5 Das Lebesgue-Integral

Definition 5.1. Seien (X, M, u) ein Makraum, E € M, f: X — [0, 00] eine nichtnegative
messbare Funktion und

Tf = {gpz ZCiXEi nmeN, ¢ >0, B; e M, o(x) < f(x) Vo € E}
i=1

die Menge aller nichtnegativen messbaren Treppenfunktionen, die auf F punktweise Mino-
ranten von f sind. Dann heifst die Zahl

/fd,u sup Zcz,uEﬂE)

LpGTE =1

Lebesgue-Integral von f auf E.

Bemerkung. Das Lebesgue-Integral einer nichtnegativen Funktion kann den Wert +oo an-
nehmen. Die Definition ist sinnvoll, da nach Satz 4.16 jede nichtnegative, messbare Funktion
beliebig genau von unten durch Treppenfunktionen angenéhert werden kann.

Definition 5.2. Seien (X, M,u) ein Mafraum, £ € M und f : X — R messbar. Gilt
Jg f+du < 400 oder [ f—du < 400, so heift

[ran= [ redu- [ 1 au
FE E FE

Lebesgue-Integral von f auf E (mit fi und f_ wie in Folgerung 4.12). Die Funktion f heifst
summierbar auf E, wenn [ fi dpu < 400 und [, f— du < 400 gilt. Mit £(E, ;1) bezeichnen
wir die Menge der beziiglich p auf £ summierbaren Funktionen.

Bemerkung (Alternative Definition des Lebesgue-Integrals fiir beschrinkte Funktionen).
Im Falle beschrankter, messbarer Funktionen kann das Lebesgue-Integral dquivalent wie folgt
definiert werden: Fiir

m = inf f(z) > —o0 und M :=sup f(z) < 400
zel el

bezeichne
Z = {{yl,yQ,...,yn}:m:yl <Y << yYp =M, nGN}
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5 Das Lebesgue-Integral

die Familie aller endlichen Zerlegungen von [m,M] und fir Z = {y1,y2,...,yn} € Z
setzen wir E;j(Z) = {v € E : y; < f(x) < ¥i+1}, wenn ¢ € {1,2,...,n — 1}, und
E.(Z) ={x € E: f(x) = yo}. Dann kann man

/fdu = sup Y yip(Ei(2))

J zez

zeigen.

Beispiel 5.3. Wir betrachten X = R mit dem Lebesgue-Maf p und wéhlen E := [0, 1]
sowie
1, ze€Q,

.

(die so genannte Dirichlet-Funktion). Da u(Q) = 0 gilt, ist f messbar. Fiir f ist das Riemann-
Integral nicht definiert, weil die Funktion in keinem Punkt stetig ist. Jedoch existiert das
Lebesgue-Integral. Wir zeigen

/ fdp=0.

E

Sei also {y1,y2,...,yn} eine Zerlegung von [0, 1] (vgl. vorhergehende Bemerkung). Dann gilt

Ei:={zecE: 0=y < f(z) <y} =1[0,1]\ Q,
Ei={2eE:0<y < flx)<yp1 <1}=0 firi=2,3,...,n—1,
En::{l'EEif(lL‘):yn:1}:[0,1}ﬂ(@,
also "
> yi(E:) =0 p([0,1]\ Q) + 1 p([0,1] N Q) = 0.
=1 S———

<u(Q)=0

Beachte: Das gleiche Ergebnis folgt auch unmittelbar aus Definition 5.1, weil f selbst eine
Treppenfunktion ist.

Lemma 5.4. Seien (X, M, pn) ein Maffraum, E € M und ¢ = > | cixg, : X — R eine
messbare Treppenfunktion. Dann gilt

n
/cpd,u:Zci,u,(EﬂEi).
7 i=1
Beweis. Setzen wir I, :={i e N:1<i<n, ¢ >0tund I_:={i e N:1<i<n, ¢ <0},

so gilt w4 = Zi€I+ cixg, und ¢ = —3 . ¢iXg;- Aus Definition 5.1 folgt nun sofort

/gp.,. dp = Z cip(E N Ey) und /cp_ dp = — Z cip(E N E;).

i iely 5 iel_
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5 Das Lebesgue-Integral

Nach Definition 5.2 gilt somit

/soduz/wdu—/«pduchm(EﬂEz)-

E E E =1
O

Satz 5.5 (Eigenschaften des Lebesgue-Integrals). Seien (X, M,pu) ein Mafiraum, E € M
sowie f,g: X — R messbar.

