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1 Algebraische Strukturen bei
Mengensystemen

Definition 1.1. SeiX eine beliebige nichtleere Menge. Mit P(X) bezeichnen wir die Potenz-
menge, d.h. das System aller Teilmengen, von X. Ein nichtleeres MengensystemM⊆ P(X)
heißt

(i) Semiring oder zerlegbares Mengensystem in X, wenn gilt:

(a) ∅ ∈ M,

(b) A,B ∈M ⇒ A ∩B ∈M,

(c) zu jedem Paar A,B ∈M existieren paarweise disjunkte Mengen
A1, A2, . . . , An ∈M mit A \B =

⋃n
i=1Ai.

(ii) Ring in X, wenn gilt:

(a) A,B ∈M ⇒ A ∪B ∈M,

(b) A,B ∈M ⇒ A \B ∈M.

(iii) Algebra in X, wenn gilt:

(a) A,B ∈M ⇒ A ∪B ∈M,

(b) A ∈M ⇒ X \A ∈M.

(iv) σ-Ring bzw. σ-Algebra in X, wenn M ein Ring bzw. eine Algebra in X ist, für den
bzw. für die gilt:

A1, A2, . . . ∈M ⇒
∞⋃
i=1

Ai ∈M.

(v) monoton, wenn für beliebige A1, A2, . . . ∈M gilt:

(a) A1 ⊆ A2 ⊆ . . . ⇒
∞⋃
i=1

Ai ∈M,

(b) A1 ⊇ A2 ⊇ . . . ⇒
∞⋂
i=1

Ai ∈M.

Bemerkung. Man zeigt relativ leicht, dass jede σ-Algebra ein σ-Ring, jede Algebra ein Ring
und jeder Ring ein Semiring ist.

Für A ⊆ X werden wir die Menge X \A im Folgenden auch mit A bezeichnen, wenn klar
ist, bezüglich welcher Grundmenge das Komplement gebildet wird.
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1 Algebraische Strukturen bei Mengensystemen

Lemma 1.2. Sei X eine beliebige nichtleere Menge.

(i) Für jede AlgebraM in X gilt: A,B ∈M ⇒ A ∩B ∈M.

(ii) Für jede σ-AlgebraM⊆ X gilt: A1, A2, . . . ∈M ⇒
⋂∞
i=1Ai ∈M.

Beweis. Nach den de-Morgan’schen Regeln gilt

A ∩B = A ∪B und
∞⋂
i=1

Ai =
∞⋃
i=1

Ai.

Die Behauptungen folgen somit direkt aus Definition 1.1.

Die folgenden Beispiele sollen die definierten Mengenstrukturen etwas illustrieren.

Beispiel 1.3. In X := R ist das Mengensystem M := {(a, b] : a, b ∈ R, a < b} ∪ {∅} ein
Semiring, denn

• ∅ ∈ M ist trivialerweise erfüllt,

• der Durchschnitt zweier Intervalle (a, b] und (c, d] ist entweder leer oder gleich dem
Intervall

(
max{a, c},min{b, d}

]
,

• für zwei Intervalle (a, b] und (c, d] ist (a, b] \ (c, d] entweder leer oder gleich einer der
Mengen (a, b], (d, b], (a, c] oder (a, c] ∪ (d, b].

Beispiel 1.4. In einer unendlichen Menge X ist das Mengensystem M := {A ⊆ X :
A ist endlich oder A ist endlich} eine Algebra, denn

• für A,B ∈M gilt: A ∪B endlich, falls A und B endlich,
A ∪B = A ∩B endlich, falls A oder B endlich,

• aus A ∈M folgt trivialerweise A ∈M.

Beispiel 1.5. In einer überabzählbaren Menge X ist das Mengensystem M := {A ⊆ X :
A höchstens abzählbar oder A höchstens abzählbar} eine σ-Algebra, denn

• für A1, A2, . . . ∈M gilt:⋃∞
i=1Ai höchstens abzählbar, falls alle Ai höchstens abzählbar,⋃∞
i=1Ai =

⋂∞
i=1Ai höchstens abzählbar, falls mindestens ein Ai höchstens abzählbar,

• aus A ∈M folgt trivialerweise A ∈M.
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1 Algebraische Strukturen bei Mengensystemen

Satz 1.6. Seien X eine beliebige nichtleere Menge, T eine Indexmenge und (Rt)t∈T ei-
ne Familie von Ringen in X. Dann ist der Durchschnitt

⋂
t∈T Rt wieder ein Ring in X.

Entsprechendes gilt für Algebren, σ-Ringe, σ-Algebren und monotone Mengensysteme in X.

Beweis. Es gilt

A,B ∈
⋂
t∈T
Rt ⇒ A,B ∈ Rt ∀t ∈ T ⇒ A ∪B ∈ Rt ∀t ∈ T ⇒ A ∪B ∈

⋂
t∈T
Rt

und

A,B ∈
⋂
t∈T
Rt ⇒ A,B ∈ Rt ∀t ∈ T ⇒ A \B ∈ Rt ∀t ∈ T ⇒ A \B ∈

⋂
t∈T
Rt.

Völlig analog zeigt man die Behauptung für Algebren, σ-Ringe, σ-Algebren und monotone
Mengensysteme.

Definition 1.7. Sei X eine beliebige nichtleere Menge und M ⊆ P(X) ein nichtleeres
Mengensystem. Der Durchschnitt allerM umfassenden Ringe inX heißt der vonM erzeugte
Ring R(M). Entsprechend definieren wir die von M erzeugte Algebra A(M), den von M
erzeugten σ-Ring Rσ(M), die vonM erzeugte σ-Algebra Aσ(M) und das vonM erzeugte
monotone Mengensystem m(M).

Bemerkung.

• Definition 1.7 ist korrekt, da die Potenzmenge P(X) jedes Mengensystem M in X
enthält und zugleich Ring, Algebra, σ-Ring, σ-Algebra und monotones Mengensystem
ist; d.h. am Durchschnitt in Definition 1.7 nimmt mindestens eine Menge teil.

• Die von einem MengensystemM erzeugte σ-Algebra Aσ(M) wird manchmal auch mit
σ(M) bezeichnet und Borel’sche Erweiterung vonM genannt.

• Der von einem Mengensystem erzeugte Ring ist im Sinne der Inklusion der kleinste
Ring, der dieses Mengensystem enthält. Entsprechendes gilt für Algebren, σ-Ringe,
σ-Algebren und monotone Mengensysteme.

Lemma 1.8. Sei X eine beliebige nichtleere Menge und seienM1,M2 ⊆ P(X) zwei nicht-
leere Mengensysteme. Dann gilt

M1 ⊆ R(M2), M2 ⊆ R(M1) ⇒ R(M1) = R(M2).

Entsprechendes gilt für Algebren, σ-Ringe, σ-Algebren und monotone Mengensysteme.

Beweis. Aus M1 ⊆ R(M2) folgt R(M1) ⊆ R(R(M2)) = R(M2) und aus M2 ⊆ R(M1)
folgt R(M2) ⊆ R(R(M1)) = R(M1), d.h. R(M1) = R(M2). Völlig analog folgt die
Behauptung für Algebren, σ-Ringe, σ-Algebren und monotone Mengensysteme.
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1 Algebraische Strukturen bei Mengensystemen

Satz 1.9. Eine Algebra M in einer nichtleeren Menge X ist genau dann eine σ-Algebra,
wenn sie ein monotones Mengensystem ist.

Beweis. „⇒“: SeiM eine σ-Algebra. Dann gilt für A1, A2, . . . mit A1 ⊆ A2 ⊆ . . . offensicht-
lich

⋃∞
i=1Ai ∈ M und für A1, A2, . . . ∈ M mit A1 ⊇ A2 ⊇ . . . gilt

⋂∞
i=1Ai =

⋃∞
i=1Ai ∈ M,

d.h.M ist ein monotones Mengensystem.
„⇐“: Sei nun M eine monotone Algebra und seien A1, A2, . . . ∈ M. Setzen wir Bj :=⋃j
i=1Ai für j ∈ N, so gilt Bj ∈M und B1 ⊆ B2 ⊆ . . ., also

⋃∞
j=1Bj ∈M. Die Behauptung

folgt nun aus
⋃∞
i=1Ai =

⋃∞
j=1Bj ∈M.

Der folgende Satz ist sehr konstruktiv und liefert eine Vorschrift dafür, wie man aus einem
Semiring einen Ring erzeugt.

Satz 1.10. Sei X eine beliebige nichtleere Menge, sei S ⊆ P(X) ein Semiring und sei
V ⊆ P(X) das System aller Vereinigungen von endlich vielen, paarweise disjunkten Mengen
aus S. Dann gilt R(S) = V.

Beweis. Die Behauptung folgt, wenn wir zeigen können, dass V ⊆ R(S) gilt und dass V ein
Ring ist.
Sei also A ∈ V. Dann existieren Mengen A1, A2, . . . , Am ∈ S ⊆ R(S) mit A = A1∪· · ·∪Am

und somit gilt A ∈ R(S) (wegen Definition 1.1 (ii)(a)). Also ist V ⊆ R(S) gezeigt.
Seien nun A,B ∈ V. Dann existieren paarweise disjunkte Mengen A1, A2, . . . , Am ∈ S mit

A = A1∪. . .∪Am und paarweise disjunkte Mengen B1, B2, . . . , Bn ∈ S mit B = B1∪. . .∪Bn.
Da

A ∩B =

(
m⋃
i=1

Ai

)
∩

 n⋃
j=1

Bj

 =
m⋃
i=1

n⋃
j=1

(Ai ∩Bj)

gilt und die Mengen der Form Ai ∩ Bj paarweise disjunkt sind, folgt zunächst A ∩ B ∈ V.
Wegen Definition 1.1 (i)(c) existieren für i = 1, . . . ,m und j = 1, . . . , n paarweise disjunkte
Mengen Ci,j1 , Ci,j2 , . . . , Ci,jpi,j ∈ S mit Ai \Bj = Ci,j1 ∪ · · · ∪ C

i,j
pi,j und somit gilt

A \B = A \
n⋃
j=1

Bj =
n⋂
j=1

(A \Bj) =
n⋂
j=1

(
m⋃
i=1

(Ai \Bj)

)
=

n⋂
j=1

(
m⋃
i=1

pi,j⋃
k=1

Ci,jk

)
.

Aus der Definition von V folgt
m⋃
i=1

pi,j⋃
k=1

Ci,jk ∈ V

für j = 1, . . . , n und aus der bereits gezeigten Durchschnittseigenschaft von V erhalten wir
somit A \B ∈ V.
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1 Algebraische Strukturen bei Mengensystemen

Es bleibt A ∪B ∈ V zu zeigen. Dies folgt aus

A ∪B = (A \B) ∪B =
n⋂
j=1

((
m⋃
i=1

pi,j⋃
k=1

Ci,jk

)
∪B

)
,

da die Mengen A \B und B disjunkt sind.

Lemma 1.11. Ist A eine Algebra in einer nichtleeren Menge X, so ist m(A) eine σ-Algebra.

Beweis. Wenn wir zeigen können, dass m(A) eine Algebra ist, so folgt die Behauptung aus
Satz 1.9. Wir zeigen zunächst die Abgeschlossenheit vonm(A) bezüglich der Komplementbil-
dung. Sei dazuM := {A ∈ m(A) : A ∈ m(A)}. Offensichtlich istM abgeschlossen bezüglich
der Komplementbildung und es gilt A ⊆ M. Für A1, A2, . . . ∈ M mit A1 ⊆ A2 ⊆ . . . gilt
A1, A2, . . . ∈M und A1 ⊇ A2 ⊇ . . . und ausM⊆ m(A) und der Monotonie von m(A) folgt
somit

∞⋃
i=1

Ai ∈ m(A) und
∞⋃
i=1

Ai =
∞⋂
i=1

Ai ∈ m(A),

d.h.
⋃∞
i=1Ai ∈M (analog für A1 ⊇ A2 ⊇ . . . und

⋂∞
i=1Ai). Also istM monoton und deshalb

giltM = m(A).
Es verbleibt die Abgeschlossenheit von m(A) bezüglich endlicher Vereinigungen zu zeigen.

Für A ∈ m(A) setzen wir dazu MA := {B ∈ m(A) : A ∪ B ∈ m(A)} und wir setzen
N := {A ∈ m(A) : m(A) = MA}. Wie man leicht sieht, ist MA für A ∈ A monoton und
es gilt A ⊆MA für A ∈ A. Also folgt m(A) =MA für alle A ∈ A und damit A ⊆ N . Wir
zeigen nun die Monotonie von N . Seien also A1, A2, . . . ∈ N mit A1 ⊆ A2 ⊆ . . .. Dann gilt
m(A) = MAi für i ∈ N und für beliebiges C ∈ m(A) folgt somit C ∪ Ai ∈ m(A) für alle
i ∈ N, also auch C ∪

⋃∞
i=1Ai ∈ m(A), da m(A) monoton ist. Damit ist m(A) ⊆ M⋃∞

i=1 Ai
,

d.h.
⋃∞
i=1Ai ∈ N , gezeigt (analog für A1 ⊇ A2 ⊇ . . . und

⋂∞
i=1Ai). Aus A ⊆ N und der

Monotonie von N folgt nun m(A) = N . Schließlich seien nun A,B ∈ m(A) beliebig. Dann
gilt A,B ∈ N und somit A ∈MB, d.h. A ∪B ∈ m(A).

Satz 1.12. Ist A eine Algebra in einer nichtleeren Menge X, so gilt m(A) = σ(A).

Beweis. Aus A ⊆ σ(A) und Satz 1.9 folgt m(A) ⊆ m(σ(A)) = σ(A). Und aus A ⊆ m(A)
und Lemma 1.11 folgt σ(A) ⊆ σ(m(A)) = m(A).

