
5 Das Lebesgue-Integral

Definition 5.1. Seien (X,M, µ) ein Maßraum, E ∈ M, f : X → [0,∞] eine nichtnegative
messbare Funktion und

TEf :=

{
ϕ =

n∑
i=1

ciχEi : n ∈ N, ci ≥ 0, Ei ∈M, ϕ(x) ≤ f(x) ∀x ∈ E

}

die Menge aller nichtnegativen messbaren Treppenfunktionen, die auf E punktweise Mino-
ranten von f sind. Dann heißt die Zahl∫

E

f dµ := sup
ϕ∈TEf

n∑
i=1

ciµ(E ∩ Ei)

Lebesgue-Integral von f auf E.

Bemerkung. Das Lebesgue-Integral einer nichtnegativen Funktion kann den Wert +∞ an-
nehmen. Die Definition ist sinnvoll, da nach Satz 4.16 jede nichtnegative, messbare Funktion
beliebig genau von unten durch Treppenfunktionen angenähert werden kann.

Definition 5.2. Seien (X,M, µ) ein Maßraum, E ∈ M und f : X → R messbar. Gilt∫
E f+ dµ < +∞ oder

∫
E f− dµ < +∞, so heißt∫

E

f dµ :=

∫
E

f+ dµ−
∫
E

f− dµ

Lebesgue-Integral von f auf E (mit f+ und f− wie in Folgerung 4.12). Die Funktion f heißt
summierbar auf E, wenn

∫
E f+ dµ < +∞ und

∫
E f− dµ < +∞ gilt. Mit L(E,µ) bezeichnen

wir die Menge der bezüglich µ auf E summierbaren Funktionen.

Bemerkung (Alternative Definition des Lebesgue-Integrals für beschränkte Funktionen).
Im Falle beschränkter, messbarer Funktionen kann das Lebesgue-Integral äquivalent wie folgt
definiert werden: Für

m := inf
x∈E

f(x) > −∞ und M := sup
x∈E

f(x) < +∞

bezeichne
Z :=

{
{y1, y2, . . . , yn} : m = y1 < y2 < · · · < yn = M, n ∈ N

}
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5 Das Lebesgue-Integral

die Familie aller endlichen Zerlegungen von [m,M ] und für Z = {y1, y2, . . . , yn} ∈ Z
setzen wir Ei(Z) := {x ∈ E : yi ≤ f(x) < yi+1}, wenn i ∈ {1, 2, . . . , n − 1}, und
En(Z) := {x ∈ E : f(x) = yn}. Dann kann man∫

E

f dµ = sup
Z∈Z

n∑
i=1

yiµ(Ei(Z))

zeigen.

Beispiel 5.3. Wir betrachten X = R mit dem Lebesgue-Maß µ und wählen E := [0, 1]
sowie

f(x) :=

{
1, x ∈ Q,
0, x /∈ Q

(die so genannte Dirichlet-Funktion). Da µ(Q) = 0 gilt, ist f messbar. Für f ist das Riemann-
Integral nicht definiert, weil die Funktion in keinem Punkt stetig ist. Jedoch existiert das
Lebesgue-Integral. Wir zeigen ∫

E

f dµ = 0.

Sei also {y1, y2, . . . , yn} eine Zerlegung von [0, 1] (vgl. vorhergehende Bemerkung). Dann gilt

E1 := {x ∈ E : 0 = y1 ≤ f(x) < y2} = [0, 1] \Q,
Ei := {x ∈ E : 0 < yi ≤ f(x) < yi+1 ≤ 1} = ∅ für i = 2, 3, . . . , n− 1,

En := {x ∈ E : f(x) = yn = 1} = [0, 1] ∩Q,

also
n∑
i=1

yiµ(Ei) = 0 · µ([0, 1] \Q) + 1 · µ([0, 1] ∩Q)︸ ︷︷ ︸
≤µ(Q)=0

= 0.

Beachte: Das gleiche Ergebnis folgt auch unmittelbar aus Definition 5.1, weil f selbst eine
Treppenfunktion ist.

Lemma 5.4. Seien (X,M, µ) ein Maßraum, E ∈ M und ϕ =
∑n

i=1 ciχEi : X → R eine
messbare Treppenfunktion. Dann gilt∫

E

ϕdµ =
n∑
i=1

ciµ(E ∩ Ei).

Beweis. Setzen wir I+ := {i ∈ N : 1 ≤ i ≤ n, ci > 0} und I− := {i ∈ N : 1 ≤ i ≤ n, ci < 0},
so gilt ϕ+ =

∑
i∈I+ ciχEi und ϕ− = −

∑
i∈I− ciχEi . Aus Definition 5.1 folgt nun sofort∫

E

ϕ+ dµ =
∑
i∈I+

ciµ(E ∩ Ei) und
∫
E

ϕ− dµ = −
∑
i∈I−

ciµ(E ∩ Ei).
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5 Das Lebesgue-Integral

Nach Definition 5.2 gilt somit∫
E

ϕdµ =

∫
E

ϕ+ dµ−
∫
E

ϕ− dµ =

n∑
i=1

ciµ(E ∩ Ei).

Satz 5.5 (Eigenschaften des Lebesgue-Integrals). Seien (X,M, µ) ein Maßraum, E ∈ M
sowie f, g : X → R messbar.

(i) Gilt m ≤ f(x) ≤M für alle x ∈ E mit Konstanten m,M ∈ R, so folgt

mµ(E) ≤
∫
E

f dµ ≤Mµ(E).

(ii) 1 Mit f, g ∈ L(E,µ) und c ∈ R gilt f + g, cf ∈ L(E,µ) und∫
E

(f + g) dµ =

∫
E

f dµ+

∫
E

g dµ sowie
∫
E

cf dµ = c

∫
E

f dµ.

(iii) Ist A ⊆ E messbar (d.h. A ∈M) und gilt f(x) ≥ 0 für alle x ∈ E, so folgt∫
A

f dµ ≤
∫
E

f dµ.