(1) Gilt m < f(x) < M fir alle x € E mit Konstanten m, M € R, so folgt

mu(E) < /fdu < Mu(E).
E

(ii) 1 Mit f,g € L(E,pu) und c € R gilt f + g,cf € L(E,p) und

/(f+g)du:/fdu+/gdu sowie /Cfduzc/fd,u.
E E E E

E

(11i) Ist A C E messbar (d.h. A € M) und gilt f(x) >0 fir alle x € E, so folgt

[ran< [ran

A E

(i) Gilt 0 < f(z) < g(x) fur alle v € E, so folgt

og/fwg/ﬁw.
E

E

(v) Aus f(x) >0 fiir alle z € E folgt die Aquivalenz

/fdu:() & f(x) =0 fir fast alle z € E.
E

Beweis. (i) Man tiberlegt sich leicht, dass
max{0,m} < fy(r) <max{0,M} und —min{0,M} < f_(z)<-—min{0,m}

fir alle z € E gilt. Da somit max{0, m}xg bzw. —min{0, M } xg am Supremum in der

!Diese Aussage kann erst spiter mit Mitteln des Kapitels 6 bewiesen werden.
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5 Das Lebesgue-Integral

Definition von [}, fy du baw. [, f— du teilnehmen (vgl. Definition 5.1), folgt

max{0,m}u(E /f+ dp bzw. — min{0, M }u(E /f_ dp.

Andererseits gilt fiir jede Treppenfunktion ¢, die am Supremum in der Definition von
Jg f+dp bzw. [ f— dp teilnimmt, ¢ < max{0, M}xg bzw. ¢ < —min{0, m}xg, also

/f+ dp < max{0, M }u(FE) bzw. /f_ dp < —min{0, m}u(E).
E E

Zusammen erhalten wir
() = (masx{0, m} + min{0, m} ) / Frdu - / - du
< (max{0, M} + min{0, M })u(E) = M,u(E)
Fiir den Beweis der beiden Aussagen bendtigen wir Sétze, die wir erst in Kapitel 6

formulieren werden.

O.B.d.A. gelte f > 0 (auf E erfiillt, Verhalten auf X \ E uninteressant). Wir setzen
T:={pc€ ij‘ t¢(x) =0Vz € X\ A} (vgl. Definition 5.1). Zu jedem ¢ = > 7" | ¢iXE, €
T]‘f‘ existiert dann ein ¢ = > " dixp, € T mit > i (AN E;) = >0 dipn(AN Fy);
man setze einfach m :=n, d; := ¢; und F; := E; N A. Somit gilt

sup Zczu ANE;) <suchzu ANE;)

peTf i1 PET i

und aus 7' C Tf folgt
suchlu ENE;) < sup Zcz,u ENE;).
wel ' p€TF i1
Wegen A C E, d.h. (AN E;) < pu(ENE;) fur E; € M, folgt die Behauptung.
Die Behauptung folgt wegen T}E - TgE sofort aus Definition 5.1.
»,="“ Setzen wir
F:={zeFE: f(x)>0}eM ud  E,:={z€E: f(z)> 1}

so gilt B, C Ep4q fir alle n € Nund F = |J;2 | E,. Zu zeigen ist u(F) = 0. Wir
nehmen also an, es wiirde pu(F) > 0 gelten. Nach Satz 2.6 gilt u(E,) — p(F) fir
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5 Das Lebesgue-Integral

n — 00, sodass dann ein € > 0 und ein ng € N mit u(E,,) > ¢ existieren. Aus (iii)
und (i) des Satzes folgt nun

1
0= [fau> [ fanz B> = >0
FE

Dies ist ein Widerspruch, d.h. u(F) = 0 ist gezeigt.

,<=“ O.B.d.A. gelte f > 0 (auf E erfiillt, Verhalten auf X \ F uninteressant). Sei
N € M eine Menge mit u(N) = 0 und f(xz) = 0 fir alle x € E\ N. Fiir jede
Treppenfunktion ¢ = Y7 | ¢;XE,, die am Supremum in der Definition von fEfd,u
teilnimmt, muss dann (¢; > 0 fiir i = 1,2,...,n vorausgesetzt) E N E; C F und somit
W(ENE;) <p(F)=0firi=1,2,...,n gelten. Also folgt > ; c;u(E N E;) = 0 und
damit [, fdu = 0.

0

Satz 5.6. Seien (X, M, ) ein MaBraum, f: X — R messbar sowie v : M — R die durch

=/fdu, AeM,
A

definierte Mengenfunktion.
(i) Gilt f >0, so ist v volladditiv.
(i) Gilt f € L(X, ), so ist v volladditiv.

Beweis. Wir zeigen (i). Seien zunéchst Aj, As,... € M paarweise disjunkt und sei A :=
Uj2, 4. Fiir alle o = Y1 cixp, € Tf‘ (vgl. Definition 5.1) gilt dann

Z CZ,U,(A N EZ) = ZCZ'M U (A] N El) = Z Z ci,u(AJ N E;
i=1 i=1 j=1 j=1 i=1
—Z/s@du<2/fdu 4j)
J= 1A J= lA

und der Ubergang zum Supremum liefert

/fdu— sup Zcm (AN E;) iy(Aj)
j=1

WGTA =1

Hieraus werden wir weiter unten die Subvolladditivitdt folgern; dazu benétigen wir jedoch
die Additivitdt von v.
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5 Das Lebesgue-Integral

Seien also A1, Ay € M disjunkt. Nach dem schon Bewiesenen gilt mit A3 = A4 =--- =10
Z/(A1 U Ag) < I/(Al) + I/(AQ).

