x\right)^{1 / p}
$$

a solution u to $(N)_{\theta, A}^{p}$ with boundary data $\partial_{\nu_{A}} f$ must satisfy

$$
\|\nabla u\|_{T_{b}^{p}} \lesssim\left\|\partial_{\nu_{A}} f\right\|_{\dot{H}_{g}^{p}} .
$$

Weighted tent spaces

$$
\|F\|_{T_{\theta}^{p}}:=\left(\int_{\mathbb{R}^{n}}\left(\int_{0}^{\infty} \int_{B(x, t)}\left|t^{-\theta} F(t, y)\right|^{2} \frac{d y d t}{t^{n+1}}\right)^{p / 2} d x\right)^{1 / p} .
$$

a solution u to $(N)_{\theta, A}^{p}$ with boundary data $\partial_{\nu_{A}} f$ must satisfy

$$
\|\nabla u\|_{T_{\theta}^{p}} \lesssim\left\|\partial_{\nu_{A}} f\right\|_{\dot{H}_{\theta}^{p}} .
$$

History of tent spaces:

Weighted tent spaces

$$
\|F\|_{T_{\theta}^{p}}:=\left(\int_{\mathbb{R}^{n}}\left(\int_{0}^{\infty} \int_{B(x, t)}\left|t^{-\theta} F(t, y)\right|^{2} \frac{d y d t}{t^{n+1}}\right)^{p / 2} d x\right)^{1 / p} .
$$

a solution u to $(N)_{\theta, A}^{p}$ with boundary data $\partial_{\nu_{A}} f$ must satisfy

$$
\|\nabla u\|_{T_{\theta}^{p}} \lesssim\left\|\partial_{\nu_{A}} f\right\|_{\dot{H}_{\theta}^{p}} .
$$

History of tent spaces:

- Unweighted tent spaces $(\theta=0)$: Coifman-Meyer-Stein 1985.

Weighted tent spaces

$$
\|F\|_{T_{\theta}^{p}}:=\left(\int_{\mathbb{R}^{n}}\left(\int_{0}^{\infty} \int_{B(x, t)}\left|t^{-\theta} F(t, y)\right|^{2} \frac{d y d t}{t^{n+1}}\right)^{p / 2} d x\right)^{1 / p} .
$$

a solution u to $(N)_{\theta, A}^{p}$ with boundary data $\partial_{\nu_{A}} f$ must satisfy

$$
\|\nabla u\|_{T_{\theta}^{p}} \lesssim\left\|\partial_{\nu_{A}} f\right\|_{\dot{H}_{\theta}^{p}} .
$$

History of tent spaces:

- Unweighted tent spaces $(\theta=0)$: Coifman-Meyer-Stein 1985.
- First definition with $\theta \neq 0$: Hofmann-Mayboroda-McIntosh 2011.

Weighted tent spaces

$$
\|F\|_{T_{\theta}^{p}}:=\left(\int_{\mathbb{R}^{n}}\left(\int_{0}^{\infty} \int_{B(x, t)}\left|t^{-\theta} F(t, y)\right|^{2} \frac{d y d t}{t^{n+1}}\right)^{p / 2} d x\right)^{1 / p} .
$$

a solution u to $(N)_{\theta, A}^{p}$ with boundary data $\partial_{\nu_{A}} f$ must satisfy

$$
\|\nabla u\|_{T_{\theta}^{p}} \lesssim\left\|\partial_{\nu_{A}} f\right\|_{\dot{H}_{\theta}^{p}} .
$$

History of tent spaces:

- Unweighted tent spaces $(\theta=0)$: Coifman-Meyer-Stein 1985.
- First definition with $\theta \neq 0$: Hofmann-Mayboroda-McIntosh 2011.
- 'General theory': Huang 2016 (complex interpolation and factorisation), A. 2017 (real interpolation and embeddings).

Weighted tent spaces

$$
\|F\|_{T_{\theta}^{p}}:=\left(\int_{\mathbb{R}^{n}}\left(\int_{0}^{\infty} \int_{B(x, t)}\left|t^{-\theta} F(t, y)\right|^{2} \frac{d y d t}{t^{n+1}}\right)^{p / 2} d x\right)^{1 / p} .
$$

a solution u to $(N)_{\theta, A}^{p}$ with boundary data $\partial_{\nu_{A}} f$ must satisfy

$$
\|\nabla u\|_{T_{\theta}^{p}} \lesssim\left\|\partial_{\nu_{A}} f\right\|_{\dot{H}_{\theta}^{p}} .
$$

History of tent spaces:

- Unweighted tent spaces $(\theta=0)$: Coifman-Meyer-Stein 1985.
- First definition with $\theta \neq 0$: Hofmann-Mayboroda-McIntosh 2011.
- 'General theory': Huang 2016 (complex interpolation and factorisation), A. 2017 (real interpolation and embeddings).
Weighted tent spaces satisfy Hardy-Littlewood-Sobolev-type embeddings:

$$
T_{\theta_{0}}^{p_{0}} \hookrightarrow T_{\theta_{1}}^{p_{1}} \quad\left(p_{1}-p_{0}\right)=\frac{1}{n}\left(\theta_{1}-\theta_{0}\right), \quad p_{1} \geq p_{0}
$$

The first-order approach to elliptic BVPs

Approach initiated by Auscher-Axelsson-McIntosh 2010.

The first-order approach to elliptic BVPs

Approach initiated by Auscher-Axelsson-McIntosh 2010.

Key steps of the approach:

The first-order approach to elliptic BVPs

Approach initiated by Auscher-Axelsson-McIntosh 2010.

Key steps of the approach:

- Identify the second-order equation $\operatorname{div} A \nabla u=0$ with a first-order evolution equation (a 'Cauchy-Riemann system')

The first-order approach to elliptic BVPs

Approach initiated by Auscher-Axelsson-McIntosh 2010.

