Jump to main content
Professorship for inverse problems


Recent work

  1. I. Humpert, D. Di Meo, A.W. Püschel, J.-F. Pietschmann, On the Role of Vesicle Transport in Neurite Growth: Modelling and Experiments (arXiv), 2019.

In peer-reviewed journals

  1. M. Burger, J.-F. Pietschmann, P. Werner, A PDE model for bleb formation and interaction with linker proteins (arXiv), to appear in Transactions of Mathematics and Its Applications, 2020.
  2. M. Burger, J. A. Carrillo, J. -F. Pietschmann, M. Schmidtchen, Segregation and Gap Formation in Cross-Diffusion Models (arXiv), to appear in Interfaces and Free Boundaries, 2020.
  3. Sebastian Reichert, Jens Flemming, Qingzhi An, Yana Vaynzof, Jan-Frederik Pietschmann, Carsten Deibel, Improved evaluation of deep-level transient spectroscopy on perovskite solar cells reveals ionic defect distribution (arXiv), to appear in Physical Review Applied, 2020.
  4. M. Burger, J.-F. Pietschmann, M.-T. Wolfram, Data assimilation in price formation (arXiv), to appear in Invere Problems, 2019.
  5. M. Burger, I. Humpert, J.-F. Pietschmann, On Fokker-Planck Equations with In- and Outflow of Mass (arXiv), to appear in KRM, 2019.
  6. M. Burger, P. Friele, J.-F. Pietschmann, On a Reaction–Cross–Diffusion System Modelling the Growth of Glioblastoma (arXiv), to appear in SIAP, 2019.
  7. J. Berendsen, M. Burger, V. Ehrlacher, J.-F. Pietschmann, Strong solutions and weak-strong stability in a system of cross-diffusion equations (preprint), J. Evol. Equ., doi:10.1007/s00028-019-00534-4J, 2019.
  8. A. Lorz, J.-F. Pietschmann, M. Schlottbom, Parameter identification in a structured population model (arXiv), to appear in Inverse Problems, 2019.
  9. M. Burger, J.-F. Pietschmann, H. Ranetbauer, C. Schmeiser, M.T. Wolfram, Mean field models for segregation dynamics, (arXiv), to appear in European Journal of Applied Mathematics 2019.
  10. B. Matejczyk, J.-F. Pietschmann, G. Richardson, M.T. Wolfram, Asymptotic models for transport in large aspect ratio nanopores, European Journal of Applied Mathematics, (doi:10.1017/S0956792518000293, arXiv), 2018.
  11. H. Egger, K. Fellner, J.-F. Pietschmann, B. Q. Tang, A finite element method for volume-surface reaction-diffusion systems, Preprint IGDK-2015-26, to appear in Applied Mathematics and Computation, (preprint), 2018.
  12. H. Egger, J.-F. Pietschmann, M. Schlottbom, On the uniqueness of nonlinear diffusion coefficients in the presence of lower order terms, Inverse Problems, Volume 33(11), (doi:10.10881361-6420/aa8cae, arXiv), 2017.
  13. J. Berendsen, M. Burger, J.-F. Pietschmann, On a cross-diffusion model for multiple species with nonlocal interaction and size exclusion, Nonlinear Analysis, Volume 159, Pages 10-39, (doi:10.1016/, arXiv), 2017
  14. B. Matejczyk, M. Valisko, M.-T. Wolfram, J.-F. Pietschmann, D. Boda, Multiscale modeling of a rectifying bipolar nanopore: Comparing Poisson-Nernst-Planck to Monte Carlo, Journal of Chemical Physics 146, 124125, (doi:10.10631.4978942, arXiv), 2017
  15. M. Burger, J.-F. Pietschmann, Flow Characteristics in a Crowded Transport Model.Nonlinearity, 29 3528, 2016 (doi:10.10880951-7715/29/11/3528, arXiv)
  16. H. Egger, J.-F. Pietschmann, M. Schlottbom, Identification of Chemotaxis Models with Volume Filling. SIAM J. Appl. Math., Vol. 75, Issue 2, pp. 275 - 288, 2015 (doi: 10.1137140967222, arXiv)
  17. H. Egger, J.-F. Pietschmann, M. Schlottbom, Identification of nonlinear heat conduction laws Journal of Inverse and Ill-Posed Problems. (doi: 10.1515/jiip-2014-0030, arXiv)
  18. G. Trevor, K. Decker, T. Plett, M. Pevarnik, J.-F. Pietschmann, I. Vlassiouk, A. Aksimentiev, Z. Siwy. Rectification of Ion Current in Nanopores Depends on the Type of Monovalent Cations Experiments and Modeling, Journal of Physical Chemistry Part C, 118(18):9809–9819, 2014. (published version)
  19. H. Egger, J.-F. Pietschmann, M. Schlottbom, Numerical identification of a nonlinear diffusion law via regularization in Hilbert scales, inverse problems 30(2):025004, 2014, (arXiv, published version)
  20. H. Egger, J.-F. Pietschmann, M. Schlottbom, Simultaneous identification of diffusion and absorption coefficients in a quasilinear elliptic problem, inverse problems 30(3):035009, 2014, (arXiv, published version)
  21. J.-F. Pietschmann, M.-T. Wolfram, M. Burger, C. Trautmann, V. Bayer, G. Nguyen, M. Pevarnik, Z. Siwy, Rectification properties of conically shaped nanopores: consequences of miniaturization, Phys. Chem. Chem. Phys., 15:16917-16926, 2013 (arXiv, published version)
  22. M. Burger, J.-F. Pietschmann, M.-T. Wolfram, Identification of non-linearities in transport-diffusion models of crowded motion, Inverse Problems and Imaging 7(4) 2013, (published version)
  23. L.A. Caffarelli, P.A. Markowich, J.-F. Pietschmann, On a price formation free boundary model by Lasry & Lions, C. R. Acad. Sci. Paris, Ser. I, Volume 349, Issues 11-12, 2011(arXiv, published version)
  24. M. Burger, P.A. Markowich, J.F. Pietschmann, Continuous Limit of a Crowd Motion and Herding Model: Analysis and Numerical Simulations,Kinetic and Related Modells, Volume 4, Issue 4, 2011, (preprint, published version)
  25. M. Di Francesco, P.A. Markowich, J.F. Pietschmann, M.T. Wolfram, On the Hughes’ model of pedestrian flow: The one-dimensional case, J. Diff. Eq. Volume 250, Issue 3, 1 pp. 1334-1362, 2011 (preprint, published version)
  26. M. Burger, M. Di Francesco, J.-F. Pietschmann and B. Schlake, Nonlinear Cross-Diffusion with Size Exclusion, 2010, SIAM J. Math. Anal. Volume 42, Issue 6, pp. 2842-2871, 2010 (published version)
  27. B. Düring, P.A. Markowich, J.-F. Pietschmann, M.-T. Wolfram, Boltzmann and Fokker-Planck Equations modelling Opinion Formation in the Presence of Strong Leaders, Proc. Royal Soc. A., 465(2112), p. 3687-3708, 2009, (preprint, published version)
  28. P.A. Markowich, N. Matevosyan, J.-F. Pietschmann, M.-T. Wolfram, On a parabolic free boundary equation modeling price formation, Math. Models Methods Appl. Sci., 11(19), 1929-1957, 2009, (preprint, published version)