Fiir beliebiges € > 0 existieren ¢; € Tf und ¢y € Tf 2 mit

[rans [oranse wd [rans [eadure

Ay Ay Az Az

p1(x) fallsx € Ay
Setzen wir  @(z) 1= { @o(x) fallsz € Ay , sogilt p € TthUAQ, und es folgt

0 sonst

V(A1)+V(A2):/fdﬂ+/fdu</<P1du+/<ﬂzdﬂ+25

Ao

Aq As Ay
:/wd,u—l—/godu+25(2 / pdp + 2e
Ay Ao A1UA5
< / fdu+2e =v(A; U Ag) + 2,
A1UA5
wobei man sich die Gleichheit (x) als Eigenschaft von Treppenfunktionen leicht iiberlegen
kann. Grenziibergang € — 0 liefert die Additivitat von v.
Zurtick zum Beweis der Subvolladditivitit. Seien nun B, By, B, ... € M mit B C Uiz, Bi.
Setzen wir A; := BN By und A; := (BDBZ)\(U;;Il Bj),sogilt B=J;2; A; und 4;NA; =0
fiir ¢ # j sowie A; C B;. Also folgt

v(B) < _Z v(4;) < Z v(By),

i=1 i=1

d.h. v ist subvolladditiv (die Additivitat haben wir dabei zur Anwendung von Satz 2.5 (v)
benétigt). Aus Satz 2.5 (vii) folgt nun die Volladditivitét von v.
Wie zeigen noch (ii). Wegen f € £(X, ) sind die durch

o) = [fede wd ()= [ g
A A

definierten nichtnegativen Mengenfunktionen endlich, d.h. fir alle A € M gilt v (A) < 0o
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5 Das Lebesgue-Integral

und v_(A) < oo. Nach (i) sind v4 und v_ volladditiv. Wegen

/fdu /f+du /f dpi = v (4) — v (A)

sieht man die Volladditivitat von v nun leicht ein. O

Folgerung 5.7. Seien (X, M, u) ein Mafiraum, f : X — [0, 00| eine nichtnegative, messbare
Funktion und A,B € M mit BC A und p(A\B) =0. Gilt [, fdp < co oder [5 fdp < oo,
so ist auch das jeweils andere Integral endlich und die Werte der beiden Integrale stimmen
tberein.

Beweis. Nach Satz 5.6 (i) (bendtigen hier nur die Additivitét) gilt

[ran= [ raus [rau= [ ran
B

A A\B B
~——
=0

wobei man sich das Verschwinden des ersten Summanden leicht anhand der Definition des
Integrals tiberlegen kann. O

Definition 5.8. Sei (X, M, pu) ein Makraum und sei E € M. Zwei messbare Funktionen

f,g : X — R bezeichnen wir als dquivalent auf E und schreiben f L g, wenn p({z € E :
f(z) # g(x)}) = 0 gilt, d.h. wenn f und g fast iiberall auf E tibereinstimmen.

Bemerkung. Man zeigt leicht, dass {x € E : f(z) # g(z)} € M gilt und dass L eine
Aquivalenzrelation auf der Menge aller messbaren Funktionen f: X — R ist.

Bemerkung. Aus Folgerung 5.7 erhalt man, dass fir f,¢g € L(E, u) mit f L g die Gleichheit
/ fdp= / gdu
E E

gilt.

Satz 5.9. Seien (X, M,pu) ein Mafraum, E € M und f : X — R messbar. Dann gilt
f € L(E,u) genau dann , wenn |f| € L(E, ) erfillt ist. Dabei ist fir alle f € L(E,u) die

Ungleichung
[ ranl< [ 11
E E

giltrg.
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5 Das Lebesgue-Integral

Beweis. Sei A:={x € E: f(x) > 0}. Dann gilt
/mw=/mw+/mw=/hw+/fmP/ﬁw+/fw
E A E\A A F\A B E

(bei der ersten Gleichheit haben wir Satz 5.6 (i) verwendet), d.h. [, |f]du < oo gilt genau
dann, wenn [ fy dp < oo und [ f— du < oo. Die im Satz formulierte Ungleichung ergibt
sich wegen der Dreiecksungleichung |a + b| < |a| 4 |b| direkt aus der Abschétzung

[ran|=| [ redu= [ra <|[reanls] [ 1-au = [ feans [ 1= [ 17100
E E E E E E E E

O

Satz 5.10. Seien (X, M, u) ein Mafiraum, E € M und f,g: X — R messbare Funktionen
mit |f(z)| < g(x) fir alle x € E. Aus g € L(E, ) folgt dann f € L(E, u) und

Zf@s/ﬁw.