Key steps of the approach:

- Identify the second-order equation $\operatorname{div} A \nabla u=0$ with a first-order evolution equation (a 'Cauchy-Riemann system')
- Classify solutions to Cauchy-Riemann systems in various function spaces (eg. tent spaces) via functional calculus/semigroups

The first-order approach to elliptic BVPs

Approach initiated by Auscher-Axelsson-McIntosh 2010.

Key steps of the approach:

- Identify the second-order equation $\operatorname{div} A \nabla u=0$ with a first-order evolution equation (a 'Cauchy-Riemann system')
- Classify solutions to Cauchy-Riemann systems in various function spaces (eg. tent spaces) via functional calculus/semigroups
- See boundary data for $(N)_{\theta, A}^{p}$ as a projection $N_{A, p, \theta}$ of the initial value of a Cauchy-Riemann system.

The first-order approach to elliptic BVPs

Approach initiated by Auscher-Axelsson-McIntosh 2010.

Key steps of the approach:

- Identify the second-order equation $\operatorname{div} A \nabla u=0$ with a first-order evolution equation (a 'Cauchy-Riemann system')
- Classify solutions to Cauchy-Riemann systems in various function spaces (eg. tent spaces) via functional calculus/semigroups
- See boundary data for $(N)_{\theta, A}^{p}$ as a projection $N_{A, p, \theta}$ of the initial value of a Cauchy-Riemann system.
'Theorem': For a range of parameters (p, θ) depending on A,

$$
(N)_{\theta, A}^{p} \text { is well-posed } \Leftrightarrow N_{A, p, \theta} \text { is an isomorphism. }
$$

The first-order approach to elliptic BVPs

Approach initiated by Auscher-Axelsson-McIntosh 2010.

Key steps of the approach:

- Identify the second-order equation $\operatorname{div} A \nabla u=0$ with a first-order evolution equation (a ‘Cauchy-Riemann system')
- Classify solutions to Cauchy-Riemann systems in various function spaces (eg. tent spaces) via functional calculus/semigroups
- See boundary data for $(N)_{\theta, A}^{p}$ as a projection $N_{A, p, \theta}$ of the initial value of a Cauchy-Riemann system.
'Theorem': For a range of parameters (p, θ) depending on A,

$$
(N)_{\theta, A}^{p} \text { is well-posed } \Leftrightarrow N_{A, p, \theta} \text { is an isomorphism. }
$$

Dirac operators and Cauchy-Riemann systems

 the Dirac operator D acts on distributions $F: \mathbb{R}_{+}^{1+n} \rightarrow \mathbb{C}^{1+n}$:
Dirac operators and Cauchy-Riemann systems

 the Dirac operator D acts on distributions $F: \mathbb{R}_{+}^{1+n} \rightarrow \mathbb{C}^{1+n}$:$$
D F=\left[\begin{array}{cc}
0 & \operatorname{div} \\
-\nabla_{\|} & 0
\end{array}\right]\left[\begin{array}{c}
F_{\perp} \\
F_{\|}
\end{array}\right]=\left[\begin{array}{c}
\operatorname{div} F_{\|} \\
-\nabla_{\|} F_{\perp}
\end{array}\right] .
$$

(here $F_{\perp}: \mathbb{R}_{+}^{1+n} \rightarrow \mathbb{C}$ and $F_{\|}: \mathbb{R}_{+}^{1+n} \rightarrow \mathbb{C}^{n}$)

Dirac operators and Cauchy-Riemann systems

 the Dirac operator D acts on distributions $F: \mathbb{R}_{+}^{1+n} \rightarrow \mathbb{C}^{1+n}$:$$
D F=\left[\begin{array}{cc}
0 & \operatorname{div} \\
-\nabla_{\|} & 0
\end{array}\right]\left[\begin{array}{c}
F_{\perp} \\
F_{\|}
\end{array}\right]=\left[\begin{array}{c}
\operatorname{div} F_{\|} \\
-\nabla_{\|} F_{\perp}
\end{array}\right] .
$$

(here $F_{\perp}: \mathbb{R}_{+}^{1+n} \rightarrow \mathbb{C}$ and $F_{\|}: \mathbb{R}_{+}^{1+n} \rightarrow \mathbb{C}^{n}$)
Let $B \in L^{\infty}\left(\mathbb{R}^{n}: \mathcal{L}\left(\mathbb{C}^{1+n}\right)\right)$ satisfy the same assumptions as A (elliptic, t-independent), and define the perturbed Dirac operator $D B$ as an unbounded operator on $L^{2}\left(\mathbb{R}^{n}: \mathbb{C}^{1+n}\right)$ with natural domain.

Dirac operators and Cauchy-Riemann systems

the Dirac operator D acts on distributions $F: \mathbb{R}_{+}^{1+n} \rightarrow \mathbb{C}^{1+n}$:

$$
D F=\left[\begin{array}{cc}
0 & \operatorname{div} \\
-\nabla_{\|} & 0
\end{array}\right]\left[\begin{array}{c}
F_{\perp} \\
F_{\|}
\end{array}\right]=\left[\begin{array}{c}
\operatorname{div} F_{\|} \\
-\nabla_{\|} F_{\perp}
\end{array}\right] .
$$

(here $F_{\perp}: \mathbb{R}_{+}^{1+n} \rightarrow \mathbb{C}$ and $F_{\|}: \mathbb{R}_{+}^{1+n} \rightarrow \mathbb{C}^{n}$)
Let $B \in L^{\infty}\left(\mathbb{R}^{n}: \mathcal{L}\left(\mathbb{C}^{1+n}\right)\right)$ satisfy the same assumptions as A (elliptic, t-independent), and define the perturbed Dirac operator $D B$ as an unbounded operator on $L^{2}\left(\mathbb{R}^{n}: \mathbb{C}^{1+n}\right)$ with natural domain.

The Cauchy-Riemann system for $D B$ is

$$
(\mathrm{CR})_{D B}:\left\{\begin{array}{l}
\partial_{t} F+\overline{D B F}=0 \quad \text { in } \mathbb{R}_{+}^{1+n}, \\
F_{\|} \in \overline{\mathcal{R}(D)},
\end{array}\right.
$$

with solutions considered in the usual weak sense.