Conference Proceedings and Book Chapters

  1. B. Schlake, J.-F. Pietschmann Lane Formation in a Microscopic Model and the corresponding Partial Differential Equation, 1st IEEE Workshop on Modeling, Simulation and Visual Analysis of Large Crowds, Barcelona
  2. J.-F. Pietschmann The connection between microscopic and macroscopic models for pedestrian movement with applications to lane formation. To appear in: Modeling, Simulation, and Visual Analysis of Large Crowds, Springer Verlag.


  1. J.-F. Pietschmann Nonlinear Diffusion Models with Size Exclusion, Habilitation, University of Münster, 2017, pdf
  2. J.-F. Pietschmann On Some Partial Differential Equation Models in Socio-Economic Contexts - Analysis and Numerical Simulations, Ph.D. thesis, University of Cambridge, 2011, pdf
  3. J.-F. Pietschmann Long-Time Behaviour of Nonlinear Fokker-Planck Equations, Master thesis (Diplom), University of Münster, 2008, pdf
  4. J.-F. Pietschmann Development of a Novel Readout System for Small Animal Positron Emission Tomography, Master thesis (Diplom), University of Münster, 2008, pdf

Press Articles

  • Go-Abroad Fair - inform virtually about stays abroad

    From 10 to 12 November 2020, the International University Center (IUZ) is organizing a virtual information fair on studying abroad together with national and international guests …

  • Chemnitz becomes European Capital of Culture 2025

    Chemnitz University of Technology supported the application of the city of Chemnitz with all its strength - President Prof. Dr. Gerd Strohmeier thanks all those who contributed to it with numerous initiatives. …

  • Capital of Culture Decision Enters Home Stretch

    Saxony's Prime Minister Michael Kretschmer, University President Prof. Dr. Gerd Strohmeier, the Mayor-Elect of Chemnitz Sven Schulze and other players faced questions from an international jury about Chemnitz’s application - The decision on the title will be made on 28 October 2020 …

  • Timetable Set for Capital of Culture Application Finale

    On 28 October 2020, the decision as to who will be named European Capital of Culture 2025 will be made - The university supports the city of Chemnitz’s application with all its might …