E

Beweis. Wegen T|?| C TgE folgt aus Definition 5.1

/!f!duﬁ/gdu,
E

E

d.h. |f| € L(E, p). Nach Satz 5.9 gilt dann auch f € £(E, ;1) und mit dem Beweis zu Satz 5.9

erhalten wir
[ran=[teau—[rans [t [ 1 au= 17100
E E E E E E
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6 Grenzwertsatze fir Integrale

Satz 6.1 (Satz von Beppo Levi iiber monotone Konvergenz). Seien (X, M, u) ein Mafiraum,
E e Mund f, f, : X = R fiir n € N messbare Funktionen mit 0 < fi(x) < fo(z) < ... fiir
alle v € E und f(x) = limy, 00 frn(x) fir alle x € E. Dann gilt

nlggo/fnduz/fdu-
E E

Beweis. Wegen fy(z) < f(z) fir z € E folgt [ fadp < [ fdp fiir alle n € N und somit

lim /fndu < /fdu.
E FE

Insbesondere ist die Behauptung also fiir lim, o [ pfndp = +oo gezeigt. Fir n € N,
ce (0,1) und ¢ € T}E (vgl. Definition 5.1) definieren wir

Eu(p.c) i={z € B fu(2) > cp(a)).

Dann gilt E,(p,c) € M sowie Ei(p,c) C Ea(p,c)
z € E existiert zu jedem z € E einn € Nmit f,(x)
Weiter gilt

- C E. Wegen f()Z(p( ) fiir alle
(), A es folgt E = U, By (p,c).

/fndu> / fndp = / codp=c / @dp

En(% E'n((,p,c) E’ﬂ(ﬂarc)

fiir alle ¢ € T}E und alle ¢ € (0,1), wobei die letzte Gleichheit leicht aus Lemma 5.4 als
Eigenschaft aller Treppenfunktionen folgt. Bei Grenziibergang fiir n — oo ergibt sich daraus
wegen Satz 5.6 (i) in Verbindung mit Satz 2.6

c-
>c

n—00
E En(p:0) E

lim [ fodu>c li_>m / god,u:c/gpd,u.

Durch Ubergang zum Supremum iiber alle ¢ € Tf erhélt man schlieflich entsprechend der
Definition des Integrals iiber Treppenfunktionen

hm fndu > c sup /apdu:c/fdu.

TE
B L E
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6 Grenzwertsédtze fiir Integrale

Der Grenziibergang ¢ — 1 liefert dann die Behauptung. O
Mit Satz 6.1 konnen wir nun auch den folgenden wichtigen Satz beweisen.

Satz 6.2. Seien (X, M, u) ein Mafiraum, ¢ € R und f,g : X — [0,00] zwei nichtnegative,
messbare Funktionen. Dann gilt

/(f+g)du=/fdu+/gdu und /cfdu:c/fdu
E E E E

E

fiir alle E € M.

Beweis. Wir zeigen die Additivitdt zunéchst flir zwei messbare Treppenfunktionen ¢ =
>y cixp; und ¥ =370 dixp; (0.B.d.A. gelte UL, By = X =L, F)). Es gilt

o+ = ZCZZXEmF +Zd ZXEOF —ZZ (¢ci + dj)XEinF,
=1 7j=1 =1 j=1

und somit

n m

/(p—i—wdu ZZcH—d (EiNFjNE) chzuEijmE)Jridj w(E;NF;NE)

o) =1 j=1 =1 j=1 J=1 =1
n m
:Zciu(EiﬂE)—i—Zdju(FjﬂE /god /wdu.
i=1 j=1 %

Zu f und g existieren nach Satz 4.16 Folgen (¢, )nen und (¢, )nen nichtnegativer (vgl. Beweis
zu 4.16), messbarer Treppenfunktionen auf X mit 0 < ¢1 < @9 < ... bzw. 0 < ¢ < Py <

cund f(x) = limyeo @n(z) bzw. g(z) = lim, oo ¥ (x) fir alle z € X. Auferdem gilt
0<pi+¢1 <pa+12 <...und (f + g)(x) = limy—oo(n + ¥p)(x) fir alle x € X. Mit
Satz 6.1 folgt nun

/(f+g)dM=nlggo/son+¢nduZHILH;O/sDndqu?}LH;o/%du:/fdu+/gdu-
E E E E E E

Die Homogenitéat folgt fiir nichtnegative, messbare Treppenfunktionen sofort aus Lemma
5.4. Zu f wéahlen wir nun wieder eine Folge (¢, )nen nichtnegativer, messbarer Treppenfunk-
tionen mit 0 < 1 < o < ... und f(z) = limy, o0 ¢n(z) fir alle z € X. Dann gilt fiir ¢ > 0
auch 0 < cp1 < cpg < ... und (cf)(z) = limy, 00 (cpn)(z) fiir alle z € X, sodass aus Satz

6.1
/cfd,u: lim /cgond,u: lim c/gond,u:c/fdu
n—oo n—oo

E E E E
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6 Grenzwertsédtze fiir Integrale

folgt. Fiir ¢ < 0 gilt nun (vgl. Definition 5.2)
[etau=[enan- [endu=- [Cora=-¢o [ran=c [ ran
E E =0 E =—cf E E E
0

Satz 6.3. Seien (X, M, ) ein Mafraum, E € M und f : X — R messbar. Gilt f € L(E, 1),
so ist f fir fast alle x € E endlich.