CR-systems vs. elliptic equations

$$
A \text {-Conormal gradient: } \nabla_{A} u:=\left[\begin{array}{c}
\partial_{\nu_{A}} u \\
\nabla_{\|} u
\end{array}\right]
$$

CR-systems vs. elliptic equations

A-Conormal gradient: $\nabla_{A} u:=\left[\begin{array}{c}\partial_{\nu_{A}} u \\ \nabla_{\|} u\end{array}\right]$
This transforms solutions of $\operatorname{div} A \nabla u=0$ to solutions of $(\mathrm{CR})_{D \hat{A}}$, where \hat{A} is a transformed coefficient matrix, and conversely:

CR-systems vs. elliptic equations

A-Conormal gradient: $\nabla_{A} u:=\left[\begin{array}{c}\partial_{\nu_{A}} u \\ \nabla_{\|} u\end{array}\right]$
This transforms solutions of $\operatorname{div} A \nabla u=0$ to solutions of $(\mathrm{CR})_{D \hat{A}}$, where \hat{A} is a transformed coefficient matrix, and conversely:

Theorem (Auscher-Axelsson-McIntosh 2010)

$$
F \text { solves }(\mathrm{CR})_{D \hat{A}} \Leftrightarrow F=\nabla_{A} u \text { for a (unique) } u \text { such that } \operatorname{div} A \nabla u=0 \text {. }
$$

CR-systems vs. elliptic equations

A-Conormal gradient: $\nabla_{A} u:=\left[\begin{array}{c}\partial_{\nu_{A}} u \\ \nabla_{\|} u\end{array}\right]$
This transforms solutions of $\operatorname{div} A \nabla u=0$ to solutions of $(\mathrm{CR})_{D \hat{A}}$, where \hat{A} is a transformed coefficient matrix, and conversely:

Theorem (Auscher-Axelsson-McIntosh 2010)

$$
F \text { solves }(\mathrm{CR})_{D \hat{A}} \Leftrightarrow F=\nabla_{A} u \text { for a (unique) } u \text { such that } \operatorname{div} A \nabla u=0 \text {. }
$$

In the splitting $\mathbb{C}^{1+n}=\mathbb{C} \oplus \mathbb{C}^{n}, \hat{A}$ is defined by

$$
A=:\left[\begin{array}{cc}
A_{\perp \perp} & A_{\perp \|} \\
A_{\| \perp} & A_{\| \|}
\end{array}\right], \quad \hat{A}:=\left[\begin{array}{cc}
I & 0 \\
A_{\| \perp} & A_{\| \|}
\end{array}\right]\left[\begin{array}{cc}
A_{\perp \perp} & A_{\perp \|} \\
0 & I
\end{array}\right]^{-1} .
$$

The first-order approach to elliptic BVPs

Approach initiated by Auscher-Axelsson-McIntosh 2010.

Key steps of the approach:

- Identify the second-order equation $\operatorname{div} A \nabla u=0$ with a first-order evolution equation (a 'Cauchy-Riemann system')
- Classify solutions to Cauchy-Riemann systems in various function spaces (eg. tent spaces) via functional calculus/semigroups
- See boundary data for $(N)_{\theta, A}^{p}$ as a projection $N_{A, p, \theta}$ of the initial value of a Cauchy-Riemann system.
'Theorem': For a range of parameters (p, θ) depending on A,

$$
(N)_{\theta, A}^{p} \text { is well-posed } \Leftrightarrow N_{A, p, \theta} \text { is an isomorphism. }
$$

$D B$-adapted Hardy-Sobolev spaces

$D B$ is bisectorial, with bounded H^{∞} functional calculus on $\overline{\mathcal{R}(D B)} \subset L^{2}\left(\mathbb{R}^{n}\right)$ (Axelsson-Keith-McIntosh 2006, Auscher-Axelsson-McIntosh 2010)

$D B$-adapted Hardy-Sobolev spaces

$D B$ is bisectorial, with bounded H^{∞} functional calculus on $\overline{\mathcal{R}(D B)} \subset L^{2}\left(\mathbb{R}^{n}\right)$ (Axelsson-Keith-McIntosh 2006, Auscher-Axelsson-McIntosh 2010)

For every $\varphi \in H^{\infty}\left(S_{\mu}\right)$ we can define $\varphi(D B) \in \mathcal{B}(\overline{\mathcal{R}(D B)})$, and an 'extension operator'

$$
\left(\mathbb{Q}_{\varphi, D B} f\right)(t, x)=(\varphi(t D B) f)(x) \quad(t>0, f \in \overline{\mathcal{R}(D B)}) .
$$

$D B$-adapted Hardy-Sobolev spaces

$D B$ is bisectorial, with bounded H^{∞} functional calculus on $\overline{\mathcal{R}(D B)} \subset L^{2}\left(\mathbb{R}^{n}\right)$ (Axelsson-Keith-McIntosh 2006, Auscher-Axelsson-McIntosh 2010)

For every $\varphi \in H^{\infty}\left(S_{\mu}\right)$ we can define $\varphi(D B) \in \mathcal{B}(\overline{\mathcal{R}(D B)})$, and an 'extension operator'

$$
\left(\mathbb{Q}_{\varphi, D B} f\right)(t, x)=(\varphi(t D B) f)(x) \quad(t>0, f \in \overline{\mathcal{R}(D B)}) .
$$

$D B$-adapted Hardy-Sobolev spaces $\mathbf{H}_{\theta, D B}^{p}$ are formally defined by

$$
\|f\|_{\mathbf{H}_{\theta, D B}^{p}}:=\left\|\mathbb{Q}_{\varphi, D B} f\right\|_{T_{\theta}^{p}} .
$$

The norm is (almost) independent of φ.