(iv) Gilt 0 ≤ f(x) ≤ g(x) für alle x ∈ E, so folgt

0 ≤
∫
E

f dµ ≤
∫
E

g dµ.

(v) Aus f(x) ≥ 0 für alle x ∈ E folgt die Äquivalenz∫
E

f dµ = 0 ⇔ f(x) = 0 für fast alle x ∈ E.

Beweis. (i) Man überlegt sich leicht, dass

max{0,m} ≤ f+(x) ≤ max{0,M} und −min{0,M} ≤ f−(x) ≤ −min{0,m}

für alle x ∈ E gilt. Da somit max{0,m}χE bzw. −min{0,M}χE am Supremum in der

1Diese Aussage kann erst später mit Mitteln des Kapitels 6 bewiesen werden.
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5 Das Lebesgue-Integral

Definition von
∫
E f+ dµ bzw.

∫
E f− dµ teilnehmen (vgl. Definition 5.1), folgt

max{0,m}µ(E) ≤
∫
E

f+ dµ bzw. −min{0,M}µ(E) ≤
∫
E

f− dµ.

Andererseits gilt für jede Treppenfunktion ϕ, die am Supremum in der Definition von∫
E f+ dµ bzw.

∫
E f− dµ teilnimmt, ϕ ≤ max{0,M}χE bzw. ϕ ≤ −min{0,m}χE , also∫

E

f+ dµ ≤ max{0,M}µ(E) bzw.
∫
E

f− dµ ≤ −min{0,m}µ(E).

Zusammen erhalten wir

mµ(E) = (max{0,m}+ min{0,m})µ(E) ≤
∫
E

f+ dµ−
∫
E

f− dµ

≤ (max{0,M}+ min{0,M})µ(E) = Mµ(E).

(ii) Für den Beweis der beiden Aussagen benötigen wir Sätze, die wir erst in Kapitel 6
formulieren werden.

(iii) O.B.d.A. gelte f ≥ 0 (auf E erfüllt, Verhalten auf X \ E uninteressant). Wir setzen
T := {ϕ ∈ TAf : ϕ(x) = 0 ∀x ∈ X\A} (vgl. Definition 5.1). Zu jedem ϕ =

∑n
i=1 ciχEi ∈

TAf existiert dann ein ψ =
∑m

i=1 diχFi ∈ T mit
∑n

i=1 ciµ(A ∩Ei) =
∑m

i=1 diµ(A ∩ Fi);
man setze einfach m := n, di := ci und Fi := Ei ∩A. Somit gilt

sup
ϕ∈TAf

n∑
i=1

ciµ(A ∩ Ei) ≤ sup
ϕ∈T

n∑
i=1

ciµ(A ∩ Ei)

und aus T ⊆ TEf folgt

sup
ϕ∈T

n∑
i=1

ciµ(E ∩ Ei) ≤ sup
ϕ∈TEf

n∑
i=1

ciµ(E ∩ Ei).

Wegen A ⊆ E, d.h. µ(A ∩ Ei) ≤ µ(E ∩ Ei) für Ei ∈M, folgt die Behauptung.

(iv) Die Behauptung folgt wegen TEf ⊆ TEg sofort aus Definition 5.1.

(v) „⇒“: Setzen wir

F := {x ∈ E : f(x) > 0} ∈ M und En := {x ∈ E : f(x) > 1
n},

so gilt En ⊆ En+1 für alle n ∈ N und F =
⋃∞
n=1En. Zu zeigen ist µ(F ) = 0. Wir

nehmen also an, es würde µ(F ) > 0 gelten. Nach Satz 2.6 gilt µ(En) → µ(F ) für
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5 Das Lebesgue-Integral

n → ∞, sodass dann ein ε > 0 und ein n0 ∈ N mit µ(En0) > ε existieren. Aus (iii)
und (i) des Satzes folgt nun

0 =

∫
E

f dµ >

∫
En0

f dµ ≥ 1

n
µ(En0) >

ε

n
> 0.

Dies ist ein Widerspruch, d.h. µ(F ) = 0 ist gezeigt.

„⇐“: O.B.d.A. gelte f ≥ 0 (auf E erfüllt, Verhalten auf X \ E uninteressant). Sei
N ∈ M eine Menge mit µ(N) = 0 und f(x) = 0 für alle x ∈ E \ N . Für jede
Treppenfunktion ϕ =

∑n
i=1 ciχEi , die am Supremum in der Definition von

∫
E f dµ

teilnimmt, muss dann (ci > 0 für i = 1, 2, . . . , n vorausgesetzt) E ∩Ei ⊆ F und somit
µ(E ∩ Ei) ≤ µ(F ) = 0 für i = 1, 2, . . . , n gelten. Also folgt

∑n
i=1 ciµ(E ∩ Ei) = 0 und

damit
∫
E f dµ = 0.

Satz 5.6. Seien (X,M, µ) ein Maßraum, f : X → R messbar sowie ν :M→ R die durch

ν(A) :=

∫
A

f dµ, A ∈M,

definierte Mengenfunktion.

(i) Gilt f ≥ 0, so ist ν volladditiv.

(ii) Gilt f ∈ L(X,µ), so ist ν volladditiv.

Beweis. Wir zeigen (i). Seien zunächst A1, A2, . . . ∈ M paarweise disjunkt und sei A :=⋃∞
j=1Aj . Für alle ϕ =

∑n
i=1 ciχEi ∈ TAf (vgl. Definition 5.1) gilt dann

n∑
i=1

ciµ(A ∩ Ei) =
n∑
i=1

ciµ

 ∞⋃
j=1

(Aj ∩ Ei)

 =
∞∑
j=1

n∑
i=1

ciµ(Aj ∩ Ei)

=

∞∑
j=1

∫
Aj

ϕdµ ≤
∞∑
j=1

∫
Aj

f dµ =

∞∑
j=1

ν(Aj)

und der Übergang zum Supremum liefert

ν(A) =

∫
A

f dµ = sup
ϕ∈TAf

n∑
i=1

ciµ(A ∩ Ei) ≤
∞∑
j=1

ν(Aj).