Beweis. Sei AT :={zx € E: f(z) = +oo} undsei A :={x € E: f(z) >n} firn=1,2,....
Dann gilt AT C Al fir n=1,2,... und somit
N N 1 1 1
0<puA")<uwAN)= [ 1dp< [ —fdp== [ frdu<— [ frdpy,
At AF T n n
At E

——

<00

dh. p(AT)=0.Fir A~ :={z € E: f(z) = —occ} und A,, :={z € E: f(x) < —n} erhalten

wir analog

0<p) <uan < [1ans [Lenan=1 [rduss [ £

An Ay An

d.h. u(A7) =0. O

Satz 6.4 (Satz von Lebesgue iiber monotone Konvergenz). Seien (X, M, ) ein MafSraum,
EeMund f, f, : X — R fiir n € N messbare Funktionen mit f1(x) < fo(x) < ... fiir alle
x € E und f(x) = lim, o0 fn(z) fiir alle x € E. Existiert ein m € N mit f,, € L(E, ), so

gilt
ﬁ&/hwz/ﬁw
E E

Beweis. O.B.d.A. gelte m = 1 (sonst die ersten m — 1 Folgenelemente verwerfen und den
Rest neu nummerieren). Nach Satz 6.3 ist f; dann fast iiberall auf E endlich. O.B.d.A.
konnen wir annehmen, dass f; auf ganz E endlich ist (sonst f; durch dquivalente, auf E
endliche Funktion ersetzen). Definieren wir g, : X — R fiir n € N durch

gn() = {fn<x> Ch@), zek,
0, zre X\ E,

so ist g, messbar und es gilt 0 < g1 < go < .... Auferdem setzen wir g(z) := lim, o0 gn(2)
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6 Grenzwertsédtze fiir Integrale

fiir € X. Die so definierte Funktion g : X — R ist ebenfalls messbar. Satz 6.1 liefert nun
i [ £ = tim [gndu= [gdu= [ £ pian,
n—oo n— o0
E E E E
und somit die Behauptung (unter Verwendung von Satz 5.5 (ii)). O

Satz 6.5 (Lemma von Fatou). Seien (X, M, ) ein Mafiraum, E € M und f, : X — R fiir
n € N messbare Funktionen.

(i) Gilt f, >0 fiir alle x € E und n € N, so folgt

/lim inf f, dp < lim inf/fn du.
n—oo n—oo
E E

(i) Gilt fr(z) <0 fir alle x € E und n € N, so folgt

/lim sup fpdyp > lim sup/fn dp.
E

n—00 n—00
E

Beweis. Wir zeigen (i). Setzen wir g, := infg>,, fr : X — R fiir n € N, so gilt g, (x) > 0 sowie
0<g1(z) < go(x) < ... fiirallex e E. Esfolgt 0 < [g1dpu < [godp < ... und damit die
E

Existenz von limy, o0 5 gn dp € [0, 00]. AuRerdem gilt g, < f,, also [pgndp < [5 fndp.
Wir erhalten hieraus zunéchst

lim gndp = lim inf/ gndp < lim inf/ fn dpu.

n—oo

Setzen wir nun g := lim, o gn = SUP, ey gn = liminf, o f, und wenden Satz 6.1 auf g
und g, an, so erhalten wir aufserdem

/liminffnd,u:/gduz lim /gnd,u,.
n—oo n—o0
E E E

Damit ist (i) gezeigt. Punkt (ii) folgt nun direkt aus (i), da

n—o0 n—oo

/limsupfn dp = —/liminf (—fn) du > —liminf/ —fndp = limsup/fn dp
N—00 N = n—oo
E B >0 B E

gilt. O

Satz 6.6 (Satz von Lebesgue iiber dominante Konvergenz). Seien (X, M, u) ein Mafiraum,
EecMund f, fn : X — R fir n € N messbare Funktionen mit f(x) = limy, o0 fn(z) fir
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6 Grenzwertsédtze fiir Integrale

alle x € E. Euxistiert eine Funktion g € L(E, u) mit
ful@)| < gla) fiir alle x € E,

so gilt f € L(E,p) und
Jim fn du = /fdu

Beweis. Wegen |f,(z)| < g(z) fiir alle x € E und n € N gilt auch |f(z)| < g(z) fur alle
x € E, sodass aus Satz 5.10 f € L(E, u) folgt. Nach Satz 6.5 gilt dann

n—oo n—o0

1imsup/fn—gdus/limsup(fn—g)dMZ/f—gdu,
0 E E

sowie
/(f—l—g)d,u = /liminf(fn +g)du < liminf/fn + gdp.
n—oo A,—/ n—oo
E ) >0 E

Zusammen liefert dies

n—0o0

limsup/fndug/fduglirginf/fndu,
E E

d.h. lim, fE fn dp existiert und ist gleich fE fdu. O

Bemerkung. Satz 6.6 liefert eine hinreichende Bedingung fiir die Summierbarkeit einer mess-
baren Funktion. Wir wollen zusétzlich eine notwendige und zugleich hinreichende Bedingung
formulieren:

Gilt fiir messbare Funktionen f, f,, : X — R auf einem Mafraum (X, M, 1) die Eigenschaft
0 < fi(z) < fa(x) < ...sowie f(x) = limy, o fn(z) fiir alle x € E € M, so ist f € L(E, u)
genau dann erfiillt, wenn eine Teilfolge (fn,)reny mit [5 fr, dp < C < oo fiir alle k € N
existiert, was dquivalent ist zur Bedingung | g fndp < C fiir alle n € N.