$D B$-adapted Hardy-Sobolev spaces

$D B$ is bisectorial, with bounded H^{∞} functional calculus on $\overline{\mathcal{R}(D B)} \subset L^{2}\left(\mathbb{R}^{n}\right)$ (Axelsson-Keith-McIntosh 2006, Auscher-Axelsson-McIntosh 2010)

For every $\varphi \in H^{\infty}\left(S_{\mu}\right)$ we can define $\varphi(D B) \in \mathcal{B}(\overline{\mathcal{R}(D B)})$, and an 'extension operator'

$$
\left(\mathbb{Q}_{\varphi, D B} f\right)(t, x)=(\varphi(t D B) f)(x) \quad(t>0, f \in \overline{\mathcal{R}(D B)}) .
$$

$D B$-adapted Hardy-Sobolev spaces $\mathbf{H}_{\theta, D B}^{p}$ are formally defined by

$$
\|f\|_{\mathbf{H}_{\theta, D B}^{p}}:=\left\|\mathbb{Q}_{\varphi, D B} f\right\|_{T_{\theta}^{p}} .
$$

The norm is (almost) independent of φ.
D-adapted spaces are 'classical':

$$
\mathbf{H}_{\theta, D}^{p}=\dot{H}_{\theta}^{p}\left(\mathbb{R}^{n}\right) \oplus\left(\dot{H}_{\theta}^{p}\left(\mathbb{R}^{n}: \mathbb{C}^{n}\right) \cap \mathcal{N}(\text { curl })\right)
$$

Spectral subspaces and Cauchy extensions

Bounded H^{∞} calculus of $D B$ on $\mathcal{R}(D B)$ extends to adapted spaces $\mathbf{H}_{\theta, D B}^{p}$.

Spectral subspaces and Cauchy extensions

Bounded H^{∞} calculus of $D B$ on $\overline{\mathcal{R}(D B)}$ extends to adapted spaces $\mathbf{H}_{\theta, D B}^{p}$. Useful operators can be constructed:

Spectral subspaces and Cauchy extensions

Bounded H^{∞} calculus of $D B$ on $\overline{\mathcal{R}(D B)}$ extends to adapted spaces $\mathbf{H}_{\theta, D B}^{p}$. Useful operators can be constructed:

- The spectral projections $\chi^{+}(D B)$ and $\chi^{-}(D B)$ defined via

$$
\chi^{+}(z):=\mathbf{1}_{z: \operatorname{Re}(z)>0}, \quad \chi^{-}(z):=\mathbf{1}_{z: \operatorname{Re}(z)<0},
$$

Spectral subspaces and Cauchy extensions

Bounded H^{∞} calculus of $D B$ on $\overline{\mathcal{R}(D B)}$ extends to adapted spaces $\mathbf{H}_{\theta, D B}^{p}$. Useful operators can be constructed:

- The spectral projections $\chi^{+}(D B)$ and $\chi^{-}(D B)$ defined via

$$
\chi^{+}(z):=\mathbf{1}_{z: \operatorname{Re}(z)>0}, \quad \chi^{-}(z):=\mathbf{1}_{z: \operatorname{Re}(z)<0},
$$

which induce a decomposition

$$
\mathbf{H}_{\theta, D B}^{p}=\mathbf{H}_{\theta, D B}^{p,+} \oplus \mathbf{H}_{\theta, D B}^{p,-} .
$$

Spectral subspaces and Cauchy extensions

Bounded H^{∞} calculus of $D B$ on $\overline{\mathcal{R}(D B)}$ extends to adapted spaces $\mathbf{H}_{\theta, D B}^{p}$. Useful operators can be constructed:

- The spectral projections $\chi^{+}(D B)$ and $\chi^{-}(D B)$ defined via

$$
\chi^{+}(z):=\mathbf{1}_{z: \operatorname{Re}(z)>0}, \quad \chi^{-}(z):=\mathbf{1}_{z: \operatorname{Re}(z)<0},
$$

which induce a decomposition

$$
\mathbf{H}_{\theta, D B}^{p}=\mathbf{H}_{\theta, D B}^{p,+} \oplus \mathbf{H}_{\theta, D B}^{p,-} .
$$

- The Cauchy extension

$$
\mathbf{C}_{D B} f(t):=e^{-t D B} \chi^{+}(D B) f \quad(t>0)
$$

which acts as a strongly continuous semigroup on $\mathbf{H}_{\theta, D B}^{p,+}$.

Classification of solutions to $(\mathrm{CR})_{D B}$: endpoint cases

Theorem (Auscher-Mourgoglou 2015, Auscher-Stahlhut 2016)
Fix $p \in(1, \infty)$ such that $\mathbf{H}_{-1, D B}^{p} \simeq \mathbf{H}_{-1, D}^{p}$.

Classification of solutions to $(\mathrm{CR})_{D B}$: endpoint cases

Theorem (Auscher-Mourgoglou 2015, Auscher-Stahlhut 2016)
Fix $p \in(1, \infty)$ such that $\mathbf{H}_{-1, D B}^{p} \simeq \mathbf{H}_{-1, D}^{p}$.
(This identification has a precise, technical interpretation.)