Hieraus werden wir weiter unten die Subvolladditivität folgern; dazu benötigen wir jedoch
die Additivität von ν.
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5 Das Lebesgue-Integral

Seien also A1, A2 ∈M disjunkt. Nach dem schon Bewiesenen gilt mit A3 = A4 = · · · = ∅

ν(A1 ∪A2) ≤ ν(A1) + ν(A2).

Für beliebiges ε > 0 existieren ϕ1 ∈ TA1
f und ϕ2 ∈ TA2

f mit∫
A1

f dµ ≤
∫
A1

ϕ1 dµ+ ε und
∫
A2

f dµ ≤
∫
A2

ϕ2 dµ+ ε.

Setzen wir ϕ(x) :=


ϕ1(x) falls x ∈ A1

ϕ2(x) falls x ∈ A2

0 sonst
, so gilt ϕ ∈ TA1∪A2

f , und es folgt

ν(A1) + ν(A2) =

∫
A1

f dµ+

∫
A2

f dµ ≤
∫
A1

ϕ1 dµ+

∫
A2

ϕ2 dµ+ 2ε

=

∫
A1

ϕdµ+

∫
A2

ϕdµ+ 2ε
(∗)
=

∫
A1∪A2

ϕdµ+ 2ε

≤
∫

A1∪A2

f dµ+ 2ε = ν(A1 ∪A2) + 2ε,

wobei man sich die Gleichheit (∗) als Eigenschaft von Treppenfunktionen leicht überlegen
kann. Grenzübergang ε→ 0 liefert die Additivität von ν.
Zurück zum Beweis der Subvolladditivität. Seien nun B,B1, B2, . . . ∈Mmit B ⊆

⋃∞
i=1Bi.

Setzen wir A1 := B∩B1 und Ai := (B∩Bi)\(
⋃i−1
j=1Bj), so gilt B =

⋃∞
i=1Ai und Ai∩Aj = ∅

für i 6= j sowie Ai ⊆ Bi. Also folgt

ν(B) ≤
∞∑
i=1

ν(Ai) ≤
∞∑
i=1

ν(Bi),

d.h. ν ist subvolladditiv (die Additivität haben wir dabei zur Anwendung von Satz 2.5 (v)
benötigt). Aus Satz 2.5 (vii) folgt nun die Volladditivität von ν.
Wie zeigen noch (ii). Wegen f ∈ L(X,µ) sind die durch

ν+(A) :=

∫
A

f+ dµ und ν−(A) :=

∫
A

f− dµ

definierten nichtnegativen Mengenfunktionen endlich, d.h. für alle A ∈ M gilt ν+(A) < ∞
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5 Das Lebesgue-Integral

und ν−(A) <∞. Nach (i) sind ν+ und ν− volladditiv. Wegen

ν(A) =

∫
A

f dµ =

∫
A

f+ dµ−
∫
A

f− dµ = ν+(A)− ν−(A)

sieht man die Volladditivität von ν nun leicht ein.

Folgerung 5.7. Seien (X,M, µ) ein Maßraum, f : X → [0,∞] eine nichtnegative, messbare
Funktion und A,B ∈M mit B ⊆ A und µ(A\B) = 0. Gilt

∫
A f dµ <∞ oder

∫
B f dµ <∞,

so ist auch das jeweils andere Integral endlich und die Werte der beiden Integrale stimmen
überein.

Beweis. Nach Satz 5.6 (i) (benötigen hier nur die Additivität) gilt∫
A

f dµ =

∫
A\B

f dµ

︸ ︷︷ ︸
=0

+

∫
B

f dµ =

∫
B

f dµ,

wobei man sich das Verschwinden des ersten Summanden leicht anhand der Definition des
Integrals überlegen kann.

Definition 5.8. Sei (X,M, µ) ein Maßraum und sei E ∈ M. Zwei messbare Funktionen
f, g : X → R bezeichnen wir als äquivalent auf E und schreiben f E∼ g, wenn µ({x ∈ E :
f(x) 6= g(x)}) = 0 gilt, d.h. wenn f und g fast überall auf E übereinstimmen.

Bemerkung. Man zeigt leicht, dass {x ∈ E : f(x) 6= g(x)} ∈ M gilt und dass E∼ eine
Äquivalenzrelation auf der Menge aller messbaren Funktionen f : X → R ist.

Bemerkung. Aus Folgerung 5.7 erhält man, dass für f, g ∈ L(E,µ) mit f E∼ g die Gleichheit∫
E

f dµ =

∫
E

g dµ

gilt.

Satz 5.9. Seien (X,M, µ) ein Maßraum, E ∈ M und f : X → R messbar. Dann gilt
f ∈ L(E,µ) genau dann , wenn |f | ∈ L(E,µ) erfüllt ist. Dabei ist für alle f ∈ L(E,µ) die
Ungleichung ∣∣∣∣∣∣

∫
E

f dµ

∣∣∣∣∣∣ ≤
∫
E

|f | dµ

gültig.
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Beweis. Sei A := {x ∈ E : f(x) ≥ 0}. Dann gilt∫
E

|f | dµ =

∫
A

|f |dµ+

∫
E\A

|f | dµ =

∫
A

f+ dµ+

∫
E\A

f− dµ =

∫
E

f+ dµ+

∫
E

f− dµ

(bei der ersten Gleichheit haben wir Satz 5.6 (i) verwendet), d.h.
∫
E |f | dµ < ∞ gilt genau

dann, wenn
∫
E f+ dµ < ∞ und

∫
E f− dµ < ∞. Die im Satz formulierte Ungleichung ergibt

sich wegen der Dreiecksungleichung |a+ b| ≤ |a|+ |b| direkt aus der Abschätzung∣∣∣∣∣∣
∫
E

f dµ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
E

f+ dµ−
∫
E

f− dµ

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫
E

f+ dµ

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
E

f− dµ

∣∣∣∣∣∣ =

∫
E

f+ dµ+

∫
E

f− dµ =

∫
E

|f | dµ.