Definition 1.13. Sei X ein metrischer Raum. Die vom System aller offenen Mengen in X
erzeugte σ-Algebra heißt Borel’sche σ-Algebra. Wir bezeichnen sie mit dem Symbol B(X).
Die Mengen der Borel’schen σ-Algebra heißen Borel-Mengen. Eine Menge heißt vom Typ Fσ,
wenn sie als Vereinigung von abzählbar vielen abgeschlossenen Mengen dargestellt werden
kann, und vom Typ Gδ, wenn sie als Durchschnitt von abzählbar vielen offenen Mengen
dargestellt werden kann.

Bemerkung. Man kann zeigen, dass Mengen vom Typ Fσ und Mengen vom Typ Gδ stets
Borel-Mengen sind. Das σ in Fσ steht für „Summe“ (Vereinigung), das F für „fermé“ (fran-
zösisch: abgeschlossen). Das δ in Gδ bedeutet „Durchschnitt“.
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1 Algebraische Strukturen bei Mengensystemen

Beispiel 1.14. Sei X := Rn und sei S := {
⊗n

i=1(ai, bi] : ai < bi, i = 1, . . . , n} ∪ {∅} der
Semiring aller halboffenen n-Zellen im Rn. Dann ist R(S) die Menge aller Vereinigungen
von endlich vielen paarweise disjunkten n-Zellen aus S. Der Ring R(S) wird als Ring der
Elementarmengen bezeichnet.
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2 Mengenfunktionen

Wir bezeichnen mit R := R∪{−∞,+∞} das erweiterte System der reellen Zahlen und legen
die folgenden Konventionen fest:

(i) x±∞ = ±∞, x
±∞ = 0 für x ∈ R,

(ii) x · (±∞) = ±(sgnx) · ∞ für x ∈ R \ {0},

(iii) |+∞| = | −∞| = +∞,

(iv) ±∞+ (±∞) = ±∞, ±∞− (∓∞) = ±∞,

(v) (±∞) · (±∞) = +∞, (±∞) · (∓∞) = −∞.

Definition 2.1. Sei X eine beliebige nichtleere Menge und seiM⊆ P(X) nichtleer.

(i) Eine Abbildung ϕ :M→ R heißt eine aufM definierte Mengenfunktion.

(ii) Eine Mengenfunktion ϕ :M→ R, die höchstens einen der Werte ±∞ annimmt, heißt
additiv aufM, wenn für alle Mengen A,B ∈M mit A ∪B ∈M und A ∩B = ∅ gilt:

ϕ(A ∪B) = ϕ(A) + ϕ(B).

(iii) Eine additive Mengenfunktion ϕ : M → R heißt volladditiv (oder σ-additiv) auf M,
wenn für alle Mengen A1, A2, . . . ∈ M mit

⋃∞
i=1Ai ∈ M und Ai ∩ Aj = ∅ für i 6= j

gilt:

ϕ

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

ϕ(Ai).

(iv) Eine additive Mengenfunktion ϕ : M → R heißt subvolladditiv (oder σ-subadditiv)
aufM, wenn für alle Mengen A,A1, A2, . . . ∈M mit A ⊆

⋃∞
i=1Ai gilt:

ϕ(A) ≤
∞∑
i=1

ϕ(Ai).

Bemerkung. Falls die Reihe in Definition 2.1 (iii) konvergiert, so handelt es sich um absolute
Konvergenz, da sich die linke Seite der Gleichung bei Vertauschung der Mengen Ai nicht
ändert. D.h. die Reihe hat für beliebige Permutationen der ϕ(Ai) stets den selben Wert. Aus
dem Riemann’schen Umordnungssatz folgt damit die absolute Konvergenz.
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2 Mengenfunktionen

Beispiel 2.2. Seien X eine unendliche Menge undM := P(X). Dann ist die durch

ϕ(A) :=

{
0, A endlich,
+∞, A unendlich

gegebene Mengenfunktion offensichtlich additiv, aber weder volladditiv noch subvolladditiv.
Die Additivität ist offensichtlich, weil bei zwei endlichen Mengen die Vereinigung endlich und
bei wenigstens einer unendlichen Menge darunter die Vereinigung unendlich wird. Vom Schei-
tern der Volladditivität und Subvolladditivität überzeugt man sich leicht durch Betrachtung
der folgenden Situation, die sich allgemein übertragen lässt: Sei X := N und bezeichne Ai
die einelementigen Mengen {i} mit ϕ(Ai) = 0 für i = 1, 2, .... Dann ist A :=

∞⋃
i=1

Ai = N

mit ϕ(A) = +∞, aber
∞∑
i=1

ϕ(Ai) = 0 ist immer kleiner als ϕ(A). Dies wiederspricht den

Forderungen von Volladditivität und Subvolladditivität.

Beispiel 2.3. Seien X := R undM := {(n, n+ 1] : n ∈ N0}. Dann ist die durch

ϕ((n, n+ 1]) :=

{
0, n gerade,
1, n ungerade

gegebene Mengenfunktion trivialerweise additiv, da keine Mengen A,B ∈M mit A∪B ∈M
existieren.

Beispiel 2.4. Seien X := Rn undM := P(X), sei X̃ := {x1, x2, . . .} ⊆ Rn eine höchstens
abzählbare Menge und sei f : X̃ → [0,∞) eine beliebige Funktion. Dann ist die durch

ϕ(A) :=
∑
xi∈A

f(xi)

gegebene Mengenfunktion volladditiv.

Satz 2.5 (Eigenschaften von Mengenfunktionen). Seien R ein Ring in einer nichtleeren
Menge X und ϕ : R → R eine additive Mengenfunktion. Dann gilt:

(i) A1, A2, . . . , An ∈ R, Ai ∩Aj = ∅ (i 6= j) ⇒ ϕ

(
n⋃
i=1

Ai

)
=

n∑
i=1

ϕ(Ai).

(ii) A,B ∈ R, B ⊆ A, ϕ(B) 6= ±∞ ⇒ ϕ(A \B) = ϕ(A)− ϕ(B).

(iii) Existiert ein A ∈ R mit ϕ(A) 6= ±∞, so gilt ϕ(∅) = 0.

(iv) A,B ∈ R ⇒ ϕ(A ∪B) + ϕ(A ∩B) = ϕ(A) + ϕ(B).

Mit der zusätzlichen Forderung ϕ(A) ≥ 0 für alle A ∈ R gilt außerdem:

(v) A,B ∈ R, B ⊆ A ⇒ ϕ(B) ≤ ϕ(A).
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2 Mengenfunktionen

(vi) A,B ∈ R ⇒ ϕ(A ∪B) ≤ ϕ(A) + ϕ(B).

(vii) ϕ subvolladditiv ⇔ ϕ volladditiv.

Beweis.

(i) Die Behauptung folgt per Induktion aus Definition 2.1 (ii).

(ii) ϕ(A) = ϕ((A \B) ∪B) = ϕ(A \B) + ϕ(B).

(iii) ϕ(∅) = ϕ(A \A) = ϕ(A)− ϕ(A) = 0.

(iv) ϕ(A) + ϕ(B) = ϕ
(
(A ∩B) ∪ (A \B)

)
+ ϕ(B) = ϕ(A ∩B) + ϕ(A \B) + ϕ(B)

= ϕ(A ∩B) + ϕ
(
(A \B) ∪B

)
= ϕ(A ∩B) + ϕ(A ∪B).

(v) ϕ(A) = ϕ
(
(A \B) ∪B

)
= ϕ(A \B) + ϕ(B) ≥ ϕ(B).

(vi) ϕ(A ∪B) ≤ ϕ(A ∪B) + ϕ(A ∩B) = ϕ(A) + ϕ(B).

(vii) Wir zeigen zunächst die Richtung „⇐“. Seien A,A1, A2, . . . ∈ R mit A ⊆
⋃∞
i=1Ai.

Setzen wir Bi := A ∩Ai ∈ R für i ∈ N sowie C1 := B1 und Ci := Bi \ (
⋃i−1
j=1Bj) ∈ R,

so gilt A =
⋃∞
i=1Bi =

⋃∞
i=1Ci, Ci ⊆ Bi ⊆ Ai und die Ci sind paarweise disjunkt. Es

folgt

ϕ(A) = ϕ

( ∞⋃
i=1

Ci

)
=

∞∑
i=1

ϕ(Ci) ≤
∞∑
i=1

ϕ(Ai),

d.h. ϕ ist subvolladditiv.

Wir zeigen nun „⇒“. Seien A1, A2, . . . ∈ R mit Ai ∩ Aj = ∅ für i 6= j und
A :=

⋃∞
i=1Ai ∈ R. Dann gilt für n ∈ N

∞⋃
i=n+1

Ai = A \

(
n⋃
i=1

Ai

)
∈ R

und somit

ϕ(A) = ϕ

((
n⋃
i=1

Ai

)
∪

( ∞⋃
i=n+1

Ai

))
= ϕ

(
n⋃
i=1

Ai

)
+ ϕ

( ∞⋃
i=n+1

Ai

)

≥ ϕ

(
n⋃
i=1

Ai

)
=

n∑
i=1

ϕ(Ai).

Mit n→∞ folgt nun

ϕ(A) ≥
∞∑
i=1

ϕ(Ai).

Die vorausgesetzte Subvolladditivität liefert die Behauptung.
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2 Mengenfunktionen

Satz 2.6. Seien R ein Ring in einer nichtleeren Menge X und ϕ : R → R eine additive
Mengenfunktion. Dann sind äquivalent:

(i) ϕ ist volladditiv.

(ii) Für alle A1, A2, . . . ∈ R mit A1 ⊆ A2 ⊆ . . . und A :=
⋃∞
i=1Ai ∈ R gilt

lim
i→∞

ϕ(Ai) = ϕ(A).

Beweis. (i) ⇒ (ii): Seien A1, A2, . . . ∈ R mit A1 ⊆ A2 ⊆ . . . und A :=
⋃∞
i=1Ai ∈ R. Dazu

führen wir die Mengen B1 := A1 und Bi := Ai \Ai−1 (i = 2, 3, ...) ein, für welche gilt

Aj =

j⋃
i=1

Bi und A =

∞⋃
i=1

Bi.

Offenbar sind die Bi paarweise disjunkt. Somit folgt

ϕ(A) = ϕ

( ∞⋃
i=1

Bi

)
=

∞∑
i=1

ϕ(Bi) = lim
j→∞

j∑
i=1

ϕ(Bi) = lim
j→∞

ϕ

(
j⋃
i=1

Bi

)
= lim

j→∞
ϕ(Aj).

(ii) ⇒ (i): Seien B1, B2, . . . ∈ R mit
⋃∞
i=1Bi ∈ R paarweise disjunkt. Setzen wir Aj :=⋃j

i=1Bi, so gilt A1 ⊆ A2 ⊆ . . . und A :=
⋃∞
j=1Aj =

⋃∞
i=1Bi. Daraus folgt

ϕ

( ∞⋃
i=1

Bi

)
= ϕ(A) = lim

j→∞
ϕ(Aj) = lim

j→∞
ϕ

(
j⋃
i=1

Bi

)
= lim

j→∞

j∑
i=1

ϕ(Bi) =
∞∑
i=1

ϕ(Bi).

Satz 2.7. Seien R ein Ring in einer nichtleeren Menge X und ϕ : R → R eine volladditive
Mengenfunktion. Für alle B1, B2, . . . ∈ R mit B1 ⊇ B2 ⊇ . . . und B :=

⋂∞
i=1Bi ∈ R gilt

dann
ϕ(B) = lim

i→∞
ϕ(Bi).

Beweis. Setzen wir Ai := B1 \Bi, so gilt Ai ∈ R und A1 ⊆ A2 ⊆ . . .. Wegen A :=
⋃∞
i=1Ai =

B1 \B ∈ R gilt ϕ(A) = ϕ(B1)− ϕ(B) und mit den Sätzen 2.5 (ii) und 2.6 folgt

ϕ(B) = ϕ(B1)−ϕ(A) = ϕ(B1)− lim
i→∞

ϕ(Ai) = ϕ(B1)− lim
i→∞

(
ϕ(B1)−ϕ(Bi)

)
= lim

i→∞
ϕ(Bi).

Satz 2.8. Seien R ein Ring in einer nichtleeren Menge X und ϕ : R → R eine additive
Mengenfunktion. Gilt für alle B1, B2, . . . ∈ R mit B1 ⊇ B2 ⊇ . . . und

⋂∞
i=1Bi = ∅ die

Aussage limi→∞ ϕ(Bi) = 0, so ist ϕ volladditiv.

Beweis. Seien A1, A2, . . . ∈ R paarweise disjunkte Mengen und sei A :=
⋃∞
i=1Ai ∈ R.

Setzen wir Bj :=
⋃∞
i=j+1Ai, so gilt B1 ⊇ B2 ⊇ . . . und

⋂∞
j=1Bj = ∅ ∈ R. Damit gilt nach

11



2 Mengenfunktionen

Voraussetzung limj→∞ ϕ(Bj) = 0 und wir erhalten

0 = lim
j→∞

ϕ(Bj) = lim
j→∞

ϕ

 ∞⋃
i=j+1

Ai

 = lim
j→∞

ϕ

(
A \

(
j⋃
i=1

Ai

))

= lim
j→∞

(
ϕ(A)−

j∑
i=1

ϕ(Ai)

)
= ϕ(A)−

∞∑
i=1

ϕ(Ai),

d.h. ϕ(A) =
∑∞

i=1 ϕ(Ai).
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3 Inhalt und Maß – Konstruktion von
Maßen

In diesem Kapitel betrachten wir MengensystemeM in X, wobei wieder X als eine beliebige
nichtleere Menge vorausgesetzt wird. Weiter betrachten wir darauf definierte additive Men-
genfunktionen ϕ. Zusätzlich schließen wir die singulären Fälle ϕ(A) ≡ +∞ und ϕ(A) ≡ −∞
für alle A ∈ M aus. Wegen Satz 2.5 (iii) gilt dann für ϕ : R → R auf dem Mengenring R
stets ϕ(∅) = 0.