Classification of solutions to $(\mathrm{CR})_{D B}$: endpoint cases

Theorem (Auscher-Mourgoglou 2015, Auscher-Stahlhut 2016)
Fix $p \in(1, \infty)$ such that $\mathbf{H}_{-1, D B}^{p} \simeq \mathbf{H}_{-1, D}^{p}$.
(This identification has a precise, technical interpretation.)
Then

$$
F \text { solves }(\mathrm{CR})_{D B}, F \in T_{-1}^{p} \text { and } \lim _{t \rightarrow \infty} F(t)_{\|}=0 \text { in } \mathcal{S}^{\prime} / \mathcal{P}
$$

Classification of solutions to $(\mathrm{CR})_{D B}$: endpoint cases

Theorem (Auscher-Mourgoglou 2015, Auscher-Stahlhut 2016)
Fix $p \in(1, \infty)$ such that $\mathbf{H}_{-1, D B}^{p} \simeq \mathbf{H}_{-1, D}^{p}$.
(This identification has a precise, technical interpretation.)
Then

$$
\begin{gathered}
F \text { solves }(\mathrm{CR})_{D B}, F \in T_{-1}^{p} \underset{\Uparrow}{\text { and }} \lim _{t \rightarrow \infty} F(t)_{\|}=0 \text { in } \mathcal{S}^{\prime} / \mathcal{P} \\
F=\mathbf{C}_{D B} f \text { for some (unique) } f \in \mathbf{H}_{-1, D B}^{p,+} \subset \mathbf{H}_{-1, D}^{p} .
\end{gathered}
$$

Classification of solutions to $(\mathrm{CR})_{D B}$: endpoint cases

Theorem (Auscher-Mourgoglou 2015, Auscher-Stahlhut 2016)
Fix $p \in(1, \infty)$ such that $\mathbf{H}_{-1, D B}^{p} \simeq \mathbf{H}_{-1, D}^{p}$.
(This identification has a precise, technical interpretation.)
Then

$$
\begin{gathered}
F \text { solves }(\mathrm{CR})_{D B}, F \in T_{-1}^{p} \text { and } \lim _{t \rightarrow \infty} F(t)_{\|}=0 \text { in } \mathcal{S}^{\prime} / \mathcal{P} \\
F=\mathbf{C}_{D B} f \text { for some (unique) } f \in \mathbf{H}_{-1, D B}^{p,+} \subset \mathbf{H}_{-1, D}^{p} .
\end{gathered}
$$

In this correspondence, $\|f\|_{\dot{H}_{-1}^{p}} \simeq\|F\|_{T_{-1}^{p}}$.

Classification of solutions to $(\mathrm{CR})_{D B}$: endpoint cases

Theorem (Auscher-Mourgoglou 2015, Auscher-Stahlhut 2016)
Fix $p \in(1, \infty)$ such that $\mathbf{H}_{-1, D B}^{p} \simeq \mathbf{H}_{-1, D}^{p}$.
(This identification has a precise, technical interpretation.)
Then

$$
\begin{gathered}
F \text { solves }(\mathrm{CR})_{D B}, F \in T_{-1}^{p} \underset{\Uparrow}{\text { and }} \lim _{t \rightarrow \infty} F(t)_{\|}=0 \text { in } \mathcal{S}^{\prime} / \mathcal{P} \\
F=\mathbf{C}_{D B} f \text { for some (unique) } f \in \mathbf{H}_{-1, D B}^{p,+} \subset \mathbf{H}_{-1, D}^{p} .
\end{gathered}
$$

In this correspondence, $\|f\|_{\dot{H}_{-1}^{p}} \simeq\|F\|_{T_{-1}^{p}}$.
$\theta=0$ case: replace T_{-1}^{p} with a certain nontangential maximal function norm.

Classification of solutions to $(\mathrm{CR})_{D B}$: endpoint cases

Theorem (Auscher-Mourgoglou 2015, Auscher-Stahlhut 2016)
Fix $p \in(1, \infty)$ such that $\mathbf{H}_{-1, D B}^{p} \simeq \mathbf{H}_{-1, D}^{p}$.
(This identification has a precise, technical interpretation.)
Then

$$
\begin{gathered}
F \text { solves }(\mathrm{CR})_{D B}, F \in T_{-1}^{p} \text { and } \lim _{t \rightarrow \infty} F(t)_{\|}=0 \text { in } \mathcal{S}^{\prime} / \mathcal{P} \\
F=\mathbf{C}_{D B} f \text { for some (unique) } f \in \mathbf{H}_{-1, D B}^{p,+} \subset \mathbf{H}_{-1, D}^{p} .
\end{gathered}
$$

In this correspondence, $\|f\|_{\dot{H}_{-1}^{p}} \simeq\|F\|_{T_{-1}^{p}}$.
$\theta=0$ case: replace T_{-1}^{p} with a certain nontangential maximal function norm.

Hölder space results (' $p \geq \infty$ ') are also available.

Classification of solutions to $(\mathrm{CR})_{D B}$: endpoint cases

Theorem (A.-Auscher 2017)
Let $\theta \in(-1,0)$ and $p \in(1, \infty)$ be such that $\mathbf{H}_{\theta, D B}^{p} \simeq \mathbf{H}_{\theta, D}^{p}$.

Classification of solutions to $(\mathrm{CR})_{D B}$: endpoint cases

Theorem (A.-Auscher 2017)
Let $\theta \in(-1,0)$ and $p \in(1, \infty)$ be such that $\mathbf{H}_{\theta, D B}^{p} \simeq \mathbf{H}_{\theta, D}^{p}$. Then
F solves $(\mathrm{CR})_{D B}, F \in T_{\theta}^{p}$ and $\lim _{t \rightarrow \infty} F(t)_{\|}=0$ in $\mathcal{S}^{\prime} / \mathcal{P}$

Classification of solutions to $(\mathrm{CR})_{D B}$: endpoint cases

Theorem (A.-Auscher 2017)
Let $\theta \in(-1,0)$ and $p \in(1, \infty)$ be such that $\mathbf{H}_{\theta, D B}^{p} \simeq \mathbf{H}_{\theta, D}^{p}$. Then
F solves $(\mathrm{CR})_{D B}, F \in T_{\theta}^{p}$ and $\lim _{t \rightarrow \infty} F(t)_{\|}=0$ in $\mathcal{S}^{\prime} / \mathcal{P}$

$$
F=\mathbf{C}_{D B} f \text { for some (unique) } f \in \mathbf{H}_{\theta, D B}^{p,+} \subset \mathbf{H}_{\theta, D}^{p}
$$

Classification of solutions to $(\mathrm{CR})_{D B}$: endpoint cases

Theorem (A.-Auscher 2017)
Let $\theta \in(-1,0)$ and $p \in(1, \infty)$ be such that $\mathbf{H}_{\theta, D B}^{p} \simeq \mathbf{H}_{\theta, D}^{p}$. Then

$$
\begin{gathered}
F \text { solves }(\mathrm{CR})_{D B}, F \in T_{\theta}^{p} \text { and } \lim _{t \rightarrow \infty} F(t)_{\|}=0 \text { in } \mathcal{S}^{\prime} / \mathcal{P} \\
\qquad F=\mathbf{C}_{D B} f \text { for some (unique) } f \in \mathbf{H}_{\theta, D B}^{p,+} \subset \mathbf{H}_{\theta, D}^{p} .
\end{gathered}
$$

In this correspondence, $\|f\|_{\dot{H}_{\theta}^{p}} \simeq\|F\|_{T_{\theta}^{p}}$.