Satz 5.10. Seien (X,M, µ) ein Maßraum, E ∈ M und f, g : X → R messbare Funktionen
mit |f(x)| ≤ g(x) für alle x ∈ E. Aus g ∈ L(E,µ) folgt dann f ∈ L(E,µ) und∫

E

f dµ ≤
∫
E

g dµ.

Beweis. Wegen TE|f | ⊆ T
E
g folgt aus Definition 5.1∫

E

|f | dµ ≤
∫
E

g dµ,

d.h. |f | ∈ L(E,µ). Nach Satz 5.9 gilt dann auch f ∈ L(E,µ) und mit dem Beweis zu Satz 5.9
erhalten wir ∫

E

f dµ =

∫
E

f+ dµ−
∫
E

f− dµ ≤
∫
E

f+ dµ+

∫
E

f− dµ =

∫
E

|f | dµ.
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6 Grenzwertsätze für Integrale

Satz 6.1 (Satz von Beppo Levi über monotone Konvergenz). Seien (X,M, µ) ein Maßraum,
E ∈ M und f, fn : X → R für n ∈ N messbare Funktionen mit 0 ≤ f1(x) ≤ f2(x) ≤ . . . für
alle x ∈ E und f(x) = limn→∞ fn(x) für alle x ∈ E. Dann gilt

lim
n→∞

∫
E

fn dµ =

∫
E

f dµ.

Beweis. Wegen fn(x) ≤ f(x) für x ∈ E folgt
∫
E fn dµ ≤

∫
E f dµ für alle n ∈ N und somit

lim
n→∞

∫
E

fn dµ ≤
∫
E

f dµ.

Insbesondere ist die Behauptung also für limn→∞
∫
E fn dµ = +∞ gezeigt. Für n ∈ N,

c ∈ (0, 1) und ϕ ∈ TEf (vgl. Definition 5.1) definieren wir

En(ϕ, c) := {x ∈ E : fn(x) ≥ cϕ(x)}.

Dann gilt En(ϕ, c) ∈ M sowie E1(ϕ, c) ⊆ E2(ϕ, c) ⊆ · · · ⊆ E. Wegen f(x) ≥ ϕ(x) für alle
x ∈ E existiert zu jedem x ∈ E ein n ∈ Nmit fn(x) ≥ cϕ(x), d.h. es folgt E =

⋃∞
n=1En(ϕ, c).

Weiter gilt ∫
E

fn dµ ≥
∫

En(ϕ,c)

fn dµ ≥
∫

En(ϕ,c)

cϕdµ = c

∫
En(ϕ,c)

ϕdµ

für alle ϕ ∈ TEf und alle c ∈ (0, 1), wobei die letzte Gleichheit leicht aus Lemma 5.4 als
Eigenschaft aller Treppenfunktionen folgt. Bei Grenzübergang für n→∞ ergibt sich daraus
wegen Satz 5.6 (i) in Verbindung mit Satz 2.6

lim
n→∞

∫
E

fn dµ ≥ c lim
n→∞

∫
En(ϕ,c)

ϕdµ = c

∫
E

ϕdµ .

Durch Übergang zum Supremum über alle ϕ ∈ TEf erhält man schließlich entsprechend der
Definition des Integrals über Treppenfunktionen

lim
n→∞

∫
E

fn dµ ≥ c sup
ϕ∈TEf

∫
E

ϕdµ = c

∫
E

f dµ .
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Der Grenzübergang c→ 1 liefert dann die Behauptung.

Mit Satz 6.1 können wir nun auch den folgenden wichtigen Satz beweisen.

Satz 6.2. Seien (X,M, µ) ein Maßraum, c ∈ R und f, g : X → [0,∞] zwei nichtnegative,
messbare Funktionen. Dann gilt∫

E

(f + g) dµ =

∫
E

f dµ+

∫
E

g dµ und
∫
E

cf dµ = c

∫
E

f dµ

für alle E ∈M.

Beweis. Wir zeigen die Additivität zunächst für zwei messbare Treppenfunktionen ϕ =∑n
i=1 ciχEi und ψ =

∑m
j=1 djχFj (o.B.d.A. gelte

⋃n
i=1Ei = X =

⋃m
j=1 Fj). Es gilt

ϕ+ ψ =
n∑
i=1

ci

m∑
j=1

χEi∩Fj +
m∑
j=1

dj

n∑
i=1

χEi∩Fj =
n∑
i=1

m∑
j=1

(ci + dj)χEi∩Fj

und somit∫
E

(ϕ+ ψ) dµ =

n∑
i=1

m∑
j=1

(ci + dj)µ(Ei ∩ Fj ∩ E) =

n∑
i=1

ci

m∑
j=1

µ(Ei ∩ Fj ∩ E) +

m∑
j=1

dj

n∑
i=1

µ(Ei ∩ Fj ∩ E)

=
n∑
i=1

ciµ(Ei ∩ E) +
m∑
j=1

djµ(Fj ∩ E) =

∫
E

ϕdµ+

∫
E

ψ dµ.

Zu f und g existieren nach Satz 4.16 Folgen (ϕn)n∈N und (ψn)n∈N nichtnegativer (vgl. Beweis
zu 4.16), messbarer Treppenfunktionen auf X mit 0 ≤ ϕ1 ≤ ϕ2 ≤ . . . bzw. 0 ≤ ψ1 ≤ ψ2 ≤
. . . und f(x) = limn→∞ ϕn(x) bzw. g(x) = limn→∞ ψn(x) für alle x ∈ X. Außerdem gilt
0 ≤ ϕ1 + ψ1 ≤ ϕ2 + ψ2 ≤ . . . und (f + g)(x) = limn→∞(ϕn + ψn)(x) für alle x ∈ X. Mit
Satz 6.1 folgt nun∫
E

(f + g) dµ = lim
n→∞

∫
E

ϕn + ψn dµ = lim
n→∞

∫
E

ϕn dµ+ lim
n→∞

∫
E

ψn dµ =

∫
E

f dµ+

∫
E

g dµ.