Beweis: Mit f € L(E, u) gilt fiir n € N

Og/fnd,u,g/fd,u,::0<oo.
E E

Existiert umgekehrt eine Teilfolge (fy, )reny mit der geforderten Eigenschaft fiir ein C' > 0,
so gilt die Eigenschaft aufgrund der Monotonie der Folge (f,) fiir alle n € N. Mit Satz 6.5
folgt nun

0< /fdp = /liminffnd,u < liminf/ fadu <C,
n—0o0 n—oo E
E E

d.h. fe L(E, p).
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6 Grenzwertsédtze fiir Integrale

Als Gegenbeispiel kann man betrachten

pE)=m <o fule)=n,  lim fu=f=too [ fudu=nm<oc
E

mit
lim fndu:/fdu:oo.
n—o0
E E
Es gibt also keine Konstante C' > 0 mit [ f,dp < C Vn € N. Wir haben dann zwar
E

fn€ L(E,pn) VneN,aber f & L(E,p).
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7 Vergleich von Lebesgue-Integral und
Riemann-Integral

In diesem Kapitel betrachten wir ausschlieflich den Lebesgue’schen Mafkraum (R, L(R), i),
d.h. p ist das Lebesgue-Mafs auf der Lebesgue’schen o-Algebra £(R). Weiter betrachten wir
messbare Funktionen f : R — R, d.h. die Urbilder f~!(B) von Borel-Mengen B € B(R) sind
selbst Borel-Mengen und gehoren damit zu £(R). Im Mittelpunkt stehen in diesem Kapitel
Funktionen f, die nur auf dem abgeschlossenen Intervall [a,b] mit —co < a < b < 400 zu
definieren sind. Dann kann man sich f als mit Null auf ganz R fortgesetzt betrachten. Ei-
ne alternative Betrachtungsweise besteht darin, gleich den Mafkraum ([a, b], L(R) N [a, b], 1)
anzusehen, wobei dann unter £(R) N [a,b] die so genannte Spur-o-Algebra von L£(R) ein-
geschriankt auf das Intervall [a,b] zu vestehen ist. Beides fithrt in der Regel zum gleichen
Ergebnis.
Es sollen im Weiteren

b b
(R)/f(m) dz bzw. (L)/f(:c) de:= [ fdu
a a ]

[a7b

das Riemann- bzw. Lebesgue-Integral von f auf [a, b] bezeichnen. Wahrend der Begriff des
Lebesgue-Integrals aus Kapitel 5 hinreichend gut bekannt ist, wollen wir den Begriff des
Riemann-Integrals hier noch einmal wiederholen und im Lichte von Treppenfunktionen etwas
anders interpretieren.

Dazu betrachten wir eine Folge von Zerlegungen (Zi)reny des Intervalls [a,b] mit
Z), = {a:'{j,:rlf, e ,x’,:} und a = $]5 < xlf < < xi = b sowie AZ}, := maxj<;<k \xf — xf_l\ )
Wir nehmen an, dass aufeinanderfolgende Zerlegungen Z;, und Zyy; durch Einfiigung eines
zusétzlichen Punktes erfolgen, sodass Z1 C Zy C ... Zy C Zpyq1 C ... gilt, und die maxima-
len Léngen von Teilintervallen in der Zerlegung asymptotisch fiir & — oo gegen Null gehen,
d.h. limg_, o AZ = 0 gilt. Solche Zerlegungsfolgen nennen wir regulér.

Fiir beschriankte Funktionen f betrachtet man nun die auf ganz R definierten reellen
Unterfunktionen L(x) und Oberfunktionen U (x), die iiber die Zuordnungen

Uk(a) := Lg(a) := f(a), Uk(x) := Lg(z) :==0 fiir z € R\ [a, b

und fiir z € (2% |, 2% (i=1,2,...,k)
Uk(x) :=M; == sup f(&) bzw. Li(z) :=m; := i/?f . f(€)
ée(al |2k g€z 7]
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7 Vergleich von Lebesgue-Integral und Riemann-Integral

definiert sind. Diese Funktionen sind offenbar messbare Treppenfunktionen, und es gilt

b k
©) [ Lulo)de =Y mitek — o) = 5(Z0. )
a =1

bzw.

b k
m/wmm-mecﬁﬁaa%ﬂ

a

Wir haben dabei die Untersummen s(Z, f) und die Obersummen S(Zy, f) der Zerlegung
Z ins Spiel gebracht. Wegen Z; C Zs C ... erhalten wir

Ui(x) > Us(x) > -+ > f(x) > -+ > Lao(x) > Li(z) fur alle z € [a, b].
Wir setzen

U(z) := lim Ug(x) und  L(z) := lim Lg(z) fir alle z € R.