Definition 3.1. Eine auf einem Ring R definierte Mengenfunktion ϕ : R → R heißt Inhalt,
wenn sie additiv und nichtnegativ ist. Ein auf einer σ-Algebra definierter Inhalt heißt Maß,
wenn er volladditiv ist.

Bemerkung. Für die Maßtheorie sind die Begriffe σ-Algebra und Maß von zentraler Bedeu-
tung.

Definition 3.2. Seien M1 und M2 zwei Mengensysteme mit M1 ⊆ M2 und seien ϕ1 :
M1 → R und ϕ2 :M2 → R zwei Mengenfunktionen. Die Mengenfunktion ϕ2 heißt Fortset-
zung von ϕ1 auf M2, wenn ϕ1(A) = ϕ2(A) für alle A ∈ M1 gilt. In diesem Fall heißt ϕ1

Einschränkung von ϕ2 aufM1.

Satz 3.3. Sei S ein Semiring.

(i) Jede additive Mengenfunktion ϕ : S → R lässt sich in eindeutiger Weise zu einer
additiven Mengenfunktion ϕ̃ : R(S)→ R fortsetzen.

(ii) Jede additive, subvolladditive und nichtnegative Mengenfunktion ϕ : S → R lässt sich
in eindeutiger Weise zu einem subvolladditiven Inhalt auf R(S) fortsetzen.

Beweis. Wir zeigen zunächst (i). Sei A ∈ R(S) beliebig. Nach Satz 1.10 existieren paarweise
disjunkte Mengen S1, S2, . . . , Sm ∈ S mit A =

⋃m
i=1 Si. Wir setzen entsprechend

ϕ̃(A) :=

m∑
i=1

ϕ(Si).

Zunächst müssen wir zeigen, dass ϕ̃(A) nicht von der konkreten Wahl der Si abhängt. Seien
also T1, T2, . . . , Tn ∈ S weitere paarweise disjunkte Mengen mit A =

⋃n
j=1 Tj . Dann gilt

Si = Si ∩A = Si ∩

 n⋃
j=1

Tj

 =
n⋃
j=1

(Si ∩ Tj)

13



3 Inhalt und Maß – Konstruktion von Maßen

für i = 1, . . . ,m und analog Tj =
⋃m
i=1(Si ∩ Tj) für j = 1, . . . , n. Somit folgt

m∑
i=1

ϕ(Si) =
m∑
i=1

ϕ

 n⋃
j=1

(Si ∩ Tj)

 =
m∑
i=1

n∑
j=1

ϕ(Si ∩ Tj)

=

n∑
j=1

ϕ

(
m⋃
i=1

(Si ∩ Tj)

)
=

n∑
j=1

ϕ(Tj),

d.h. ϕ̃(A) ist von der konkreten Wahl der Si unabhängig.
Trivialerweise ist ϕ̃ eine Fortsetzung von ϕ auf R(S). Wir zeigen nun die Additivität von

ϕ̃. Seien also A,B ∈ R(S) mit A ∩B = ∅ und seien S1, . . . , Sm ∈ S paarweise disjunkt mit
A =

⋃m
i=1 Si sowie T1, . . . , Tn ∈ S paarweise disjunkt mit B =

⋃n
j=1 Tj . Offensichtlich gilt

dann auch Si ∩ Tj = ∅ für alle i und j und somit

ϕ̃(A ∪B) = ϕ̃

( m⋃
i=1

Si

)
∪

 n⋃
j=1

Tj

 =
m∑
i=1

ϕ(Si) +
n∑
j=1

ϕ(Tj) = ϕ̃(A) + ϕ̃(B).

Es verbleibt der Beweis zur Eindeutigkeit der Fortsetzung. Sei ψ̃ : R(S)→ R eine weitere
additive Fortsetzung von ϕ aufR(S). Dann gilt für A ∈ R(S) mit A =

⋃m
i=1 Si und paarweise

disjunkten S1, . . . , Sm ∈ S die Beziehung

ψ̃(A) = ψ̃

(
m⋃
i=1

Si

)
=

m∑
i=1

ψ̃(Si) =
m∑
i=1

ϕ(Si) = ϕ̃(A).

Wir zeigen nun (ii). Sei ϕ̃ wie im Beweis zu (i). Dann gilt offensichtlich ϕ̃(A) ≥ 0 für alle
A ∈ R(S) und die Fortsetzung ϕ̃ ist eindeutig bestimmt, da sie additiv ist. Es verbleibt der
Beweis der Subvolladditivität.
Seien zunächst A1, A2, . . . ∈ R(S) und A :=

⋃∞
i=1Ai ∈ R(S). Dann existieren paarweise

disjunkte Mengen S1, S2, . . . , Sm ∈ S mit A =
⋃m
j=1 Sj und paarweise disjunkte Mengen

Si1, S
i
2, . . . , S

i
mi ∈ S mit Ai =

⋃mi
k=1 S

i
k. Für jedes feste i sind die Mengen der Form Sj ∩ Sik

dann ebenfalls paarweise disjunkt und es gilt

Ai = A ∩Ai =
m⋃
j=1

mi⋃
k=1

(Sj ∩ Sik)

für i = 1, 2, . . . sowie

Sj = A ∩ Sj =

( ∞⋃
i=1

Ai

)
∩ Sj =

( ∞⋃
i=1

mi⋃
k=1

Sik

)
∩ Sj =

∞⋃
i=1

mi⋃
k=1

(Sik ∩ Sj)
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für j = 1, . . . ,m. Aufgrund der Subvolladditivität von ϕ gilt nun

ϕ(Sj) ≤
∞∑
i=1

mi∑
k=1

ϕ(Sik ∩ Sj)

und somit

ϕ̃(A) =
m∑
j=1

ϕ(Sj) ≤
m∑
j=1

∞∑
i=1

mi∑
k=1

ϕ(Sik ∩ Sj) =
∞∑
i=1

m∑
j=1

mi∑
k=1

ϕ(Sik ∩ Sj) =
∞∑
i=1

ϕ̃(Ai).

Seien nun A1, A2, . . . ∈ R(S) sowie A ∈ R(S) mit A ⊆
⋃∞
i=1Ai. Setzen wir Bi := Ai ∩ A

und Ci := Ai \A, so gilt A =
⋃∞
i=1Bi und Bi ∩ Ci = ∅. Also folgt

ϕ̃(A) ≤
∞∑
i=1

ϕ̃(Bi) ≤
∞∑
i=1

(
ϕ̃(Bi) + ϕ̃(Ci)

)
=

∞∑
i=1

ϕ̃(Bi ∪ Ci) =

∞∑
i=1

ϕ̃(Ai).

Bemerkung. Nach Satz 2.5 (vii) ist der subvolladditive Inhalt in Satz 3.3 (ii) sogar volladditiv.

Beispiel 3.4. Seien n ∈ N und S := {
⊗n

i=1(ai, bi] : ai < bi, i = 1, . . . , n}∪{∅} der Semiring
aus Beispiel 1.14. Dann ist die Fortsetzung der durch

µ

(
n⊗
i=1

(ai, bi]

)
:=

n∏
i=1

(bi − ai) und µ(∅) := 0

gegebenen Mengenfunktion µ : S → R auf R(S) entsprechend Satz 3.3 ein subvolladditiver
Inhalt auf R(S), denn man kann zeigen, dass µ subvolladditiv ist (die Nichtnegativität ist
offensichtlich).

Beispiel 3.5 (Dirac-Maß). Seien X := R undM := P(X). Dann ist die durch

ϕ(A) :=

{
1, 0 ∈ A,
0, 0 /∈ A

definierte Mengenfunktion ϕ : P(R)→ R ein Maß. Dieses Maß wird als in Null konzentriertes
Dirac-Maß oder als Dirac-Maß mit Trägerpunkt Null bezeichnet.

Definition 3.6. Eine nichtnegative Mengenfunktion µ∗ : P(X) → R heißt äußeres Maß,
wenn gilt:

(i) µ∗(∅) = 0.

(ii) µ∗ ist monoton, d.h. für A ⊆ B ⊆ X gilt µ∗(A) ≤ µ∗(B).
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(iii) Für alle A1, A2, . . . ⊆ X gilt

µ∗

( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

µ∗(Ai).

Bemerkung. Die Nichtnegativität des äußeres Maßes muss eigentlich nicht vorausgesetzt
werden, denn sie folgt unmittelbar aus den Forderungen (i) und (ii). Die Eigenschaft (iii)
ist eng verbunden mit der Subvolladditivität einer Mengenfunktion. Jedoch weisen wir an
dieser Stelle deutlich darauf hin, dass äußere Maße nicht additiv sein müssen. Zum Beispiel
ist

µ∗(A) :=

{
0 A höchstens abzählbar,
1 sonst

ein äußeres Maß auf der Potenzmenge P(R) von R, jedoch nicht additiv, denn

1 = µ∗([0, 1] ∪ [4, 5]) 6= µ∗([0, 1]) + µ∗([4, 5]) = 2.

Beispiel 3.7. Sei X := [0, 1]. Dann ist die durch

µ∗(A) :=

{
supA, A 6= ∅,
0, A = ∅

gegebene Mengenfunktion µ∗ : P(X)→ R ein äußeres Maß. Denn µ∗ ist offensichtlich nicht-
negativ und erfüllt (i) und (ii) aus Definition 3.6. Zum Nachweis von (iii) seien A1, A2, . . . ⊆
X beliebig und es sei A :=

⋃∞
i=1Ai. Es gilt nun supA ≤ supX = 1 und somit existiert für

jedes ε > 0 nach Definition des Supremums ein xε ∈ A mit supA ≤ xε + ε. Weiter existiert
ein iε ∈ N mit xε ∈ Aiε , sodass

µ∗(A) = supA ≤ xε + ε ≤ supAiε + ε ≤ ε+
∞∑
i=1

supAi = ε+
∞∑
i=1

µ∗(Ai)

folgt. Für ε→ 0 folgt Eigenschaft (iii).

Satz 3.8. Seien R ein Ring in X und µ ein Inhalt auf R. Für E ⊆ X bezeichne

ME :=

{
{Ui ∈ R : i ∈ N} : E ⊆

∞⋃
i=1

Ui

}

die Menge aller abzählbaren Überdeckungen von E. Dann definiert die durch

µ∗(E) :=

{
inf
{∑∞

i=1 µ(Ui) : {Ui : i ∈ N} ∈ ME

}
, ME 6= ∅,

+∞, ME = ∅

gegebene Mengenfunktion µ∗ : P(X)→ R ein äußeres Maß.
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Beweis. Offensichtlich ist µ∗(∅) = 0 erfüllt. Für beliebige A ⊆ B ⊆ X folgtMA ⊇MB und
somit µ∗(A) ≤ µ∗(B), d.h. µ∗ ist monoton. Zum Beweis von Eigenschaft (iii) in Definition
3.6 seien E1, E2, . . . ⊆ X beliebig. Existiert ein Index j ∈ N mit µ∗(Ej) = ∞, so ist die
Eigenschaft trivialerweise erfüllt. Sei also µ∗(Ei) < ∞ für alle i ∈ N. Zu jedem ε > 0
existieren dann Überdeckungen {U ij : j ∈ N} ∈ MEi von Ei mit

∞∑
j=1

µ(U ij) < µ∗(Ei) +
ε

2i

für alle i ∈ N. Da jedoch {U ij : i, j ∈ N} die Vereinigung
⋃∞
i=1Ei überdeckt, gilt

µ∗

( ∞⋃
i=1

Ei

)
≤
∞∑
i=1

∞∑
j=1

µ(U ij) ≤
∞∑
i=1

(
µ∗(Ei) +

ε

2i

)
= ε+

∞∑
i=1

µ∗(Ei).

Für ε→ 0 folgt die Behauptung.

Satz 3.9. Das äußere Maß µ∗ aus Satz 3.8 ist genau dann eine Fortsetzung des Inhalts µ
von R auf P(X), wenn µ subvolladditiv ist.

Beweis. „⇒“: Es gelte µ∗(A) = µ(A) für alle A ∈ R. Für beliebige Mengen A,A1, A2, . . . ∈ R
mit A ⊆

⋃∞
i=1Ai folgt dann aus (ii) und (iii) in Definition 3.6

µ(A) = µ∗(A) ≤ µ∗
( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

µ∗(Ai) =

∞∑
i=1

µ(Ai),

d.h. µ ist subvolladditiv.
“⇐“: Sei µ subvolladditiv. Für beliebiges A ∈ R setzen wir A1 := A und Ai := ∅ für

i = 2, 3, . . .. Dann ist {Ai : i ∈ N} eine Überdeckung von A und somit folgt aus der
Definition von µ∗

µ∗(A) ≤
∞∑
i=1

µ(Ai) = µ(A) +
∞∑
i=2

µ(∅) = µ(A).

Umgekehrt existiert zu jedem ε > 0 eine Überdeckung {Ai : i ∈ N} ⊆ R von A mit

∞∑
i=1

µ(Ai) < µ∗(A) + ε.

Setzen wir Bi := A ∩Ai ∈ R, so gilt A =
⋃∞
i=1Bi und damit

µ(A) ≤
∞∑
i=1

µ(Bi) ≤
∞∑
i=1

µ(Ai) < µ∗(A) + ε.

Der Grenzübergang ε→ 0 liefert µ(A) ≤ µ∗(A), d.h. µ(A) = µ∗(A).
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Satz 3.10. Seien R ein Ring in X, µ ein subvolladditiver Inhalt auf R und µ∗ das äußere
Maß aus Satz 3.8. Dann gilt

µ∗(E) = µ∗(E ∩A) + µ∗(E \A)

für alle A ∈ R und alle E ⊆ X.