Die Homogenität folgt für nichtnegative, messbare Treppenfunktionen sofort aus Lemma
5.4. Zu f wählen wir nun wieder eine Folge (ϕn)n∈N nichtnegativer, messbarer Treppenfunk-
tionen mit 0 ≤ ϕ1 ≤ ϕ2 ≤ . . . und f(x) = limn→∞ ϕn(x) für alle x ∈ X. Dann gilt für c ≥ 0
auch 0 ≤ cϕ1 ≤ cϕ2 ≤ . . . und (cf)(x) = limn→∞(cϕn)(x) für alle x ∈ X, sodass aus Satz
6.1 ∫

E

cf dµ = lim
n→∞

∫
E

cϕn dµ = lim
n→∞

c

∫
E

ϕn dµ = c

∫
E

f dµ
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folgt. Für c ≤ 0 gilt nun (vgl. Definition 5.2)∫
E

cf dµ =

∫
E

(cf)+︸ ︷︷ ︸
=0

dµ−
∫
E

(cf)−︸ ︷︷ ︸
=−cf

dµ = −
∫
E

(−c)f dµ = −(−c)
∫
E

f dµ = c

∫
E

f dµ.

Satz 6.3. Seien (X,M, µ) ein Maßraum, E ∈M und f : X → R messbar. Gilt f ∈ L(E,µ),
so ist f für fast alle x ∈ E endlich.

Beweis. Sei A+ := {x ∈ E : f(x) = +∞} und sei A+
n := {x ∈ E : f(x) > n} für n = 1, 2, . . ..

Dann gilt A+ ⊆ A+
n für n = 1, 2, . . . und somit

0 ≤ µ(A+) ≤ µ(A+
n ) =

∫
A+
n

1 dµ ≤
∫
A+
n

1

n
f dµ =

1

n

∫
A+
n

f+ dµ ≤ 1

n

∫
E

f+ dµ

︸ ︷︷ ︸
<∞

,

d.h. µ(A+) = 0. Für A− := {x ∈ E : f(x) = −∞} und A−n := {x ∈ E : f(x) < −n} erhalten
wir analog

0 ≤ µ(A−) ≤ µ(A−n ) ≤
∫
A−n

1 dµ ≤
∫
A−n

1

n
(−f) dµ =

1

n

∫
A−n

f− dµ ≤ 1

n

∫
E

f− dµ

︸ ︷︷ ︸
<∞

,

d.h. µ(A−) = 0.

Satz 6.4 (Satz von Lebesgue über monotone Konvergenz). Seien (X,M, µ) ein Maßraum,
E ∈ M und f, fn : X → R für n ∈ N messbare Funktionen mit f1(x) ≤ f2(x) ≤ . . . für alle
x ∈ E und f(x) = limn→∞ fn(x) für alle x ∈ E. Existiert ein m ∈ N mit fm ∈ L(E,µ), so
gilt

lim
n→∞

∫
E

fn dµ =

∫
E

f dµ.

Beweis. O.B.d.A. gelte m = 1 (sonst die ersten m − 1 Folgenelemente verwerfen und den
Rest neu nummerieren). Nach Satz 6.3 ist f1 dann fast überall auf E endlich. O.B.d.A.
können wir annehmen, dass f1 auf ganz E endlich ist (sonst f1 durch äquivalente, auf E
endliche Funktion ersetzen). Definieren wir gn : X → R für n ∈ N durch

gn(x) :=

{
fn(x)− f1(x), x ∈ E,
0, x ∈ X \ E,

so ist gn messbar und es gilt 0 ≤ g1 ≤ g2 ≤ . . .. Außerdem setzen wir g(x) := limn→∞ gn(x)
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für x ∈ X. Die so definierte Funktion g : X → R ist ebenfalls messbar. Satz 6.1 liefert nun

lim
n→∞

∫
E

fn − f1 dµ = lim
n→∞

∫
E

gn dµ =

∫
E

g dµ =

∫
E

f − f1 dµ,

und somit die Behauptung (unter Verwendung von Satz 5.5 (ii)).

Satz 6.5 (Lemma von Fatou). Seien (X,M, µ) ein Maßraum, E ∈M und fn : X → R für
n ∈ N messbare Funktionen.

(i) Gilt fn ≥ 0 für alle x ∈ E und n ∈ N, so folgt∫
E

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
E

fn dµ.

(ii) Gilt fn(x) ≤ 0 für alle x ∈ E und n ∈ N, so folgt∫
E

lim sup
n→∞

fn dµ ≥ lim sup
n→∞

∫
E

fn dµ.

Beweis. Wir zeigen (i). Setzen wir gn := infk≥n fk : X → R für n ∈ N, so gilt gn(x) ≥ 0 sowie
0 ≤ g1(x) ≤ g2(x) ≤ . . . für alle x ∈ E. Es folgt 0 ≤

∫
E g1 dµ ≤

∫
E

g2 dµ ≤ . . . und damit die

Existenz von limn→∞
∫
E gn dµ ∈ [0,∞]. Außerdem gilt gn ≤ fn, also

∫
E gn dµ ≤

∫
E fn dµ.

Wir erhalten hieraus zunächst

lim
n→∞

∫
E
gn dµ = lim inf

n→∞

∫
E
gn dµ ≤ lim inf

n→∞

∫
E
fn dµ.

Setzen wir nun g := limn→∞ gn = supn∈N gn = lim infn→∞ fn und wenden Satz 6.1 auf g
und gn an, so erhalten wir außerdem∫

E

lim inf
n→∞

fn dµ =

∫
E

g dµ = lim
n→∞

∫
E

gn dµ.

Damit ist (i) gezeigt. Punkt (ii) folgt nun direkt aus (i), da∫
E

lim sup
n→∞

fn dµ = −
∫
E

lim inf
n→∞

(−fn)︸ ︷︷ ︸
≥0

dµ ≥ − lim inf
n→∞

∫
E

−fn dµ = lim sup
n→∞

∫
E

fn dµ

gilt.