k—o0 k—o0

Definition 7.1. Eine auf [a, b] definierte reelle Funktion f heift Riemann-integrierbar, wenn
sie beschrankt ist und fiir jede reguldre Zerlegungsfolge gilt

lim s(Z, f) = lim S(Z, f),
k—o0 k—o0
wobei wir diesen dann von der konkreten Zerlegungsfolge unabhéngigen Grenzwert Riemann-
b
Integral von f tiber [a,b] nennen und mit dem Symbol (R) [ f(z) dz bezeichnen.
a
Eine dquivalente Definition der Riemann-Integrierbarkeit auf der Basis von dem Riemann-
Integral angepassten Treppenfunktionen (wir nennen sie hier (R)-Treppenfunktionen) soll

im Folgenden noch erwdhnt werden (vgl. > K. D. ScHMIDT: Maf und Wahrscheinlich-
keit, S.181f). Mit Blick auf das Intervall [a, b] werde dabei eine Treppenfunktion ¢ : R — R

als (R)-Treppenfunktion bezeichnet, wenn sie die spezielle Gestalt f(x) = ¢ mit
Tio1 < x < m (1 = 1,2,...,k) fir eine Zerlegung a = z9 < 21 < ... < 1 < T = b
b k
des Intervalls [a, b] besitzt. Es gilt dann offensichtlich (L) [ ¢(z)dz = > ¢;(x; — @i—1).
a =1

Definition 7.2. Eine auf [a, b] definierte reelle Funktion f heift Riemann-integrierbar, wenn
sie beschrankt ist und die reellen Zahlen

b
$ 1= sup (L)/go(w) dz: @ist (R)-Treppenfunktion mit ¢(x) < f(x) Vx € [a, b]
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7 Vergleich von Lebesgue-Integral und Riemann-Integral

und
b
S :=inf (L)/gp(w) dz: ¢ist (R)-Treppenfunktion mit f(z) < ¢(x) Vz € [a, b]

b

tibereinstimmen, wobei dann als Riemann-Integral (R) [ f(z)dz := s = S bezeichnet wird.
a

Wir werden uns aber auf die erste Version der Definition konzentrieren und kénnen nun auf
der Grundlage der oben durchgefithrten Uberlegungen leicht den folgenden Satz beweisen.

Satz 7.3. Sei f: R — R eine Funktion und es gelte —o0o < a < b < +00.
(i) Ist f Riemann-integrierbar auf [a,b], so gilt f € L([a,b], ) und

(L)/bf(x) dr = (R)/bf(fr) dz.

(ii) Die Funktion f ist genau dann Riemann-integrierbar auf [a,b], wenn sie auf [a,b]
beschrinkt und fast iberall auf [a,b] stetig ist.

Beweis. Wir beweisen (i). Da f Riemann-integrierbar ist, ist f beschriankt. Aus der Riemann-
Integrierbarkeit von f folgt fiir eine regulédre Zerlegungsfolge

b
i s(Ze, £) = (®) [ f(o)do = lim S(Ze. ).

Andererseits folgt aus Satz 6.6 (Satz von Lebesgue iiber dominante Konvergenz)

b b

b b
kli)ngo(L)/Uk(x) dz = (L)/U(az) dz und kh_}nolo(L)/Lk(x) dz = (L)/L(m) dz,

zusammen also
b

(L) / L(z)dz = (R) /b f@)dz = (L) / U(z) da.

a a

SchlieRlich folgt mit Satz 5.5 (v) aus L(z) < f(z) < U(z) fir x € [a,b], d.h. U(x)—L(z) > 0,
und (L) fab[U(a:) — L(z)]dz =0, dass U(z) = f(z) = L(x) fir fast alle z € [a, b] gilt. Somit
erhalten wir f € L([a,b], u) und

o3



7 Vergleich von Lebesgue-Integral und Riemann-Integral

Wir beweisen nun noch (ii). Seien die Bezeichnungen wie im Beweis zu (i). Mit Z :=
Urey Zi gilt dann p(Z) = 0 (da Z abzéhlbar ist). Wir zeigen zunéchst als wichtige Hilfs-
aussage, dass f genau dann stetig in zg € [a,b] \ Z ist, wenn U(xo) = L(xo) gilt.

Sei f also stetig in xg € [a,b] \ Z. Dann existiert zu jedem ¢ > 0 ein 6 > 0 mit
|f(x) = f(zo)] < § fiir alle z € [a,b] mit |z — x| < §. Wegen AZ, — 0 existiert ein
K € Nmit AZy, <0 fiir alle k > K. Fur ip € {1,2,...,k} mit zg € (zi,—1,x;,] gilt folglich

k(o) ~ Li(ro) = My — may = (Myy — F(w0)) + (Flao) — mig) < = + 5 = ¢

und aus € — 0 folgt somit U(xg) = L(zo). Es gelte nun U(xg) = L(xz¢) fir z¢ € [a,b] \ Z.
Fiir beliebiges € > 0 gibt es wegen U(x¢) = f(x0) = L(xg) dann ein K € N mit

Uk (x0) — f(xo) <€ und f(zo) — L (z0) < €.
Setzen wir § := mingcy, |ro — z|, so gilt auferdem
Lk (xo) < f(z) < Ugk(xo) fir alle z € [a,b] \ Z mit |z — zo| <.