Beweis. Wegen E = (E ∩A) ∪ (E \A) gilt nach Definition 3.6 (iii) stets

µ∗(E) ≤ µ∗(E ∩A) + µ∗(E \A).

Für µ∗(E) =∞ gilt trivialerweise auch

µ∗(E) ≥ µ∗(E ∩A) + µ∗(E \A).

Sei nun also µ∗(E) <∞. Zu jedem ε > 0 existiert dann eine Überdeckung {Ui ∈ R : i ∈ N}
von E mit

µ∗(E) + ε ≥
∞∑
i=1

µ(Ui).

Setzen wir Vi := A∩Ui und Wi := Ui \A für i = 1, 2, . . ., dann gilt Vi,Wi ∈ R, Ui = Vi∪Wi

und Vi ∩Wi = ∅ sowie

A ∩ E ⊆ A ∩

( ∞⋃
i=1

Ui

)
=
∞⋃
i=1

Vi, E \A ⊆

( ∞⋃
i=1

Ui

)
\A =

∞⋃
i=1

Wi

und µ(Ui) = µ(Vi) +µ(Wi). Also erhalten wir aus Satz 3.9 sowie aus Definition 3.6 (iii) und
(ii)

µ∗(E) + ε ≥
∞∑
i=1

µ(Ui) =
∞∑
i=1

µ(Vi) +
∞∑
i=1

µ(Wi) =
∞∑
i=1

µ∗(Vi) +
∞∑
i=1

µ∗(Wi)

≥ µ∗
( ∞⋃
i=1

Vi

)
+ µ∗

( ∞⋃
i=1

Wi

)
≥ µ∗(E ∩A) + µ∗(E \A).

Der Grenzübergang ε→ 0 liefert die Behauptung.

Definition 3.11 (Caratheodory). Sei µ∗ ein äußeres Maß auf P(X). Eine Menge A ⊆ X
heißt µ∗-messbar, falls

µ∗(E) = µ∗(E ∩A) + µ∗(E \A)

für alle E ⊆ X gilt. Das System aller µ∗-messbaren Mengen inX bezeichnen wir mitAµ∗(X).

Lemma 3.12. Sei µ∗ ein äußeres Maß auf P(X). Dann ist jede Menge A ⊆ X mit µ∗(A) = 0
µ∗-messbar, d.h. A ∈ Aµ∗(X).
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Beweis. Sei E ⊆ X beliebig. Wegen E ∩A ⊆ A und Definition 3.6 (i) und (ii) gilt

0 ≤ µ∗(E ∩A) ≤ µ∗(A) = 0,

d.h. µ∗(E ∩A) = 0, und aus E \A ⊆ E folgt mit Definition 3.6 (iii) und (ii)

µ∗(E) = µ∗
(
(E ∩A) ∪ (E \A)

)
≤ µ∗(E ∩A) + µ∗(E \A) ≤ 0 + µ∗(E),

also µ∗(E) = µ∗(E ∩A) + µ∗(E \A).

Lemma 3.13. Sei µ∗ ein äußeres Maß auf P(X). Ist A ⊆ X µ∗-messbar, so ist auch X \A
µ∗-messbar, d.h.

A ∈ Aµ∗(X) ⇒ X \A ∈ Aµ∗(X).

Beweis. Sei E ⊆ X beliebig. Aus

E \A = E ∩ (X \A) und E ∩A = E \ (X \A)

folgt dann

µ∗(E) = µ∗(E ∩A) + µ∗(E \A) = µ∗(E \ (X \A)) + µ∗(E ∩ (X \A)).

Lemma 3.14. Sei µ∗ ein äußeres Maß auf P(X). Sind A ⊆ X und B ⊆ X µ∗-messbar, so
ist auch A ∩B µ∗-messbar, d.h.

A,B ∈ Aµ∗(X) ⇒ A ∩B ∈ Aµ∗(X).

Beweis. Sei E ⊆ X beliebig. Wegen A ∈ Aµ∗(X) gilt

µ∗(E \ (A ∩B)) = µ∗(E ∩ (A ∩B)) = µ∗(E ∩ (A ∪B)︸ ︷︷ ︸
=:Ẽ

) = µ∗(Ẽ ∩A) + µ∗(Ẽ \A)

= µ∗(E ∩A ∩B) + µ∗(E ∩A) = µ∗((E ∩A) \B) + µ∗(E \A)

und aus B ∈ Aµ∗(X) sowie nochmals aus A ∈ Aµ∗(X) folgt damit

µ∗(E ∩ (A ∩B)) + µ∗(E \ (A ∩B)) = µ∗(E ∩A ∩B) + µ∗((E ∩A) \B) + µ∗(E \A)

= µ∗(E ∩A) + µ∗(E \A) = µ∗(E),

d.h. A ∩B ∈ Aµ∗(X).

Bemerkung. Für A,B ∈ Aµ∗(X) folgt aus Lemma 3.13 und Lemma 3.14

A ∪B = A ∩B ∈ Aµ∗(X),

d.h. Aµ∗(X) ist eine Algebra.

19



3 Inhalt und Maß – Konstruktion von Maßen

Satz 3.15. Sei µ∗ ein äußeres Maß auf P(X). Dann ist Aµ∗(X) eine σ-Algebra und µ∗|Aµ∗ (X)

ein Maß auf Aµ∗(X).

Beweis. 1 Sei E ⊆ X beliebig und seien A1, A2, . . . ∈ Aµ∗(X) paarweise disjunkt. Mit
A :=

⋃∞
i=1Ai gilt dann

µ∗(E) = µ∗(E ∩A1) + µ∗(E \A1) = µ∗(E ∩A1) + µ∗((E \A1) ∩A2︸ ︷︷ ︸
=E∩A2

) + µ∗((E \A1) \A2︸ ︷︷ ︸
=E\(A1∪A2)

)

= µ∗(E ∩A1) + µ∗(E ∩A2) + µ∗
(
(E \ (A1 ∪A2)) ∩A3︸ ︷︷ ︸

=E∩A3

)
+ µ∗

(
(E \ (A1 ∪A2)) \A3︸ ︷︷ ︸

=E\(A1∪A2∪A3)

)

= · · · =
n∑
i=1

µ∗(E ∩Ai) + µ∗(E \ (
⋃n
i=1Ai)︸ ︷︷ ︸

⊇E\A

) ≥
n∑
i=1

µ∗(E ∩Ai) + µ∗(E \A)

und der Grenzübergang n→∞ liefert in Verbindung mit Definition 3.6 (iii)

µ∗(E) ≥
∞∑
i=1

µ∗(E ∩Ai) + µ∗(E \A) ≥ µ∗
( ∞⋃
i=1

(E ∩Ai)

)
+ µ∗(E \A)

= µ∗(E ∩A) + µ∗(E \A).

Wegen E = (E ∩A)∪ (E \A) und Definition 3.6 (iii) gilt auch die umgekehrte Ungleichung,
also µ∗(E) = µ∗(E ∩A) + µ∗(E \A), d.h. A ∈ Aµ∗(X). Insbesondere gilt also auch

µ∗(E) =

∞∑
i=1

µ∗(E ∩Ai) + µ∗(E \A).

Setzen wir E := A, so liefert dies

µ∗(A) =
∞∑
i=1

µ∗(Ai) + µ∗(∅)︸ ︷︷ ︸
=0

,

d.h. µ∗ ist volladditiv auf Aµ∗(X).
Seien nun B1, B2, . . . ∈ Aµ∗(X) beliebig und sei B :=

⋃∞
i=1Bi. Setzen wir A1 := B1 und

Ai := Bi \ (
⋃i−1
j=1Bj) für i = 2, 3, . . ., so gilt Ai ∈ Aµ∗(X) (wegen Lemma 3.13 und Lemma

3.14) und B =
⋃∞
i=1Ai. Nach dem bereits Gezeigten folgt also B ∈ Aµ∗(X), d.h. Aµ∗(X)

ist eine σ-Algebra.

Satz 3.16 (Fortsetzungssatz von Hahn). Sei ϕ : S → [0,∞] eine nichtnegative, additive
Mengenfunktion auf einem Semiring S und sei µ : R(S)→ [0,∞] die Fortsetzung von ϕ zu
einem Inhalt auf R(S) (vgl. Satz 3.3). Dann ist die Einschränkung µ∗|Aµ∗ (X) des in Satz 3.8

1Da Additivität keine Eigenschaft µ∗ ist, wird diese im Beweis auch nicht benötigt.
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3 Inhalt und Maß – Konstruktion von Maßen

definierten äußeren Maßes µ∗ : P(X) → [0,∞] genau dann eine Fortsetzung von ϕ auf
Aµ∗(X), wenn ϕ subvolladditiv ist.

Beweis. Aus den Sätzen 3.3 (ii) und 3.9 folgt sofort, dass µ∗ genau dann eine Fortsetzung
von ϕ auf P(X) ist, wenn ϕ subvolladditiv ist. Trivialerweise gilt S ⊆ R(S) und wegen
Satz 3.10 auch R(S) ⊆ Aµ∗(X), falls ϕ subvolladditiv ist. Dies liefert die Behauptung.

Bemerkung. Satz 3.16 gibt uns eine Möglichkeit, eine nichtnegative, subvolladditive Men-
genfunktion auf einem Semiring zu einem Maß auf einer σ-Algebra (nämlich auf Aµ∗(X))
fortzusetzen.

Definition 3.17. Sei M ⊆ P(X) nichtleer. Eine Mengenfunktion ϕ : M → R heißt
σ-endlich, wenn zu jedem A ∈M abzählbar viele paarweise disjunkte Mengen A1, A2, . . . ∈
M mit

|ϕ(Ai)| <∞ und A =
∞⋃
i=1

Ai

existieren.

Satz 3.18 (Ergänzungssatz zum Fortsetzungssatz von Hahn). Sei ϕ eine nichtnegative,
subvolladditive und σ-endliche Mengenfunktion auf einem Semiring S und es existiere eine
abzählbare Überdeckung von X durch Mengen aus S. Dann ist die Einschränkung µ∗|Aµ∗ (X)

des zu ϕ gehörenden äußeren Maßes µ∗ (vgl. Satz 3.16) ein σ-endliches Maß auf Aµ∗(X).

Beweis. Wegen Satz 1.10 ist die Fortsetzung µ von ϕ auf R(S) offensichtlich σ-endlich;
damit ist also auch µ∗ auf R(S) σ-endlich. Nach Voraussetzung existiert eine Überdeckung
{Ũi ∈ S : i ∈ N} von X. Setzen wir U1 := Ũ1 und Ui := Ũi \ (

⋃i−1
j=1 Ũj) für i = 2, 3, . . .,

so gilt Ui ∈ R(S), Ui ∩ Uj = ∅ für i 6= j und X =
⋃∞
i=1 Ui. Da µ∗ σ-endlich auf R(S) ist,

existieren für jedes i ∈ N Mengen V 1
i , V

2
i , . . . ∈ R(S) mit µ∗(V j

i ) < ∞ für alle j ∈ N und
Ui =

⋃∞
j=1 V

j
i . Für A ∈ Aµ∗(X) gilt somit

A = A ∩X = A ∩

 ∞⋃
i=1

∞⋃
j=1

V j
i

 =

∞⋃
i=1

∞⋃
j=1

(A ∩ V j
i ).

Da die Mengen A ∩ V j
i für i, j ∈ N paarweise disjunkt sind und µ∗(A ∩ V j

i ) ≤ µ∗(V j
i ) <∞

gilt, ist die Behauptung gezeigt.

Definition 3.19. Ein Maß µ auf einer σ-Algebra A heißt vollständig, wenn für jedes A ∈ A
mit µ(A) = 0 aus B ⊆ A stets B ∈ A folgt.

Bemerkung. Aus der Monotoniebedingung von Definition 3.6 (ii) und wegen des Lemmas 3.12
folgt unmittelbar, dass das im Sinne des Fortsetzungssatzes von Hahn über eine Einschrän-
kung des äußeren Maßes µ∗ auf der σ-Algebra der nach Caratheodory messbaren Mengen
Aµ∗(X) definierte Maß µ∗|Aµ∗ (X) ein vollständiges Maß ist.
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Satz 3.20. Sei A eine σ-Algebra in X und sei µ ein Maß auf A. Dann ist das Mengensystem

A := {A ∪N : A ∈ A, N ∈ N},

wobei N := {N ⊆ X : ∃B ∈ A mit µ(B) = 0 und N ⊆ B} sei, eine σ-Algebra in X und die
durch

µ(A ∪N) := µ(A)

auf A definierte Mengenfunktion µ : A → [0,∞] ist ein vollständiges Maß auf A.

Beweis. Wir zeigen als Erstes, dass A eine σ-Algebra ist. Sei A ∪ N ∈ A mit A ∈ A und
N ∈ N und sei B ∈ A eine Menge mit µ(B) = 0 und N ⊆ B. Dann gilt

A ∪N = (A ∪B) \ (B \ (A ∪N)) = (A ∪B) ∩ (B \ (A ∪N)) = (A ∪B︸ ︷︷ ︸
∈A

) ∪ (B \ (A ∪N)︸ ︷︷ ︸
⊆B

),

d.h. A ∪N ∈ A. Seien nun A1∪N1, A2∪N2, . . . ∈ Amit entsprechenden Mengen B1, B2, . . . ∈
A. Wegen Satz 2.5 (vii) ist µ subvolladditiv und damit folgt

µ

( ∞⋃
i=1

Bi

)
≤
∞∑
i=1

µ(Bi) = 0.