Classification of solutions to $(\mathrm{CR})_{D B}$: endpoint cases

Theorem (A.-Auscher 2017)
Let $\theta \in(-1,0)$ and $p \in(1, \infty)$ be such that $\mathbf{H}_{\theta, D B}^{p} \simeq \mathbf{H}_{\theta, D}^{p}$. Then

$$
\begin{gathered}
F \text { solves }(\mathrm{CR})_{D B}, F \in T_{\theta}^{p} \text { and } \lim _{t \rightarrow \infty} F(t)_{\|}=0 \text { in } \mathcal{S}^{\prime} / \mathcal{P} \\
\qquad F=\mathbf{C}_{D B} f \text { for some (unique) } f \in \mathbf{H}_{\theta, D B}^{p,+} \subset \mathbf{H}_{\theta, D}^{p} .
\end{gathered}
$$

In this correspondence, $\|f\|_{\dot{H}_{\theta}^{p}} \simeq\|F\|_{T_{\theta}^{p}}$.

This does not follow from the previous theorem by interpolation!

Our proof only works for $\theta \in(-1,0)$.

The first-order approach to elliptic BVPs

Approach initiated by Auscher-Axelsson-McIntosh 2010.

Key steps of the approach:

- Identify the second-order equation $\operatorname{div} A \nabla u=0$ with a first-order evolution equation (a 'Cauchy-Riemann system')
- Classify solutions to Cauchy-Riemann systems in various function spaces (eg. tent spaces) via functional calculus/semigroups
- See boundary data for $(N)_{\theta, A}^{p}$ as a projection $N_{A, p, \theta}$ of the initial value of a Cauchy-Riemann system.
'Theorem': For a range of parameters (p, θ) depending on A,

$$
(N)_{\theta, A}^{p} \text { is well-posed } \Leftrightarrow N_{A, p, \theta} \text { is an isomorphism. }
$$

Classification of well-posedness

Suppose $\theta \in[-1,0], p \in(1, \infty)$, and $\mathbf{H}_{\theta, D \hat{A}}^{p}=\mathbf{H}_{\theta, D}^{p}$.
(required to classify solutions to (CR) $D \hat{A}$ in T_{θ}^{p})

Classification of well-posedness

Suppose $\theta \in[-1,0], p \in(1, \infty)$, and $\mathbf{H}_{\theta, D \hat{A}}^{p}=\mathbf{H}_{\theta, D}^{p}$.
(required to classify solutions to (CR) ${ }_{D A}{ }^{\text {in }}$ in T_{θ}^{p})

$$
\left.N_{\perp}: \mathbf{H}_{\theta, D}^{p}=\dot{H}_{\theta}^{p}\left(\mathbb{R}^{n}\right) \oplus\left(\dot{H}_{\theta}^{p}\left(\mathbb{R}^{n}: \mathbb{C}^{n}\right) \cap \mathcal{N}(\text { curl })\right)\right) \rightarrow \dot{H}_{\theta}^{p}\left(\mathbb{R}^{n}\right) .
$$

Classification of well-posedness

Suppose $\theta \in[-1,0], p \in(1, \infty)$, and $\mathbf{H}_{\theta, D \hat{A}}^{p}=\mathbf{H}_{\theta, D}^{p}$.
(required to classify solutions to (CR) ${ }_{D A}{ }^{\text {in }}$ in T_{θ}^{p})

$$
\left.N_{\perp}: \mathbf{H}_{\theta, D}^{p}=\dot{H}_{\theta}^{p}\left(\mathbb{R}^{n}\right) \oplus\left(\dot{H}_{\theta}^{p}\left(\mathbb{R}^{n}: \mathbb{C}^{n}\right) \cap \mathcal{N}(\text { curl })\right)\right) \rightarrow \dot{H}_{\theta}^{p}\left(\mathbb{R}^{n}\right) .
$$

Identify $\mathbf{H}_{\theta, D \hat{A}}^{p,+} \subset \mathbf{H}_{\theta, D}^{p}$ and restrict the projection N_{\perp} to define

$$
N_{A, p, \theta}: \mathbf{H}_{\theta, D \hat{A}}^{p,+} \rightarrow \dot{H}_{\theta}^{p}\left(\mathbb{R}^{n}\right) .
$$

Classification of well-posedness

Suppose $\theta \in[-1,0], p \in(1, \infty)$, and $\mathbf{H}_{\theta, D \hat{A}}^{p}=\mathbf{H}_{\theta, D}^{p}$.
(required to classify solutions to (CR) ${ }_{D A}{ }^{\text {in }}$ in T_{θ}^{p})

$$
\left.N_{\perp}: \mathbf{H}_{\theta, D}^{p}=\dot{H}_{\theta}^{p}\left(\mathbb{R}^{n}\right) \oplus\left(\dot{H}_{\theta}^{p}\left(\mathbb{R}^{n}: \mathbb{C}^{n}\right) \cap \mathcal{N}(\text { curl })\right)\right) \rightarrow \dot{H}_{\theta}^{p}\left(\mathbb{R}^{n}\right) .
$$