Satz 6.6 (Satz von Lebesgue über dominante Konvergenz). Seien (X,M, µ) ein Maßraum,
E ∈ M und f, fn : X → R für n ∈ N messbare Funktionen mit f(x) = limn→∞ fn(x) für
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alle x ∈ E. Existiert eine Funktion g ∈ L(E,µ) mit

|fn(x)| ≤ g(x) für alle x ∈ E,

so gilt f ∈ L(E,µ) und

lim
n→∞

∫
E

fn dµ =

∫
E

f dµ.

Beweis. Wegen |fn(x)| ≤ g(x) für alle x ∈ E und n ∈ N gilt auch |f(x)| ≤ g(x) für alle
x ∈ E, sodass aus Satz 5.10 f ∈ L(E,µ) folgt. Nach Satz 6.5 gilt dann

lim sup
n→∞

∫
E

fn − g︸ ︷︷ ︸
≤0

dµ ≤
∫
E

lim sup
n→∞

(fn − g) dµ =

∫
E

f − g dµ,

sowie ∫
E

(f + g) dµ =

∫
E

lim inf
n→∞

(fn + g)︸ ︷︷ ︸
≥0

dµ ≤ lim inf
n→∞

∫
E

fn + g dµ.

Zusammen liefert dies

lim sup
n→∞

∫
E

fn dµ ≤
∫
E

f dµ ≤ lim inf
n→∞

∫
E

fn dµ,

d.h. limn→∞
∫
E fn dµ existiert und ist gleich

∫
E f dµ.

Bemerkung. Satz 6.6 liefert eine hinreichende Bedingung für die Summierbarkeit einer mess-
baren Funktion. Wir wollen zusätzlich eine notwendige und zugleich hinreichende Bedingung
formulieren:
Gilt für messbare Funktionen f, fn : X → R auf einemMaßraum (X,M, µ) die Eigenschaft

0 ≤ f1(x) ≤ f2(x) ≤ . . . sowie f(x) = limn→∞ fn(x) für alle x ∈ E ∈ M, so ist f ∈ L(E,µ)
genau dann erfüllt, wenn eine Teilfolge (fnk)k∈N mit

∫
E fnk dµ ≤ C < ∞ für alle k ∈ N

existiert, was äquivalent ist zur Bedingung
∫
E fn dµ ≤ C für alle n ∈ N.

Beweis: Mit f ∈ L(E,µ) gilt für n ∈ N

0 ≤
∫
E

fn dµ ≤
∫
E

f dµ := C <∞.

Existiert umgekehrt eine Teilfolge (fnk)k∈N mit der geforderten Eigenschaft für ein C ≥ 0,
so gilt die Eigenschaft aufgrund der Monotonie der Folge (fn) für alle n ∈ N. Mit Satz 6.5
folgt nun

0 ≤
∫
E

f dµ =

∫
E

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
E
fn dµ ≤ C,

d.h. f ∈ L(E,µ).
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Als Gegenbeispiel kann man betrachten

µ(E) = m <∞, fn(x) ≡ n, lim
n→∞

fn = f ≡ +∞,
∫
E

fn dµ = nm <∞

mit
lim
n→∞

∫
E

fn dµ =

∫
E

f dµ =∞.

Es gibt also keine Konstante C > 0 mit
∫
E

fn dµ < C ∀n ∈ N. Wir haben dann zwar

fn ∈ L(E,µ) ∀n ∈ N, aber f /∈ L(E,µ).
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Riemann-Integral

In diesem Kapitel betrachten wir ausschließlich den Lebesgue’schen Maßraum (R,L(R), µ),
d.h. µ ist das Lebesgue-Maß auf der Lebesgue’schen σ-Algebra L(R). Weiter betrachten wir
messbare Funktionen f : R→ R, d.h. die Urbilder f−1(B) von Borel-Mengen B ∈ B(R) sind
selbst Borel-Mengen und gehören damit zu L(R). Im Mittelpunkt stehen in diesem Kapitel
Funktionen f , die nur auf dem abgeschlossenen Intervall [a, b] mit −∞ < a < b < +∞ zu
definieren sind. Dann kann man sich f als mit Null auf ganz R fortgesetzt betrachten. Ei-
ne alternative Betrachtungsweise besteht darin, gleich den Maßraum ([a, b],L(R) ∩ [a, b], µ)
anzusehen, wobei dann unter L(R) ∩ [a, b] die so genannte Spur-σ-Algebra von L(R) ein-
geschränkt auf das Intervall [a, b] zu vestehen ist. Beides führt in der Regel zum gleichen
Ergebnis.
Es sollen im Weiteren

(R)

b∫
a

f(x) dx bzw. (L)

b∫
a

f(x) dx :=

∫
[a,b]

f dµ

das Riemann- bzw. Lebesgue-Integral von f auf [a, b] bezeichnen. Während der Begriff des
Lebesgue-Integrals aus Kapitel 5 hinreichend gut bekannt ist, wollen wir den Begriff des
Riemann-Integrals hier noch einmal wiederholen und im Lichte von Treppenfunktionen etwas
anders interpretieren.
Dazu betrachten wir eine Folge von Zerlegungen (Zk)k∈N des Intervalls [a, b] mit

Zk = {xk0, xk1, . . . , xkk} und a = xk0 < xk1 < · · · < xkk = b sowie ∆Zk := max1≤i≤k |xki − xki−1| .
Wir nehmen an, dass aufeinanderfolgende Zerlegungen Zk und Zk+1 durch Einfügung eines
zusätzlichen Punktes erfolgen, sodass Z1 ⊂ Z2 ⊂ . . . Zk ⊂ Zk+1 ⊂ . . . gilt, und die maxima-
len Längen von Teilintervallen in der Zerlegung asymptotisch für k →∞ gegen Null gehen,
d.h. limk→∞∆Zk = 0 gilt. Solche Zerlegungsfolgen nennen wir regulär.
Für beschränkte Funktionen f betrachtet man nun die auf ganz R definierten reellen

Unterfunktionen L(x) und Oberfunktionen U(x), die über die Zuordnungen

Uk(a) := Lk(a) := f(a), Uk(x) := Lk(x) := 0 für x ∈ R \ [a, b]

und für x ∈ (xki−1, x
k
i ] (i = 1, 2, . . . , k)

Uk(x) := Mi := sup
ξ∈(xki−1,x

k
i ]

f(ξ) bzw. Lk(x) := mi := inf
ξ∈(xki−1,x

k
i ]
f(ξ)
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definiert sind. Diese Funktionen sind offenbar messbare Treppenfunktionen, und es gilt

(L)

b∫
a

Lk(x) dx =

k∑
i=1

mi(x
k
i − xki−1) =: s(Zk, f)

bzw.