Also erhalten wir
∞⋃
i=1

(Ai ∪Ni) =

( ∞⋃
i=1

Ai

)
︸ ︷︷ ︸
∈A

∪

( ∞⋃
i=1

Ni

)
︸ ︷︷ ︸
⊆
∞⋃
i=1

Bi∈A

∈ A.

Wir zeigen nun die Korrektheit der Definition von µ. Seien also A∪N ∈ A und Ã∪Ñ ∈ A
mit entsprechenden Mengen B, B̃ ∈ A, sodass A∪N = Ã∪Ñ gilt. Zu zeigen ist µ(A) = µ(Ã).
Nach Satz 2.5 (iv) gilt zunächst

µ(B ∪ B̃) + µ(B ∩ B̃) = µ(B) + µ(B̃) = 0,

also µ(B∪B̃) = 0. Wegen Satz 2.5 (v) gilt dann auch µ(A∩(B∪B̃)) = 0. Falls µ(A) =∞ und
µ(Ã) = ∞, so ist die Behauptung trivial. Sei also µ(A) < ∞ (sonst A und Ã vertauschen).
Aus A ∪N = Ã ∪ Ñ folgt A ∪B ∪ B̃ = Ã ∪B ∪ B̃, sodass Satz 2.5 (ii)

0 = µ(∅) = µ
(
(Ã ∪B ∪ B̃) \ (A ∪B ∪ B̃)

)
= µ(Ã ∪B ∪ B̃) + µ(A ∪B ∪ B̃),

d.h. µ(A ∪B ∪ B̃) = µ(Ã ∪B ∪ B̃), liefert. Mit Satz 2.5 (iv) folgt wiederum

µ(A ∪B ∪ B̃) + µ(A ∩ (B ∪ B̃))︸ ︷︷ ︸
=0

= µ(A) + µ(B ∪ B̃)︸ ︷︷ ︸
=0
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und analog µ(Ã ∪B ∪ B̃) = µ(Ã), d.h. es gilt µ(A) = µ(Ã).
Wir zeigen nun die Volladditivität von µ. Seien also A1 ∪ N1, A2 ∪ N2, . . . ∈ A paarwei-

se disjunkt. Dann gilt (vgl. Beweisteil zur Abgeschlossenheit von A bezüglich abzählbarer
Vereinigungen)

µ

( ∞⋃
i=1

(Ai ∪Ni)

)
= µ

(( ∞⋃
i=1

Ai

)
∪

( ∞⋃
i=1

Ni

))
= µ

( ∞⋃
i=1

Ai

)

=
∞∑
i=1

µ(Ai) =
∞∑
i=1

µ(Ai ∪Ni).

Es verbleibt die Vollständigkeit von µ zu zeigen. Sei also A ∪ N ∈ A mit einer entspre-
chenden Menge B ⊇ N, µ(B) = 0, und mit µ(A ∪ N) = 0. Dann ist auch µ(A) = 0. Für
C ⊆ A ∪N gilt C ⊆ A ∪B ∈ A und Satz 2.5 (iv) liefert

µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B) = 0,

d.h. µ(A ∪B) = 0. Somit folgt C = ∅ ∪ C ∈ A, also ist µ vollständig.

Bemerkung. Das Maß µ wird Vervollständigung von µ genannt.

Beispiel 3.21 (Lebesgue-Maß im Rn). Sei X := Rn und sei R der Ring der Element-
armengen im Rn (vgl. Beispiel 1.14). Weiter sei µ der subvolladditive Inhalt auf R aus
Beispiel 3.4. Die Einschränkung µ∗|Aµ∗ (Rn) des entsprechend Satz 3.8 konstruierten äußeren
Maßes µ∗ ist nach Satz 3.16 eine Fortsetzung von µ auf Aµ∗(Rn). Das Maß µ∗|Aµ∗ (Rn) wird
als (n-dimensionales) Lebesgue-Maß bezeichnet und Aµ∗(Rn) heißt σ-Algebra der Lebesgue-
messbaren Mengen. Wir verwenden dafür im Weiteren das Symbol L(Rn).
Offensichtlich ist µ(I) < ∞ für alle n-Zellen der Form I =

⊗n
i=1(ai, bi], d.h. µ ist auf

dem Semiring dieser n-Zellen σ-endlich. Nach Satz 3.18 ist das Lebesgue-Maß µ∗|Aµ∗ (Rn)
also σ-endlich. Entsprechend der Bemerkung nach Definition 3.19 ist das Lebesgue-Maß
µ∗|Aµ∗ (Rn) ein vollständiges Maß.

Bemerkung. Beschränkte Mengen im Rn haben ein endliches Lebesgue-Maß, da sie in einer
(endlichen) n-Zelle enthalten sind. Man kann ohne große Mühe zeigen, dass abzählbare
Mengen im Rn Lebesgue-messbar sind und dass ihr Lebesgue-Maß Null ist. Es gibt jedoch
auch überabzählbare Lebesgue-Nullmengen (z.B. die Cantor-Menge).

Bemerkung. Man kann zeigen, dass jede Borel-Menge im Rn (vgl. Definition 1.13) Lebesgue-
messbar ist, es aber Lebesgue-messbare Mengen gibt, die keine Borel-Mengen sind. Also
gilt mit echter Inklusion B(Rn) ⊂ L(Rn). Die Einschränkung des Lebesgue-Maßes auf die σ-
Algebra der Borel-Mengen heißt Borel-Maß. Entsprechend bezeichnet man die Borel-Mengen
aus B(Rn) auch als Borel-messbare Mengen. Das Borel-Maß im Rn ist im Gegensatz zum
Lebesgue-Maß nicht vollständig, weil es Teilmengen zu Borel-Mengen mit Borel-Maß Null
gibt, die selbst keine Borel-Mengen sind. Vervollständigt man das Borel-Maß im Rn im Sinne
von Satz 3.20, so ergibt sich das Lebesgue-Maß als Vervollständigung.
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Bemerkung. Es gibt auch Mengen in Rn, die nicht Lebesgue-messbar sind (z.B. die so ge-
nannten Vitali-Mengen).

Beispiel 3.22 (Lebesgue-Maß in R). Sei X := R und sei

S := {[−∞, b] : b ∈ R} ∪ {(a,+∞] : a ∈ R} ∪ {(a, b] : a, b ∈ R, a < b} ∪ {∅}.

Dann ist S ein Semiring und die durch

µ([−∞, b]) := +∞, µ((a,+∞]) := +∞, µ((a, b]) := b− a, µ(∅) := 0

gegebene Mengenfunktion µ : S → [0,∞] ist subvolladditiv und σ-endlich. Das analog
zum Lebesgue-Maß im Rn aus S und µ konstruierte Maß heißt Lebesgue-Maß in R. Die
dazugehörige σ-Algebra bezeichnen wir entsprechend mit L(R).

Bemerkung. Die Mengen [−∞, b) bzw. (a,+∞] sehen wir als offene Kugeln (Umgebungen)
um die uneigentlichen Punkte −∞ bzw. +∞ von R an, sodass wir eine Grundlage haben, um
über offene und abgeschlossene Mengen und deren Konsequenzen in R zu sprechen. Zusätzlich
zu beschränkten Intervallen (a, b) mit a, b ∈ R, die sowohl in R als auch in R offene Kugeln
bilden, treten in R auch noch die unbeschränkten Intervalle der Typen [−∞, a) bzw. (b,∞]
als offene Kugeln hinzu. Auch hier ist die Borel’sche σ-Algebra B(R) als kleinste σ-Algebra,
die alle offenen Mengen von R enthält, wieder als echte Teilmenge in L(R) enthalten.

Satz 3.23. Seien X := Rn, L(Rn) die σ-Algebra der Lebesgue-messbaren Mengen und µ
das Lebesgue-Maß. Für A ∈ L(Rn) existieren zu jedem ε > 0 eine abgeschlossene Menge
F ∈ L(Rn) und eine offene Menge G ∈ L(Rn) mit F ⊆ A ⊆ G, sodass µ(A \ F ) < ε und
µ(G \A) < ε gilt.

Beweis. Erfülle A ∈ L(Rn) zunächst µ(A) <∞. Mit µ∗ bezeichnen wir das äußere Maß, aus
welchem das Lebesgue-Maß konstruiert wurde (vgl. Beispiel 3.21). Wegen µ∗(A) = µ(A) <∞
existiert nach Definition von µ∗ (vgl. Satz 3.8) zu jedem ε > 0 eine abzählbare Überdeckung
{Ei ∈ R : i ∈ N} von A mit

µ∗(A) +
ε

2
>

∞∑
i=1

µ∗(Ei)

(R sei hier der Ring der Elementarmengen). Nach Satz 1.10 existieren zu jedem Ei paarweise
disjunkte, halboffenen n-Zellen I1i , I

2
i , . . . , I

mi
i mit Ei =

⋃mi
j=1 I

j
i . Zur Vereinfachung der

Notation nummerieren wir die Elemente der (abzählbaren) Menge {Iji : i ∈ N, 1 ≤ j ≤ mi}
um in {Ik : k ∈ N}; wir haben also

µ∗(A) +
ε

2
>

∞∑
i=1

mi∑
j=1

µ∗(Iji ) =

∞∑
k=1

µ∗(Ik).

Bezeichnen wir die Grenzen der halboffenen n-Zelle Ik mit a1k, . . . , a
n
k und b1k, . . . , b

n
k , d.h.

Ik =
⊗n

i=1(a
i
k, b

i
k], so existiert für jedes k ∈ N eine offene n-Zelle Jk :=

⊗n
i=1(a

i
k, b

i
k + δik)
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mit
µ∗(Jk) ≤ µ∗(Ik) +

ε

2k+1

(die δik > 0 müssen hinreichend klein gewählt werden). Die Menge G :=
⋃∞
k=1 Jk ist dann

offen und es gilt

µ∗(G) = µ∗

( ∞⋃
k=1

Jk

)
≤
∞∑
k=1

µ∗(Jk) ≤
∞∑
k=1

µ∗(Ik) +
ε

2

∞∑
k=1

1

2k︸ ︷︷ ︸
=1

< µ∗(A) + ε.

Somit folgt
µ(G \A) = µ(G)− µ(A) = µ∗(G)− µ∗(A) < ε.

Gilt für A ∈ L(Rn) nun µ(A) = ∞, so existieren aufgrund der σ-Endlichkeit von µ
(vgl. Beispiel 3.21) paarweise disjunkte Mengen A1, A2, . . . ∈ L(Rn) mit µ(Ai) < ∞ und
A =

⋃∞
i=1Ai. Nach dem bereits gezeigten existieren für ε > 0 entsprechend offene Mengen

G1, G2, . . . ∈ L(Rn) mit Ai ⊆ Gi und µ(Gi \ Ai) < ε
2i
. Setzen wir G :=

⋃∞
i=1Gi, so gilt

A ⊆ G und G ist offen. Es folgt

µ(G \A) = µ

( ∞⋃
i=1

Gi

)
\

 ∞⋃
j=1

Aj

 = µ

 ∞⋃
i=1

Gi \
 ∞⋃
j=1

Aj


≤ µ

( ∞⋃
i=1

(Gi \Ai)

)
≤
∞∑
i=1

µ(Gi \Ai) < ε
∞∑
i=1

1

2i
= ε.

Es verbleibt die Existenz einer abgeschlossenen Menge F mit den behaupteten Eigenschaf-
ten zu zeigen. Seien also A ∈ L(Rn) und ε > 0. Dann gilt A ∈ L(Rn) und somit existiert
eine offene Menge G ∈ L(Rn) mit A ⊆ G und µ(G \ A) < ε. Setzen wir F := G, so ist F
abgeschlossen und wir erhalten F ⊆ A sowie

µ(A \ F ) = µ(A ∩ F ) = µ(A ∩G) = µ(G \A) < ε.

Satz 3.24. Sei A ⊆ Rn Lebesgue-messbar, d.h. A ∈ L(Rn). Dann existieren eine Menge F
vom Typ Fσ und eine Menge G vom Typ Gδ mit F ⊆ A ⊆ G, sodass µ(A \ F ) = 0 und
µ(G \A) = 0 gilt, wobei µ das Lebesgue-Maß im Rn bezeichne.

Beweis. Nach Satz 3.23 existieren zu jedem m ∈ N eine abgeschlossene Menge Fm und eine
offene Menge Gm mit Fm ⊆ A ⊆ Gm, sodass

µ(A \ Fm) <
1

m
und µ(Gm \A) <

1

m
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gilt. Setzen wir F :=
⋃∞
m=1 Fm und G :=

⋂∞
m=1Gm, so gilt für jedes M ∈ N

µ(A \ F ) = µ

(
A \

( ∞⋃
m=1

Fm

))
≤ µ(A \ FM ) <

1

M

und

µ(G \A) = µ

(( ∞⋂
m=1

Gm

)
\A

)
≤ µ(GM \A) <

1

M
.

Der Grenzübergang M →∞ liefert die Behauptung.

Bemerkung. Bezeichne B(Rn) die Borel’sche σ-Algebra im Rn (vgl. Definition 1.13), welche
alle Mengen vom Typ Fσ und alle Mengen vom Typ Gδ enthält. Dann folgt aus Satz 3.24,
dass jede Lebesgue-messbare Menge A ∈ L(Rn) als Vereinigung zweier disjunkter Mengen
B ∈ L(Rn) und N ∈ L(Rn) dargestellt werden kann, wobei B ∈ B(Rn) und µ(N) = 0 gilt.
Mit den Bezeichnungen aus Satz 3.24 müssen wir nur B := F und N := A \ F setzen.