Identify $\mathbf{H}_{\theta, D \hat{A}}^{p,+} \subset \mathbf{H}_{\theta, D}^{p}$ and restrict the projection N_{\perp} to define

$$
N_{A, p, \theta}: \mathbf{H}_{\theta, D \hat{A}}^{p,+} \rightarrow \dot{H}_{\theta}^{p}\left(\mathbb{R}^{n}\right)
$$

Theorem (Auscher-Mourgoglou 2014, A.-Auscher 2017)

$$
(N)_{\theta, A}^{p} \text { is well-posed } \Leftrightarrow N_{A, p, \theta} \text { is an isomorphism. }
$$

Classification of well-posedness

Suppose $\theta \in[-1,0], p \in(1, \infty)$, and $\mathbf{H}_{\theta, D \hat{A}}^{p}=\mathbf{H}_{\theta, D}^{p}$.
(required to classify solutions to (CR) ${ }_{D A}{ }^{\text {in }}$ in T_{θ}^{p})

$$
\left.N_{\perp}: \mathbf{H}_{\theta, D}^{p}=\dot{H}_{\theta}^{p}\left(\mathbb{R}^{n}\right) \oplus\left(\dot{H}_{\theta}^{p}\left(\mathbb{R}^{n}: \mathbb{C}^{n}\right) \cap \mathcal{N}(\text { curl })\right)\right) \rightarrow \dot{H}_{\theta}^{p}\left(\mathbb{R}^{n}\right) .
$$

Identify $\mathbf{H}_{\theta, D \hat{A}}^{p,+} \subset \mathbf{H}_{\theta, D}^{p}$ and restrict the projection N_{\perp} to define

$$
N_{A, p, \theta}: \mathbf{H}_{\theta, D \hat{A}}^{p,+} \rightarrow \dot{H}_{\theta}^{p}\left(\mathbb{R}^{n}\right)
$$

Theorem (Auscher-Mourgoglou 2014, A.-Auscher 2017)

$$
(N)_{\theta, A}^{p} \text { is well-posed } \Leftrightarrow N_{A, p, \theta} \text { is an isomorphism. }
$$

Idea: every $F_{0} \in \mathbf{H}_{\theta, D \hat{A}}^{p,+}$ is the initial value of a solution $F=\nabla_{A} u$ of $(\mathrm{CR})_{D \hat{A}}$,

Classification of well-posedness

Suppose $\theta \in[-1,0], p \in(1, \infty)$, and $\mathbf{H}_{\theta, D \hat{A}}^{p}=\mathbf{H}_{\theta, D}^{p}$.
(required to classify solutions to (CR) ${ }_{D A}{ }^{\text {in }}$ in T_{θ}^{p})

$$
\left.N_{\perp}: \mathbf{H}_{\theta, D}^{p}=\dot{H}_{\theta}^{p}\left(\mathbb{R}^{n}\right) \oplus\left(\dot{H}_{\theta}^{p}\left(\mathbb{R}^{n}: \mathbb{C}^{n}\right) \cap \mathcal{N}(\text { curl })\right)\right) \rightarrow \dot{H}_{\theta}^{p}\left(\mathbb{R}^{n}\right) .
$$

Identify $\mathbf{H}_{\theta, D \hat{A}}^{p,+} \subset \mathbf{H}_{\theta, D}^{p}$ and restrict the projection N_{\perp} to define

$$
N_{A, p, \theta}: \mathbf{H}_{\theta, D \hat{A}}^{p,+} \rightarrow \dot{H}_{\theta}^{p}\left(\mathbb{R}^{n}\right)
$$

Theorem (Auscher-Mourgoglou 2014, A.-Auscher 2017)

$$
(N)_{\theta, A}^{p} \text { is well-posed } \Leftrightarrow N_{A, p, \theta} \text { is an isomorphism. }
$$

Idea: every $F_{0} \in \mathbf{H}_{\theta, D \hat{A}}^{p,+}$ is the initial value of a solution $F=\nabla_{A} u$ of $(\mathrm{CR})_{D \hat{A}}$, and $N_{A, p, \theta} F_{0}=\left(\left.\nabla_{A} u\right|_{t=0}\right)_{\perp}=\left.\partial_{\nu_{A}} u\right|_{t=0}$.

Consequences

- Duality: well-posedness of $(N)_{\theta, A}^{p}$ implies well-posedness of $(N)_{-1-\theta, A^{*}}^{p^{\prime}}$

Consequences

- Duality: well-posedness of $(N)_{\theta, A}^{p}$ implies well-posedness of $(N)_{-1-\theta, A^{*}}^{p^{\prime}}$
- Interpolation of (compatible) well-posedness (takes too much effort to witte igigrousy)

Consequences

- Duality: well-posedness of $(N)_{\theta, A}^{p}$ implies well-posedness of $(N)_{-1-\theta, A^{*}}^{p^{\prime}}$
- Interpolation of (compatible) well-posedness (takes too much effort to witte igigrousy)
- Extrapolation: well-posedness of $(N)_{\theta, A}^{p}$ implies well-posedness of $(N)_{\tilde{\theta}, A}^{\tilde{p}}$ for $(\tilde{p}, \tilde{\theta})$ near (p, θ)

Consequences

- Duality: well-posedness of $(N)_{\theta, A}^{p}$ implies well-posedness of $(N)_{-1-\theta, A^{*}}^{p^{\prime}}$
- Interpolation of (compatible) well-posedness (takes too much effort to witte igigrousy)
- Extrapolation: well-posedness of $(N)_{\theta, A}^{p}$ implies well-posedness of $(N)_{\tilde{\theta}, A}^{\tilde{p}}$ for $(\tilde{p}, \tilde{\theta})$ near (p, θ)
- Some stability in coefficients: w-p of $(N)_{\theta, A}^{p}$ implies w-p of $(N)_{\theta, \tilde{A}}^{p}$ for $\|\tilde{A}-A\|_{\infty}$ sufficiently small (with some restrictions on (p, θ)).

What about Besov spaces?

What about Besov spaces?