(L)

b∫
a

Uk(x) dx =
k∑
i=1

Mi(x
k
i − xki−1) =: S(Zk, f).

Wir haben dabei die Untersummen s(Zk, f) und die Obersummen S(Zk, f) der Zerlegung
Zk ins Spiel gebracht. Wegen Z1 ⊂ Z2 ⊂ . . . erhalten wir

U1(x) ≥ U2(x) ≥ · · · ≥ f(x) ≥ · · · ≥ L2(x) ≥ L1(x) für alle x ∈ [a, b].

Wir setzen

U(x) := lim
k→∞

Uk(x) und L(x) := lim
k→∞

Lk(x) für alle x ∈ R.

Definition 7.1. Eine auf [a, b] definierte reelle Funktion f heißt Riemann-integrierbar, wenn
sie beschränkt ist und für jede reguläre Zerlegungsfolge gilt

lim
k→∞

s(Zk, f) = lim
k→∞

S(Zk, f),

wobei wir diesen dann von der konkreten Zerlegungsfolge unabhängigen Grenzwert Riemann-

Integral von f über [a, b] nennen und mit dem Symbol (R)
b∫
a
f(x) dx bezeichnen.

Eine äquivalente Definition der Riemann-Integrierbarkeit auf der Basis von dem Riemann-
Integral angepassten Treppenfunktionen (wir nennen sie hier (R)-Treppenfunktionen) soll
im Folgenden noch erwähnt werden (vgl. B K. D. Schmidt: Maß und Wahrscheinlich-
keit, S.181f). Mit Blick auf das Intervall [a, b] werde dabei eine Treppenfunktion ϕ : R→ R
als (R)-Treppenfunktion bezeichnet, wenn sie die spezielle Gestalt f(x) = ci mit
xi−1 < x < xi (i = 1, 2, ..., k) für eine Zerlegung a = x0 < x1 < ... < xk−1 < xk = b

des Intervalls [a, b] besitzt. Es gilt dann offensichtlich (L)
b∫
a
ϕ(x) dx =

k∑
i=1

ci(xi − xi−1).

Definition 7.2. Eine auf [a, b] definierte reelle Funktion f heißt Riemann-integrierbar, wenn
sie beschränkt ist und die reellen Zahlen

s := sup

(L)

b∫
a

ϕ(x) dx : ϕ ist (R)-Treppenfunktion mit ϕ(x) ≤ f(x) ∀x ∈ [a, b]


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und

S := inf

(L)

b∫
a

ϕ(x) dx : ϕ ist (R)-Treppenfunktion mit f(x) ≤ ϕ(x) ∀x ∈ [a, b]


übereinstimmen, wobei dann als Riemann-Integral (R)

b∫
a
f(x) dx := s = S bezeichnet wird.

Wir werden uns aber auf die erste Version der Definition konzentrieren und können nun auf
der Grundlage der oben durchgeführten Überlegungen leicht den folgenden Satz beweisen.

Satz 7.3. Sei f : R→ R eine Funktion und es gelte −∞ < a < b < +∞.

(i) Ist f Riemann-integrierbar auf [a, b], so gilt f ∈ L([a, b], µ) und

(L)

b∫
a

f(x) dx = (R)

b∫
a

f(x) dx.

(ii) Die Funktion f ist genau dann Riemann-integrierbar auf [a, b], wenn sie auf [a, b]
beschränkt und fast überall auf [a, b] stetig ist.

Beweis. Wir beweisen (i). Da f Riemann-integrierbar ist, ist f beschränkt. Aus der Riemann-
Integrierbarkeit von f folgt für eine reguläre Zerlegungsfolge

lim
k→∞

s(Zk, f) = (R)

b∫
a

f(x) dx = lim
k→∞

S(Zk, f).

Andererseits folgt aus Satz 6.6 (Satz von Lebesgue über dominante Konvergenz)

lim
k→∞

(L)

b∫
a

Uk(x) dx = (L)

b∫
a

U(x) dx und lim
k→∞

(L)

b∫
a

Lk(x) dx = (L)

b∫
a

L(x) dx,

zusammen also

(L)

b∫
a

L(x) dx = (R)

b∫
a

f(x) dx = (L)

b∫
a

U(x) dx.

Schließlich folgt mit Satz 5.5 (v) aus L(x) ≤ f(x) ≤ U(x) für x ∈ [a, b], d.h. U(x)−L(x) ≥ 0,
und (L)

∫ b
a [U(x)− L(x)] dx = 0, dass U(x) = f(x) = L(x) für fast alle x ∈ [a, b] gilt. Somit

erhalten wir f ∈ L([a, b], µ) und

(L)

b∫
a

f(x) dx = (R)

b∫
a

f(x) dx.
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Wir beweisen nun noch (ii). Seien die Bezeichnungen wie im Beweis zu (i). Mit Z :=⋃∞
k=1 Zk gilt dann µ(Z) = 0 (da Z abzählbar ist). Wir zeigen zunächst als wichtige Hilfs-

aussage, dass f genau dann stetig in x0 ∈ [a, b] \ Z ist, wenn U(x0) = L(x0) gilt.
Sei f also stetig in x0 ∈ [a, b] \ Z. Dann existiert zu jedem ε > 0 ein δ > 0 mit
|f(x) − f(x0)| < ε

2 für alle x ∈ [a, b] mit |x − x0| < δ. Wegen ∆Zk → 0 existiert ein
K ∈ N mit ∆Zk < δ für alle k ≥ K. Für i0 ∈ {1, 2, . . . , k} mit x0 ∈ (xi0−1, xi0 ] gilt folglich

Uk(x0)− Lk(x0) = Mi0 −mi0 = (Mi0 − f(x0)) + (f(x0)−mi0) <
ε

2
+
ε

2
= ε

und aus ε → 0 folgt somit U(x0) = L(x0). Es gelte nun U(x0) = L(x0) für x0 ∈ [a, b] \ Z.
Für beliebiges ε > 0 gibt es wegen U(x0) = f(x0) = L(x0) dann ein K ∈ N mit

UK(x0)− f(x0) < ε und f(x0)− LK(x0) < ε.