Satz 3.24 und die nachfolgende Bemerkung lassen sich übertragen auf den Fall, dass man
X = R und die entsprechenden σ-Algebren B(R) bzw. L(R) betrachtet.
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4 Messbare Funktionen

4.1 Definitionen und Eigenschaften

Definition 4.1. Seien X eine beliebige nichtleere Menge,M⊆ P(X) eine σ-Algebra in X
und µ ein Maß auf M. Das Paar (X,M) heißt messbarer Raum und das Tripel (X,M, µ)
heißt Maßraum. Eine Menge A ⊆ X heißt wieder messbar (oderM-messbar), wenn A ∈M
gilt.

Bemerkung. Wir betrachten in diesem Kapitel Funktionen f , deren Urbilder in X und deren
Bilder in Y liegen. Um den Begriff der Messbarkeit solcher Funktionen sinnvoll zu definieren,
müssen die Funktionen jedoch als Funktionen zwischen zwei messbaren Räumen (X,M) und
(Y,N ) betrachtet werden. Wenn keine Verwechslungen zu befürchten sind, verzichtet man
oft auf die explizite Erwähnung der σ-Algebren und schreibt nur kurz f : X → Y .
Besonders wichtig sind in diesem Zusammenhang reelle Funktionen f : X → R bzw. die

so genannten numerischen Funktionen f : X → R. Ohne es im Weiteren immer explizit
zu erwähnen, betrachten wir diese stets als Funktionen zwischen den messbaren Räumen
(X,M) und (R,B(R)) bzw. (R,B(R)), d.h. im Bildraum wird stets die Borel’sche σ-Algebra
zugrunde gelegt.

Definition 4.2. Seien (X,M) und (Y,N ) messbare Räume. Eine Funktion f : X → Y
heißt (bezogen auf dieses Paar messbarer Räume) messbar, wenn das Urbild jeder messbaren
Menge messbar ist, d.h.

B ∈ N ⇒ f−1(B) ∈M.

Eine reelle Funktion f : X → R bzw. eine numerische Funktion f : X → R nennen wir
messbar, wenn sie jeweils als Funktionen zwischen (X,M) und (R,B(R)) bzw. (R,B(R))
messbar sind. Im Falle X = Rn nennen wir reelle und numerische Funktionen messbar,
wenn sie als Funktionen zwischen (Rn,B(Rn)) und (R,B(R)) bzw. (R,B(R)) messbar sind.

Bemerkung. Manchmal spricht man von Lebesgue-messbaren reellen Funktionen f : Rn → R
bzw. von Lebesgue-messbaren numerischen Funktionen f : Rn → R, wenn sie als Funktionen
zwischen (Rn,L(Rn)) und (R,B(R)) bzw. (R,B(R)) messbar sind. Da jedoch B(Rn) ⊂ L(Rn)
gilt, ist jede solche messbare Funktion im Sinne der Definition 4.2 auch eine Lebesgue-
messbare Funktion.

Mit Hilfe des folgenden Lemmas 4.3 lässt sich danach direkt der zur Überprüfung der
Messbarkeit von Funktionen und Funktionenklassen wichtige Satz 4.4 beweisen. Nochmals sei
erwähnt, dass sich offene Kugeln in R mit a, b ∈ R sowohl durch beschränkte offene Intervalle
(a, b) als auch durch unbeschränkte Intervalle der Typen [−∞, a) bzw. (b,∞] darstellen lassen
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(vgl Bemerkung nach Beispiel 3.22). Weiter sei hier die Verwandtschaft dieses Lemmas mit
dem später erwähnten und bewiesenen Lemma 4.10 vermerkt. Der Beweis von Lemma 4.3
verläuft analog zu dem von Lemma 4.10 auf der Grundlage der Tatsache, dass die Menge
der rationalen Zahlen abzählbar ist und dicht in der Menge der reellen Zahlen. Hier müssen
aber noch unbeschränkte Intervalle einbezogen werden.

Lemma 4.3. Jede offene Menge in R ist als abzählbare Vereinigung offener Kugeln in R
darstellbar.

Satz 4.4. Sei (X,M) ein messbarer Raum. Dann ist eine numerische Funktion f : X → R
genau dann messbar im Sinne von Definition 4.2, wenn

X(f > a) := {x ∈ X : f(x) > a} ∈ M

für alle a ∈ R gilt.

Beweis. Sei zuerst die Funktion f : X → R messbar im Sinne von Definition 4.2. Dann ist
X(f > a) ∈ M, weil (a,+∞] für beliebige reelle Zahlen a als offene Menge in R auch zur
Borel’schen σ-Algebra B(R) gehört.
Um die für den Beweis notwendige zweite Implikation zu zeigen, nehmen wir an, dass

X(f > a) ∈ M für alle a ∈ R gilt und schließen daraus auf f−1(B) ∈ M für beliebige
B ∈ B(R). Dazu betrachten wir das Mengensystem E = {(a,+∞] : a ∈ R} und dessen
erzeugte σ-Algebra σ(E). Wegen f−1(B) ∈M für alle B ∈ E gilt auch f−1(B̃) ∈M für alle
B̃ ∈ σ(E). Gewiss enthält σ(E) alle halboffenen Intervalle (a, b] als Differenzmengen zweier
Elemente aus E und alle Intervalle des Typs [−∞, a] als Komplemente. Da sich auch alle
Intervalle der Art (a, b) bzw. [−∞, a) mittels abzählbarer Vereinigungen der bereits erzeugten
Typen darstellen lassen, gehören alle offenen Kugeln in R zu σ(E), wegen Lemma 4.3 damit
auch alle offenen Mengen. Somit haben wir B(R) ⊆ σ(E). Für B ∈ B(R) gilt dann auch
f−1(B) ∈M

Bemerkung. Wie eine Inspektion des Beweises zeigt, bleibt die Aussage des Satzes 4.4 na-
türlich auch richtig, wenn reelle Funktionen f : X → R betrachtet werden.

Satz 4.5. Sei (X,M) ein messbarer Raum und sei f : X → R eine beliebige Funktion. Dann
sind die folgenden Aussagen äquivalent:

(i) X(f > a) ∈M für alle a ∈ R,

(ii) X(f ≥ a) ∈M für alle a ∈ R,

(iii) X(f < a) ∈M für alle a ∈ R,

(iv) X(f ≤ a) ∈M für alle a ∈ R.

Beweis. Beweis:
(i) ⇒ (iv):

f−1([−∞, a]) = f−1(R \ (a,+∞]) = f−1(R) \ f−1((a,+∞]) = X \ f−1((a,+∞]) ∈M.
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(iv) ⇒ (iii):

f−1([−∞, a)) = f−1

( ∞⋃
m=1

[−∞, a− 1
m ]

)
=

∞⋃
m=1

f−1([−∞, a− 1
m ]) ∈M.

(iii) ⇒ (ii):

f−1([a,+∞]) = f−1(R \ [−∞, a)) = X \ f−1([−∞, a)) ∈M.

(ii) ⇒ (i):

f−1((a,+∞]) = f−1

( ∞⋃
m=1

[a+ 1
m ,+∞]

)
=
∞⋃
m=1

f−1([a+ 1
m ,+∞]) ∈M.

Bemerkung. Statt X(f > a) kann in Satz 4.4 also auch X(f < a), X(f ≥ a) oder X(f ≤ a)
stehen.

Beispiel 4.6. Die durch

f(x) :=

{
1
x , x 6= 0,

+∞, x = 0

gegebene Funktion f : R→ R ist wegen Satz 4.4 messbar, denn es gilt

X(f > a) =


[0, 1a) ∈ B(R), a > 0,

[0,+∞) ∈ B(R), a = 0,

(−∞, 1a) ∪ [0,+∞) ∈ B(R), a < 0.

Satz 4.7. Jede stetige Funktion f : Rn → R ist messbar.

Beweis. Die Mengen (a,+∞) ⊆ R für a ∈ R sind offen. Da f stetig ist, sind somit auch die
Mengen f−1((a,+∞)) offen und gehören zu B(Rn). Aus Satz 4.4 folgt daher die Behauptung.

Bemerkung. Aus dem Beweis zu Satz 4.7 folgt sofort, dass jede auf einem metrischen Raum
X definierte stetige Funktion f : X → R messbar bezüglich der Borel’schen σ-Algebra in X
ist.

Satz 4.8. Sei (X,M) ein messbarer Raum. Ist f : X → R messbar, so ist auch |f | : X → R
messbar. Die Umkehrung gilt im Allgemeinen nicht.

Beweis. Sei f : X → R messbar. Für a ≥ 0 gilt dann X(f > a) ∈ M und X(f < −a) ∈ M
(Sätze 4.4 und 4.5). Also erhalten wir

X(|f | > a) = X(f < −a) ∪X(f > a) ∈M,
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d.h. |f | ist nach Satz 4.4 messbar.
Wir geben ein Gebenbeispiel für die Gegenrichtung an. Sei A ⊆ X mit A /∈ M und sei

f : X → R durch

f(x) :=

{
1, x ∈ A,
−1, x /∈ A

gegeben. Dann gilt

X(|f | > a) =

{
X ∈M, a < 1,

∅ ∈ M, a ≥ 1,

d.h. |f | ist messbar. Jedoch erhalten wir X(f > 0) = A /∈M, d.h. f ist nicht messbar.

Satz 4.9. Sei (X,M) ein messbarer Raum und seien die Funktionen fn : X → R für n ∈ N
messbar. Dann sind auch die durch

g(x) := sup
n∈N

fn(x), h(x) := inf
n∈N

fn(x), p(x) := lim sup
n→∞

fn(x), q(x) := lim inf
n→∞

fn(x)

gegebenen Funktionen g, h, p, q : X → R messbar.

Beweis. Aufgrund der Messbarkeit der Funktionen fn für alle n ∈ N gilt X(fn > a) ∈ M
und nach Satz 4.5 auch X(fn ≥ a) ∈M für alle n ∈ N und a ∈ R. Somit folgt

X(g > a) =

∞⋃
n=1

X(fn > a) ∈M und X(h ≥ a) =

∞⋂
n=1

X(fn ≥ a) ∈M,

d.h. g und h sind messbar.
Es gilt

lim sup
n→∞

fn(x) = inf
n∈N

sup
k≥n

fk(x) und lim inf
n→∞

fn(x) = sup
n∈N

inf
k≥n

fk(x).

Nach dem bereits gezeigten sind gn := supk≥n fk und hn := infk≥n fk messbar und damit
auch p = infn∈N gn und q = supn∈N hn.

Bemerkung. Existiert f(x) := limn→∞ fn(x) für alle x ∈ X, so ist mit fn für n ∈ N auch f
messbar, da dann limn→∞ fn = lim supn→∞ fn gilt.

Lemma 4.10. Jede offene Menge G ⊆ Rn ist als abzählbare Vereinigung offener n-Zellen⊗n
i=1(ai, bi) darstellbar.

Beweis. Fall n = 1: SeiM eine offene Menge in R. Dann kann man sie darstellen als Vereini-
gung über offene Intervalle (Kugeln) um jeden einzelnen Punkt x ∈M mit geeigneten Radien
εx > 0: M =

⋃
x∈M

(x − εx, x + εx). Da die Menge der rationalen Zahlen Q abzählbar und

dicht in R ist, kann man jedes offene Intervall (a, b) in R darstellen als (a, b) =
∞⋃
i=1

(ai, bi) mit
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rationalen Intervallgrenzen ai, bi ∈ Q (rationale Approximation des Intervalls von innen).

Dann ist M =
⋃
x∈M

∞⋃
i=1

(axi , bxi), wobei axi , bxi ∈ Q. Da es aber nur abzählbar viele ratio-

nale Zahlenpaare gibt, ist die Vereinigung zur Darstellung von M eine mit abzählbar vielen
offenen Intervallen.
Fall n > 1: Der Beweis erfolgt mit analogen Hilfsmitteln. Jede offene n-Zelle lässt sich wieder
von innen durch offene n-Zellen mit rationalen Eckpunkten beliebig genau approximinieren.
Es gibt aber auch nur abzählbar viele derartige (rationale) n-Zellen. Bleibt zu zeigen, dass
um jeden inneren Punkt von M eine offene n-Zelle existiert, die ganz in M liegt. Jede offene
Kugel in Rn enthält aber eine offene n-Zelle. Man kann auch argumentieren, dass Kugeln
nicht im Sinne der Euklidischen Norm, sondern im Sinne der Maximumnorm betrachtet
werden und alle Normen in Rn äquivalent sind.

Satz 4.11. Sei (X,M) ein messbarer Raum und seien f, g : X → R messbare Funktionen.
Ist die Funktion F : R2 → R stetig, so ist die durch h(x) := F (f(x), g(x)) definierte Funktion
h : X → R messbar.

Beweis. Sei a ∈ R und sei

Ga := {(u, v) ∈ R2 : F (u, v) > a} = F−1((a,+∞)).

Da (a,+∞) offen und F stetig ist, ist Ga offen, sodass nach Lemma 4.10 offene 2-Zellen
Ik = (ak, bk)⊗ (ck, dk) für k ∈ N mit Ga =

⋃∞
k=1 Ik existieren. Es folgt nun

X(h > a) = {x ∈ X : (f(x), g(x)) ∈ Ga} =
∞⋃
k=1

{x ∈ X : (f(x), g(x)) ∈ Ik}

=
∞⋃
k=1

(
X(f > ak) ∩X(f < bk) ∩X(G > ck) ∩X(g < dk)

)
∈M,

d.h. h ist messbar.

Folgerung 4.12. Sei (X,M) ein messbarer Raum und seien f, g : X → R messbar. Dann
sind auch die (punktweise definierten) Funktionen f + g, f · g, c · f (mit c ∈ R) sowie die
durch

f+(x) := max{f(x), 0} und f−(x) := −min{f(x), 0}

definierten Funktionen f+ und f− messbar.