Replace Hardy-Sobolev spaces \dot{H}_{θ}^{p} with Besov spaces $\dot{B}_{\theta}^{p, p}$, and tent spaces T_{θ}^{p} with Z-spaces Z_{θ}^{p},

$$
\|F\|_{Z_{\theta}^{p}}:=\left(\iint_{\mathbb{R}_{+}^{1+n}}\left(f_{t / 2}^{2 t} f_{B(x, t)}\left|\tau^{-\theta} F(\tau, \xi)\right|^{2} d \xi d \tau\right)^{p / 2} d x \frac{d t}{t}\right)^{1 / p}
$$

What about Besov spaces?

Replace Hardy-Sobolev spaces \dot{H}_{θ}^{p} with Besov spaces $\dot{B}_{\theta}^{p, p}$, and tent spaces T_{θ}^{p} with Z-spaces Z_{θ}^{p},

$$
\|F\|_{Z_{\theta}^{p}}:=\left(\iint_{\mathbb{R}_{+}^{1+n}}\left(f_{t / 2}^{2 t} f_{B(x, t)}\left|\tau^{-\theta} F(\tau, \xi)\right|^{2} d \xi d \tau\right)^{p / 2} d x \frac{d t}{t}\right)^{1 / p}
$$

Note that

$$
\begin{align*}
\left(\dot{H}_{\theta_{0}}^{p_{0}}, \dot{H}_{\theta_{1}}^{p_{1}}\right)_{\alpha, p} & \simeq \dot{B}_{\theta}^{p, p} \\
\left(T_{\theta_{0}}^{p_{0}}, T_{\theta_{1}}^{p_{1}}\right)_{\alpha, p} & \simeq Z_{\theta}^{p}
\end{align*}
$$

What about Besov spaces?

Replace Hardy-Sobolev spaces \dot{H}_{θ}^{p} with Besov spaces $\dot{B}_{\theta}^{p, p}$, and tent spaces T_{θ}^{p} with Z-spaces Z_{θ}^{p},

$$
\|F\|_{Z_{\theta}^{p}}:=\left(\iint_{\mathbb{R}_{+}^{1+n}}\left(f_{t / 2}^{2 t} f_{B(x, t)}\left|\tau^{-\theta} F(\tau, \xi)\right|^{2} d \xi d \tau\right)^{p / 2} d x \frac{d t}{t}\right)^{1 / p}
$$

Note that

$$
\begin{align*}
\left(\dot{H}_{\theta_{0}}^{p_{0}}, \dot{H}_{\theta_{1}}^{p_{1}}\right)_{\alpha, p} & \simeq \dot{B}_{\theta}^{p, p} \tag{classical}\\
\left(T_{\theta_{0}}^{p_{0}}, T_{\theta_{1}}^{p_{1}}\right)_{\alpha, p} & \simeq Z_{\theta}^{p} \tag{A.2017}
\end{align*}
$$

Our whole theory works identically for $\theta \in(-1,0)$.

What about Besov spaces?

Replace Hardy-Sobolev spaces \dot{H}_{θ}^{p} with Besov spaces $\dot{B}_{\theta}^{p, p}$, and tent spaces T_{θ}^{p} with Z-spaces Z_{θ}^{p},

$$
\|F\|_{Z_{\theta}^{p}}:=\left(\iint_{\mathbb{R}_{+}^{1+n}}\left(f_{t / 2}^{2 t} f_{B(x, t)}\left|\tau^{-\theta} F(\tau, \xi)\right|^{2} d \xi d \tau\right)^{p / 2} d x \frac{d t}{t}\right)^{1 / p}
$$

Note that

$$
\begin{align*}
\left(\dot{H}_{\theta_{0}}^{p_{0}}, \dot{H}_{\theta_{1}}^{p_{1}}\right)_{\alpha, p} & \simeq \dot{B}_{\theta}^{p, p} \tag{classical}\\
\left(T_{\theta_{0}}^{p_{0}}, T_{\theta_{1}}^{p_{1}}\right)_{\alpha, p} & \simeq Z_{\theta}^{p} \tag{A.2017}
\end{align*}
$$

Our whole theory works identically for $\theta \in(-1,0)$.
By interpolation, w-p of $(N)_{0, A}^{p_{0}}$ and $(N)_{-1, A}^{p_{1}}$ implies w-p of corresponding Neumann problems with boundary data in $\dot{B}_{\theta}^{p, p}$ and gradient in $Z_{\theta}^{p, p}$.

What about Besov spaces?

Replace Hardy-Sobolev spaces \dot{H}_{θ}^{p} with Besov spaces $\dot{B}_{\theta}^{p, p}$, and tent spaces T_{θ}^{p} with Z-spaces Z_{θ}^{p},

$$
\|F\|_{Z_{\theta}^{p}}:=\left(\iint_{\mathbb{R}_{+}^{1+n}}\left(f_{t / 2}^{2 t} f_{B(x, t)}\left|\tau^{-\theta} F(\tau, \xi)\right|^{2} d \xi d \tau\right)^{p / 2} d x \frac{d t}{t}\right)^{1 / p}
$$

Note that

$$
\begin{align*}
\left(\dot{H}_{\theta_{0}}^{p_{0}}, \dot{H}_{\theta_{1}}^{p_{1}}\right)_{\alpha, p} & \simeq \dot{B}_{\theta}^{p, p} \tag{classical}\\
\left(T_{\theta_{0}}^{p_{0}}, T_{\theta_{1}}^{p_{1}}\right)_{\alpha, p} & \simeq Z_{\theta}^{p} \tag{A.2017}
\end{align*}
$$

Our whole theory works identically for $\theta \in(-1,0)$.
By interpolation, w-p of $(N)_{0, A}^{p_{0}}$ and $(N)_{-1, A}^{p_{1}}$ implies w-p of corresponding Neumann problems with boundary data in $\dot{B}_{\theta}^{p, p}$ and gradient in $Z_{\theta}^{p, p}$.
Thanks for your attention!