Zusammen erhalten wir |f(x) — f(xo)| < € fiir |z — 20| < J, d.h. f ist stetig in xp. Damit ist
die Hilfsaussage bewiesen.

Ist f nun Riemann-integrierbar, so ist f beschriankt und aus dem Beweis zu (i) folgt, dass
U(x) = f(x) = L(x) fir fast alle x € [a,b] und damit auch fiir fast alle z € [a,b] \ Z gilt.
Wegen der Hilfsaussage ist f dann fiir fast alle = € [a,b] \ Z stetig und folglich fast {iberall
auf [a, b] stetig. Ist umgekehrt f beschriankt und fast iiberall stetig auf [a, b], so gilt wegen
der Hilfsaussage U(z) = f(x) = L(z) fast iiberall auf [a,b] \ Z und damit auch fast iiberall
auf [a,b]. Es folgt

(L) /b U(z)dz = (L) /b L(z)da

und mit Satz 6.6 erhalten wir

b b

lim (S(Zy, f) — s(Zy, f)) = lim (L)/Uk(x) dzr — lim (L)/Lk(a:) dx

k—o00 k—o00

d.h. f ist Riemann-integrierbar auf [a, b]. O

Beispiel 7.4. Die Dirichlet-Funktion auf [0, 1] aus Beispiel 5.3 ist beschrénkt, aber nirgends
stetig. Nach Satz 7.3 (ii) ist sie also nicht Riemann-integrierbar.
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7 Vergleich von Lebesgue-Integral und Riemann-Integral

Beispiel 7.5. Wir dndern die Dirichlet-Funktion auf [0, 1] aus Beispiel 5.3 wie folgt:

_Jsinz, x€Qn]0,1],
f@) = {372, x €[0,1]\ Q.

Diese Funktion ist messbar und nach Satz 7.3 (i) gilt

(L)/lf(x)dx: / fdu+ / fdu:(L)/ledx:(R)/ledx:;,
0 0 0

[0,1]NQ [0,1\Q
=0
weil wir den Integranden auf einer Menge vom Maft Null beliebig &ndern diirfen. Da f

in keinem Punkt stetig ist, ist f nicht Riemann-integrierbar auf [0, 1], jedoch gibt es eine
dquivalente Riemann-integrierbare Funktion, namlich = + x2.

Beispiel 7.6. Ein dhnliches, aber doch anders geartetes Beispiel liefert die Thomae-Funktion
auf [0,1]

fx) = {L, x =0,
0, z€l0,1]\Q.

L 2=2¢cQn(0,1] (m,n teilerfremd),

Diese ist genau in allen irrationalen Punkten des Intervalls [0, 1] stetig und somit nur auf
einer Menge vom Mafe Null unstetig. Damit ist die Funktion Riemann-integrierbar und
das Riemann-Integral stimmt mit dem Lebesgue-Integral iiberein, welches offensichtlich den
Wert Null besitzt.

Beispiel 7.7. Wir betrachten die durch

sinz7 J}>0,
)= r
o= {5

gegebene Funktion. Diese ist auf [0, T] stetig fiir alle 7" > 0 und damit auf jedem solchen be-
schrinkten Intervall Riemann-integrierbar. Im Sinne eines uneigentlichen Riemann-Integrals
gilt

oo T
sin x sinx s
dz = li de = —.
®) f 5570 = i B [ 52 0w = 3
0 0
Wegen f[o 00) |fldp = 400, d.h. |f| ¢ L(][0,00), 1), gilt aber f ¢ L£([0,00), u). Wegen der
Endlichkeit des uneigentlichen Integrals (R) [ % dx < oo miissen dann aber beide Integrale

0
f[O,oo) f+dp und f[o,oo) f— dp gleich 400 sein, denn es konnen nicht beide gleichzeitig endlich

sein und eines davon endlich und das andere +oo wiirde dem widersprechen.
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7 Vergleich von Lebesgue-Integral und Riemann-Integral

Beispiel 7.8. Wir betrachten eine fast iiberall stetige Funktion f: R — R mit f(z) = 0 fur
x <0, f(x) >0 fir z > 0 und (R) fOT f(z)dz < oo fiir alle T > 0. Setzen wir

_ ) f@), z<n,
D A
sogilt 0 < f1 < fo <...und
/ Jndp = (L)/f(a?)dx = (R)/f(ac)dx < o0.
[0,00) 0 0

Wegen f(z) = limy,_,o0 fn(x) fiir alle 2 € R folgt aus Satz 6.1

[ fau=tin [ fau= tim @) / f(x)dxz(R)]of(x)dx = 1.
[0,00) 0

[0,00) 0

Somit gilt f € £([0,00), ) genau dann, wenn I < oo gilt.
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