Beweis. Für f + g, f · g, c · f folgt die Behauptung aus Satz 4.11, da die Zuordnungen
(x, y) 7→ x + y, (x, y) 7→ xy, (x, y) 7→ cx für x, y ∈ R stetig sind. Die Messbarkeit von f+
und f− folgt aus

f+ = 1
2(f + |f |) und f− = 1

2(|f | − f).
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Bemerkung. Die Funktion f+ ≥ 0 heißt positiver Anteil, f− ≥ 0 negativer Anteil von f . Es
gilt stets f = f+ − f− sowie |f | = f+ + f−.

Definition 4.13. Sei X eine beliebige nichtleere Menge. Eine Funktion ϕ : X → R heißt
Treppenfunktion, falls ihre Bildmenge {y ∈ R : ∃x ∈ X mit ϕ(x) = y} endlich ist. Für
E ⊆ X heißt die durch

χE(x) :=

{
1, x ∈ E,
0, x /∈ E

gegebene spezielle Treppenfunktion χE : X → R charakteristische Funktion der Menge E.

Lemma 4.14. Sei X eine beliebige nichtleere Menge und sei ϕ : X → R eine Treppenfunk-
tion mit den paarweise verschiedenen Funktionswerten c1, c2, . . . , cn ∈ R. Dann existieren
paarweise disjunkte Mengen E1, E2, . . . , En ⊆ X mit

ϕ =
n∑
i=1

ciχEi .

Beweis. Die Behauptung folgt sofort mit

Ei := {x ∈ X : ϕ(x) = ci} = ϕ−1(ci).

Bemerkung. Wenn wir Treppenfunktionen in der Form
∑n

i=1 ciχEi darstellen, nehmen wir
im Folgenden stets an, dass die Mengen Ei paarweise disjunkt sind.

Satz 4.15. Eine auf einem messbaren Raum (X,M) definierte Treppenfunktion
ϕ =

∑n
i=1 ciχEi ist genau dann messbar, wenn E1, E2, . . . , En ∈M gilt.

Beweis. O.B.d.A. sei c1 < c2 < · · · < cn. Für a ≤ c1 gilt X(ϕ < a) = ∅ und für a > cn gilt
X(ϕ < a) = X. Ansonsten, d.h. für c1 < a ≤ cn, gibt es ein j ∈ {1, 2, . . . , n − 1} derart,
dass cj < a ≤ cj+1 gilt und wir X(ϕ < a) =

⋃j
i=1Ei haben. Aus E1, E2, . . . , En ∈ M

folgt dann sofort X(ϕ < a) ∈ M ∀a ∈ R und ϕ ist messbar. Umgekehrt folgt aus der
Messbarkeit von ϕ die Messbarkeit von X(ϕ < a) für alle a ∈ R. Es ist dann nämlich
Fj :=

⋃j
i=1Ei ∈ M für j = 1, 2, . . . , n. Somit erhalten wir Ei = Fi \ Fi−1 ∈ M für

i = 2, 3, . . . , n und E1 = F1 ∈M.

Bemerkung. In der Literatur werden messbare Treppenfunktionen vielfach als einfache Funk-
tionen bezeichnet. Bereits hier sei darauf verwiesen, dass solche Funktionen das entschei-
dende Hilfsmittel zur Definition des Lebesgue-Integrals in Kapitel 5 sein werden. Für eine
alternative Definition des Riemann-Integrals (siehe Definition 7.2) in Kapitel 7 muss man
sich allerdings auf spezielle Treppenfunktionen einschränken, die wir (R)-Treppenfunktionen
nennen werden.
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Satz 4.16. Sei (X,M) ein messbarer Raum und sei f : X → R eine messbare Funktion.
Dann existiert eine Folge (ϕn)n∈N von messbaren Treppenfunktionen ϕn : X → R mit

f(x) = lim
n→∞

ϕn(x) für alle x ∈ X.

Gilt f(x) ≥ 0 für ein x ∈ X, so ist die Folge (ϕn(x)) monoton wachsend (nicht notwendig
streng). Ist f beschränkt, so konvergiert die Folge (ϕn) sogar gleichmäßig auf X gegen f .

Beweis. Wir zeigen die Behauptung zunächst für f ≥ 0. Für n ∈ N setzen wir dazu

Ein :=

{
x ∈ X :

i− 1

2n
≤ f(x) <

i

2n

}
, i = 1, 2, . . . , n2n

und Fn := X(f ≥ n). Aufgrund der Messbarkeit von f sind alle Ein und alle Fn messbar.
Für n ∈ N gilt außerdem X = Fn ∪ (

⋃n2n

i=1 E
i
n). Wir setzen nun

ϕn :=
n2n∑
i=1

i− 1

2n
χEin + nχFn .

Nach Satz 4.15 sind die Treppenfunktionen ϕn messbar.
Wir zeigen die punktweise Konvergenz. Für x ∈ X mit f(x) = +∞ gilt x ∈ Fn für alle

n ∈ N und somit limn→∞ ϕn(x) = +∞. Sei x ∈ X mit f(x) < ∞. Dann existiert für jedes
n ∈ N mit n > f(x) ein Index in ∈ {1, 2, . . . , n2n} mit x ∈ Einn , d.h. ϕn(x) = in−1

2n und

in − 1

2n
≤ f(x) <

in
2n

⇔ 0 ≤ f(x)− in − 1

2n
<

1

2n
.

Somit folgt für hinreichend große n

|f(x)− ϕn(x)| < 1

2n
n→∞−→ 0.

Die Monotonie der Folge (ϕn(x)) für jedes x ∈ X im Falle f ≥ 0 kann man sich leicht
überlegen, wenn man die Zerlegungen beim Übergang von n zu n+ 1 betrachtet.
Sei nun f beschränkt, f ≥ 0 sowie ε > 0. Dann existiert ein n0 ∈ N mit f < n0 und

1
2n0 < ε. Außerdem gilt Fn = ∅ für n ≥ n0, sodass zu jedem x ∈ X und jedem n ≥ n0 ein
Index in(x) ∈ {1, 2, . . . , n2n} mit x ∈ Ein(x)n existiert. Folglich gilt

|f(x)− ϕn(x)| < 1

2n
≤ 1

2n0
< ε für alle n ≥ n0,

d.h. ϕn ⇒ f für n→∞.
Sei nun f beliebig (d.h. nicht notwendig f ≥ 0). Dann gilt f = f+ − f− mit f+ ≥ 0

und f− ≥ 0 und nach dem bereits Gezeigten existieren Folgen (ϕ+
n )n∈N und (ϕ−n )n∈N, die

die Aussage des Satzes für f+ und f− erfüllen. Setzen wir ϕn := ϕ+
n − ϕ−n , so gilt f(x) =

limn→∞ ϕn(x) für alle x ∈ X und wenn f beschränkt ist, so ist die Konvergenz gleichmäßig
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auf X (da f+ und f− beschränkt). Gilt f(x) ≥ 0 für ein x ∈ X, so ist f−(x) = 0, d.h.
ϕ−n (x) = 0, also ϕn(x) = ϕ+

n (x); und (ϕ+
n (x)) ist monoton wachsend.

4.2 Konvergenzsätze

Definition 4.17. Sei (X,M, µ) ein Maßraum und sei E ∈M. Man sagt, eine Aussage über
die Elemente von X gilt fast überall auf E oder für fast alle x ∈ E, wenn eine Menge B ∈M
mit µ(B) = 0 existiert, sodass die Aussage für alle x ∈ E \B gilt.

Etwas verkürzt kann man sagen: Eine Aussage gilt fast überall oder für fast alle Elemente
einer betrachteten Menge, wenn sie höchstens auf einer Teilmenge vom Maße Null nicht gilt.

Satz 4.18. Sei (X,M, µ) ein Maßraum mit vollständigem Maß µ. Sind die Funktionen
fn : X → R für n ∈ N messbar und gilt für f : X → R, dass f(x) = limn→∞ fn(x) für fast
alle x ∈ X, so ist auch f messbar.

Beweis. Sei B ∈M eine Menge mit µ(B) = 0 und limn→∞ fn(x) = f(x) für alle x ∈ X \B.
Dann sei A ⊆ B die Menge der x ∈ X, auf welcher entweder limn→∞ fn(x) gar nicht existiert
oder aber der Grenzwert existiert und fällt nicht mit f(x) zusammen. Für alle x ∈ X \ A
gilt demzufolge limn→∞ fn(x) = f(x). Aus der Vollständigkeit von µ folgt A ∈ M sowie
X(f > a) ∩A ∈M für a ∈ R. Andererseits gilt wegen Satz 4.9

X(f > a) ∩ (X \A) = {x ∈ X\A : lim
n→∞

fn(x) > a} = {x ∈ X\A : lim sup
n→∞

fn(x) > a} ∈ M.

Wir erhalten also

X(f > a) = (X(f > a) ∩A) ∪ (X(f > a) ∩ (X \A)) ∈M,

d.h. f ist messbar.

Definition 4.19. Seien (X,M, µ) ein Maßraum, (fn)n∈N eine Folge fast überall endlicher
messbarer Funktionen fn : X → R und f : X → R eine fast überall endliche messbare
Funktion. Die Folge (fn) heißt auf X konvergent dem Maße nach gegen f (Schreibweise:
fn

µ→ f), wenn für jedes ε > 0 die Beziehung

lim
n→∞

µ
(
X(|fn − f | ≥ ε)

)
= 0

gilt.

Satz 4.20 (Satz von Lebesgue). Sei (X,M, µ) ein Maßraum mit µ(X) < ∞ und einem
vollständigen Maß µ. Weiter seien fn : X → R für n ∈ N und f : X → R fast überall endlich
und die fn messbar. Dann gilt

fn(x)→ f(x) für fast alle x ∈ X ⇒ fn
µ→ f.

34



4.2 Konvergenzsätze

Beweis. Sei zunächst f ≥ 0. Nach Satz 4.18 ist f messbar. Setzen wir

A := {x ∈ X : f(x) =∞}, An := {x ∈ X : fn(x) =∞}
B := {x ∈ X : lim

n→∞
fn(x) existiert nicht oder lim

n→∞
fn(x) 6= f(x)},

so gilt für Q := A ∪ (
⋃∞
n=1An) ∪ B nach Voraussetzung µ(Q) = 0. Für n ∈ N und ε > 0

definieren wir zusätzlich

En(ε) := X(|fn − f | ≥ ε), Rn(ε) :=
∞⋃
k=n

Ek(ε), M(ε) :=
∞⋂
n=1

Rn(ε).

Die Mengen En(ε), Rn(ε) und M(ε) sind dann messbar und es gilt R1(ε) ⊇ R2(ε) ⊇ . . ..
Wegen µ(X) <∞ ist Satz 2.7 anwendbar, d.h. es folgt

lim
n→∞

µ(Rn(ε)) = µ(M(ε)).

Wenn nun M(ε) ⊆ Q gilt, so folgt

lim
n→∞

µ(En(ε)) ≤ lim
n→∞

µ(Rn(ε)) = µ(M(ε)) ≤ µ(Q) = 0.

Wir nehmen also an, es würde ein x ∈ M(ε) mit x /∈ Q existieren. Dann gilt f(x) < ∞,
fn(x) < ∞ und limn→∞ fn(x) = f(x), d.h. |fn(x) − f(x)| → 0. Somit existiert ein n0 ∈ N
mit x /∈ Rn0(ε) und folglich x /∈ M(ε). Dies ist ein Widerspruch, womit M(ε) ⊆ Q gezeigt
ist.
Sei nun f beliebig (d.h. nicht notwendig f ≥ 0). Schreiben wir f = f+ − f− und fn =

(fn)+ − (fn)−, so folgt aus dem bereits bewiesenen (fn)+
µ→ f+ und (fn)−

µ→ f−. Aus

|fn(x)− f(x)| ≤ |(fn)+(x)− f+(x)|+ |(fn)−(x)− f−(x)|
≤ 2 max{|(fn)+(x)− f+(x)|, |(fn)−(x)− f−(x)|}

für x ∈ X erhalten wir

X(|fn − f | ≥ ε) ⊆ X
(

max{|(fn)+ − f+|, |(fn)− − f−|} ≥
ε

2

)
= X

(
|(fn)+ − f+| ≥

ε

2

)
∪X

(
|(fn)− − f−| ≥

ε

2

)
.

Dies liefert

µ(X(|fn − f | ≥ ε)) ≤ µ
(
X
(
|(fn)+ − f+| ≥

ε

2

))
+ µ

(
X
(
|(fn)− − f−| ≥

ε

2

))
n→∞−→ 0.

Bemerkung. Ohne die Forderung µ(X) < ∞ gilt Satz 4.20 im Allgemeinen nicht. Beispiel:
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Wir betrachten X = [0,∞) mit dem Lebesgue-Maß µ. Seien

fn(x) := (x+ 1
n)2 und f(x) = x2.

Dann gilt limn→∞ fn(x) = f(x) für alle x ∈ X, aber

µ(X(|fn − f | ≥ ε)) = µ({x ∈ X : 2x
n + 1

n2 ≥ ε}) = +∞

für alle n ∈ N.
Bemerkung. Anstelle der Vollständigkeit von µ kann in Satz 4.20 auch die Messbarkeit von
f vorausgesetzt werden (dies sieht man sofort anhand des Beweises).

Bemerkung. Die Umkehrung von Satz 4.20 gilt im Allgemeinen nicht, wie das folgende Ge-
genbeispiel zeigt: Wir betrachten X = (0, 1] mit dem Lebesgue-Maß µ. Das Lebesgue-Maß
µ(X) = 1 des Raumes X ist also hier endlich. Wir betrachten die halboffenen Intervalle
Emk := ((k − 1) · 2−m, k · 2−m] für m ∈ N und k ∈ {1, 2, 3, ..., 2m}. Weiter sei die Funktio-
nenfolge (fn)n∈N wie folgt definiert:

f2m+k−1(x) := χ((k−1)·2−m,k·2−m](x) für x ∈ (0, 1], m ∈ N, k = 1, 2, . . . , 2m.