Setzen wir δ := minx∈Zk |x0 − x|, so gilt außerdem

LK(x0) ≤ f(x) ≤ UK(x0) für alle x ∈ [a, b] \ Z mit |x− x0| < δ.

Zusammen erhalten wir |f(x)− f(x0)| < ε für |x− x0| < δ, d.h. f ist stetig in x0. Damit ist
die Hilfsaussage bewiesen.
Ist f nun Riemann-integrierbar, so ist f beschränkt und aus dem Beweis zu (i) folgt, dass

U(x) = f(x) = L(x) für fast alle x ∈ [a, b] und damit auch für fast alle x ∈ [a, b] \ Z gilt.
Wegen der Hilfsaussage ist f dann für fast alle x ∈ [a, b] \ Z stetig und folglich fast überall
auf [a, b] stetig. Ist umgekehrt f beschränkt und fast überall stetig auf [a, b], so gilt wegen
der Hilfsaussage U(x) = f(x) = L(x) fast überall auf [a, b] \ Z und damit auch fast überall
auf [a, b]. Es folgt

(L)

b∫
a

U(x) dx = (L)

b∫
a

L(x) dx

und mit Satz 6.6 erhalten wir

lim
k→∞

(
S(Zk, f)− s(Zk, f)

)
= lim

k→∞
(L)

b∫
a

Uk(x) dx− lim
k→∞

(L)

b∫
a

Lk(x) dx

= (L)

b∫
a

U(x) dx− (L)

b∫
a

L(x) dx = 0,

d.h. f ist Riemann-integrierbar auf [a, b].

Beispiel 7.4. Die Dirichlet-Funktion auf [0, 1] aus Beispiel 5.3 ist beschränkt, aber nirgends
stetig. Nach Satz 7.3 (ii) ist sie also nicht Riemann-integrierbar.
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Beispiel 7.5. Wir ändern die Dirichlet-Funktion auf [0, 1] aus Beispiel 5.3 wie folgt:

f(x) :=

{
sinx, x ∈ Q ∩ [0, 1],

x2, x ∈ [0, 1] \Q.

Diese Funktion ist messbar und nach Satz 7.3 (i) gilt

(L)

1∫
0

f(x) dx =

∫
[0,1]∩Q

f dµ

︸ ︷︷ ︸
=0

+

∫
[0,1]\Q

f dµ = (L)

1∫
0

x2 dx = (R)

1∫
0

x2 dx =
1

3
,

weil wir den Integranden auf einer Menge vom Maß Null beliebig ändern dürfen. Da f
in keinem Punkt stetig ist, ist f nicht Riemann-integrierbar auf [0, 1], jedoch gibt es eine
äquivalente Riemann-integrierbare Funktion, nämlich x 7→ x2.

Beispiel 7.6. Ein ähnliches, aber doch anders geartetes Beispiel liefert die Thomae-Funktion
auf [0, 1]

f(x) :=


1
n , x = m

n ∈ Q ∩ (0, 1] (m,n teilerfremd),
1, x = 0,

0, x ∈ [0, 1] \Q.

Diese ist genau in allen irrationalen Punkten des Intervalls [0, 1] stetig und somit nur auf
einer Menge vom Maße Null unstetig. Damit ist die Funktion Riemann-integrierbar und
das Riemann-Integral stimmt mit dem Lebesgue-Integral überein, welches offensichtlich den
Wert Null besitzt.

Beispiel 7.7. Wir betrachten die durch

f(x) :=

{
sinx
x , x > 0,

1, x = 0

gegebene Funktion. Diese ist auf [0, T ] stetig für alle T > 0 und damit auf jedem solchen be-
schränkten Intervall Riemann-integrierbar. Im Sinne eines uneigentlichen Riemann-Integrals
gilt

(R)

∞∫
0

sinx

x
dx = lim

T→∞
(R)

T∫
0

sinx

x
dx =

π

2
.

Wegen
∫
[0,∞) |f |dµ = +∞, d.h. |f | /∈ L([0,∞), µ), gilt aber f /∈ L([0,∞), µ). Wegen der

Endlichkeit des uneigentlichen Integrals (R)
∞∫
0

sinx
x dx <∞müssen dann aber beide Integrale∫

[0,∞) f+ dµ und
∫
[0,∞) f− dµ gleich +∞ sein, denn es können nicht beide gleichzeitig endlich

sein und eines davon endlich und das andere +∞ würde dem widersprechen.
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Beispiel 7.8. Wir betrachten eine fast überall stetige Funktion f : R→ R mit f(x) = 0 für
x < 0, f(x) ≥ 0 für x ≥ 0 und (R)

∫ T
0 f(x) dx <∞ für alle T > 0. Setzen wir

fn(x) :=

{
f(x), x ≤ n,
0, x > n,

so gilt 0 ≤ f1 ≤ f2 ≤ . . . und∫
[0,∞)

fn dµ = (L)

n∫
0

f(x) dx = (R)

n∫
0

f(x) dx <∞.

Wegen f(x) = limn→∞ fn(x) für alle x ∈ R folgt aus Satz 6.1

∫
[0,∞)

f dµ = lim
n→∞

∫
[0,∞)

fn dµ = lim
n→∞

(R)

n∫
0

f(x) dx = (R)

∞∫
0

f(x) dx := I.

Somit gilt f ∈ L([0,∞), µ) genau dann, wenn I <∞ gilt.
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