Für ε ∈ (0, 1) gilt dann

µ
(
X(|f2m+k−1| ≥ ε)

)
= µ (Emk ) = 2−m =⇒ lim

n→∞
µ
(
X(|fn| ≥ ε)

)
= 0 ,

also konvergiert die Funktionenfolge dem Maße nach gegen die Nullfunktion. Jedoch konver-
giert diese Funktionenfolge für gar keinen Punkt x0 ∈ (0, 1] (also gewiss nicht fast überall)
gegen die Nullfunktion, denn für jedes m ∈ N gibt es ein km = km(m) ∈ {1, 2, ..., 2m} mit
f2m+km−1(x0) = 1, nämlich gerade so, dass x0 ∈ Emkm gilt. Diese Teilfolge verhindert nun
eine Konvergenz der Folge (fn(x0))n∈N gegen Null.
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Definition 5.1. Seien (X,M, µ) ein Maßraum, E ∈ M, f : X → [0,∞] eine nichtnegative
messbare Funktion und

TEf :=

{
ϕ =

n∑
i=1

ciχEi : n ∈ N, ci ≥ 0, Ei ∈M, ϕ(x) ≤ f(x) ∀x ∈ E

}

die Menge aller nichtnegativen messbaren Treppenfunktionen, die auf E punktweise Mino-
ranten von f sind. Dann heißt die Zahl∫

E

f dµ := sup
ϕ∈TEf

n∑
i=1

ciµ(E ∩ Ei)

Lebesgue-Integral von f auf E.

Bemerkung. Das Lebesgue-Integral einer nichtnegativen Funktion kann den Wert +∞ an-
nehmen. Die Definition ist sinnvoll, da nach Satz 4.16 jede nichtnegative, messbare Funktion
beliebig genau von unten durch Treppenfunktionen angenähert werden kann.

Definition 5.2. Seien (X,M, µ) ein Maßraum, E ∈ M und f : X → R messbar. Gilt∫
E f+ dµ < +∞ oder

∫
E f− dµ < +∞, so heißt∫

E

f dµ :=

∫
E

f+ dµ−
∫
E

f− dµ

Lebesgue-Integral von f auf E (mit f+ und f− wie in Folgerung 4.12). Die Funktion f heißt
summierbar auf E, wenn

∫
E f+ dµ < +∞ und

∫
E f− dµ < +∞ gilt. Mit L(E,µ) bezeichnen

wir die Menge der bezüglich µ auf E summierbaren Funktionen.

Bemerkung (Alternative Definition des Lebesgue-Integrals für beschränkte Funktionen).
Im Falle beschränkter, messbarer Funktionen kann das Lebesgue-Integral äquivalent wie folgt
definiert werden: Für

m := inf
x∈E

f(x) > −∞ und M := sup
x∈E

f(x) < +∞

bezeichne
Z :=

{
{y1, y2, . . . , yn} : m = y1 < y2 < · · · < yn = M, n ∈ N

}
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die Familie aller endlichen Zerlegungen von [m,M ] und für Z = {y1, y2, . . . , yn} ∈ Z
setzen wir Ei(Z) := {x ∈ E : yi ≤ f(x) < yi+1}, wenn i ∈ {1, 2, . . . , n − 1}, und
En(Z) := {x ∈ E : f(x) = yn}. Dann kann man∫

E

f dµ = sup
Z∈Z

n∑
i=1

yiµ(Ei(Z))

zeigen.

Beispiel 5.3. Wir betrachten X = R mit dem Lebesgue-Maß µ und wählen E := [0, 1]
sowie

f(x) :=

{
1, x ∈ Q,
0, x /∈ Q

(die so genannte Dirichlet-Funktion). Da µ(Q) = 0 gilt, ist f messbar. Für f ist das Riemann-
Integral nicht definiert, weil die Funktion in keinem Punkt stetig ist. Jedoch existiert das
Lebesgue-Integral. Wir zeigen ∫

E

f dµ = 0.

Sei also {y1, y2, . . . , yn} eine Zerlegung von [0, 1] (vgl. vorhergehende Bemerkung). Dann gilt

E1 := {x ∈ E : 0 = y1 ≤ f(x) < y2} = [0, 1] \Q,
Ei := {x ∈ E : 0 < yi ≤ f(x) < yi+1 ≤ 1} = ∅ für i = 2, 3, . . . , n− 1,

En := {x ∈ E : f(x) = yn = 1} = [0, 1] ∩Q,

also
n∑
i=1

yiµ(Ei) = 0 · µ([0, 1] \Q) + 1 · µ([0, 1] ∩Q)︸ ︷︷ ︸
≤µ(Q)=0

= 0.

Beachte: Das gleiche Ergebnis folgt auch unmittelbar aus Definition 5.1, weil f selbst eine
Treppenfunktion ist.

Lemma 5.4. Seien (X,M, µ) ein Maßraum, E ∈ M und ϕ =
∑n

i=1 ciχEi : X → R eine
messbare Treppenfunktion. Dann gilt∫

E

ϕdµ =
n∑
i=1

ciµ(E ∩ Ei).

Beweis. Setzen wir I+ := {i ∈ N : 1 ≤ i ≤ n, ci > 0} und I− := {i ∈ N : 1 ≤ i ≤ n, ci < 0},
so gilt ϕ+ =

∑
i∈I+ ciχEi und ϕ− = −

∑
i∈I− ciχEi . Aus Definition 5.1 folgt nun sofort∫

E

ϕ+ dµ =
∑
i∈I+

ciµ(E ∩ Ei) und
∫
E

ϕ− dµ = −
∑
i∈I−

ciµ(E ∩ Ei).
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Nach Definition 5.2 gilt somit∫
E

ϕdµ =

∫
E

ϕ+ dµ−
∫
E

ϕ− dµ =

n∑
i=1

ciµ(E ∩ Ei).

Satz 5.5 (Eigenschaften des Lebesgue-Integrals). Seien (X,M, µ) ein Maßraum, E ∈ M
sowie f, g : X → R messbar.

(i) Gilt m ≤ f(x) ≤M für alle x ∈ E mit Konstanten m,M ∈ R, so folgt

mµ(E) ≤
∫
E

f dµ ≤Mµ(E).

(ii) 1 Mit f, g ∈ L(E,µ) und c ∈ R gilt f + g, cf ∈ L(E,µ) und∫
E

(f + g) dµ =

∫
E

f dµ+

∫
E

g dµ sowie
∫
E

cf dµ = c

∫
E

f dµ.

(iii) Ist A ⊆ E messbar (d.h. A ∈M) und gilt f(x) ≥ 0 für alle x ∈ E, so folgt∫
A

f dµ ≤
∫
E

f dµ.

(iv) Gilt 0 ≤ f(x) ≤ g(x) für alle x ∈ E, so folgt

0 ≤
∫
E

f dµ ≤
∫
E

g dµ.

(v) Aus f(x) ≥ 0 für alle x ∈ E folgt die Äquivalenz∫
E

f dµ = 0 ⇔ f(x) = 0 für fast alle x ∈ E.

Beweis. (i) Man überlegt sich leicht, dass

max{0,m} ≤ f+(x) ≤ max{0,M} und −min{0,M} ≤ f−(x) ≤ −min{0,m}

für alle x ∈ E gilt. Da somit max{0,m}χE bzw. −min{0,M}χE am Supremum in der

1Diese Aussage kann erst später mit Mitteln des Kapitels 6 bewiesen werden.
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Definition von
∫
E f+ dµ bzw.

∫
E f− dµ teilnehmen (vgl. Definition 5.1), folgt

max{0,m}µ(E) ≤
∫
E

f+ dµ bzw. −min{0,M}µ(E) ≤
∫
E

f− dµ.

Andererseits gilt für jede Treppenfunktion ϕ, die am Supremum in der Definition von∫
E f+ dµ bzw.

∫
E f− dµ teilnimmt, ϕ ≤ max{0,M}χE bzw. ϕ ≤ −min{0,m}χE , also∫

E

f+ dµ ≤ max{0,M}µ(E) bzw.
∫
E

f− dµ ≤ −min{0,m}µ(E).

Zusammen erhalten wir

mµ(E) = (max{0,m}+ min{0,m})µ(E) ≤
∫
E

f+ dµ−
∫
E

f− dµ

≤ (max{0,M}+ min{0,M})µ(E) = Mµ(E).

(ii) Für den Beweis der beiden Aussagen benötigen wir Sätze, die wir erst in Kapitel 6
formulieren werden.

(iii) O.B.d.A. gelte f ≥ 0 (auf E erfüllt, Verhalten auf X \ E uninteressant). Wir setzen
T := {ϕ ∈ TAf : ϕ(x) = 0 ∀x ∈ X\A} (vgl. Definition 5.1). Zu jedem ϕ =

∑n
i=1 ciχEi ∈

TAf existiert dann ein ψ =
∑m

i=1 diχFi ∈ T mit
∑n

i=1 ciµ(A ∩Ei) =
∑m

i=1 diµ(A ∩ Fi);
man setze einfach m := n, di := ci und Fi := Ei ∩A. Somit gilt

sup
ϕ∈TAf

n∑
i=1

ciµ(A ∩ Ei) ≤ sup
ϕ∈T

n∑
i=1

ciµ(A ∩ Ei)

und aus T ⊆ TEf folgt

sup
ϕ∈T

n∑
i=1

ciµ(E ∩ Ei) ≤ sup
ϕ∈TEf

n∑
i=1

ciµ(E ∩ Ei).

Wegen A ⊆ E, d.h. µ(A ∩ Ei) ≤ µ(E ∩ Ei) für Ei ∈M, folgt die Behauptung.

(iv) Die Behauptung folgt wegen TEf ⊆ TEg sofort aus Definition 5.1.

(v) „⇒“: Setzen wir

F := {x ∈ E : f(x) > 0} ∈ M und En := {x ∈ E : f(x) > 1
n},

so gilt En ⊆ En+1 für alle n ∈ N und F =
⋃∞
n=1En. Zu zeigen ist µ(F ) = 0. Wir

nehmen also an, es würde µ(F ) > 0 gelten. Nach Satz 2.6 gilt µ(En) → µ(F ) für

40
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n → ∞, sodass dann ein ε > 0 und ein n0 ∈ N mit µ(En0) > ε existieren. Aus (iii)
und (i) des Satzes folgt nun

0 =

∫
E

f dµ >

∫
En0

f dµ ≥ 1

n
µ(En0) >

ε

n
> 0.

Dies ist ein Widerspruch, d.h. µ(F ) = 0 ist gezeigt.

„⇐“: O.B.d.A. gelte f ≥ 0 (auf E erfüllt, Verhalten auf X \ E uninteressant). Sei
N ∈ M eine Menge mit µ(N) = 0 und f(x) = 0 für alle x ∈ E \ N . Für jede
Treppenfunktion ϕ =

∑n
i=1 ciχEi , die am Supremum in der Definition von

∫
E f dµ

teilnimmt, muss dann (ci > 0 für i = 1, 2, . . . , n vorausgesetzt) E ∩Ei ⊆ F und somit
µ(E ∩ Ei) ≤ µ(F ) = 0 für i = 1, 2, . . . , n gelten. Also folgt

∑n
i=1 ciµ(E ∩ Ei) = 0 und

damit
∫
E f dµ = 0.

Satz 5.6. Seien (X,M, µ) ein Maßraum, f : X → R messbar sowie ν :M→ R die durch

ν(A) :=

∫
A

f dµ, A ∈M,

definierte Mengenfunktion.

(i) Gilt f ≥ 0, so ist ν volladditiv.

(ii) Gilt f ∈ L(X,µ), so ist ν volladditiv.

Beweis. Wir zeigen (i). Seien zunächst A1, A2, . . . ∈ M paarweise disjunkt und sei A :=⋃∞
j=1Aj . Für alle ϕ =

∑n
i=1 ciχEi ∈ TAf (vgl. Definition 5.1) gilt dann

n∑
i=1

ciµ(A ∩ Ei) =
n∑
i=1

ciµ

 ∞⋃
j=1

(Aj ∩ Ei)

 =
∞∑
j=1

n∑
i=1

ciµ(Aj ∩ Ei)

=

∞∑
j=1

∫
Aj

ϕdµ ≤
∞∑
j=1

∫
Aj

f dµ =

∞∑
j=1

ν(Aj)

und der Übergang zum Supremum liefert

ν(A) =

∫
A

f dµ = sup
ϕ∈TAf

n∑
i=1

ciµ(A ∩ Ei) ≤
∞∑
j=1

ν(Aj).

Hieraus werden wir weiter unten die Subvolladditivität folgern; dazu benötigen wir jedoch
die Additivität von ν.
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Seien also A1, A2 ∈M disjunkt. Nach dem schon Bewiesenen gilt mit A3 = A4 = · · · = ∅

ν(A1 ∪A2) ≤ ν(A1) + ν(A2).

Für beliebiges ε > 0 existieren ϕ1 ∈ TA1
f und ϕ2 ∈ TA2

f mit∫
A1

f dµ ≤
∫
A1

ϕ1 dµ+ ε und
∫
A2

f dµ ≤
∫
A2

ϕ2 dµ+ ε.

Setzen wir ϕ(x) :=


ϕ1(x) falls x ∈ A1

ϕ2(x) falls x ∈ A2

0 sonst
, so gilt ϕ ∈ TA1∪A2

f , und es folgt

ν(A1) + ν(A2) =

∫
A1

f dµ+

∫
A2

f dµ ≤
∫
A1

ϕ1 dµ+

∫
A2

ϕ2 dµ+ 2ε

=

∫
A1

ϕdµ+

∫
A2

ϕdµ+ 2ε
(∗)
=

∫
A1∪A2

ϕdµ+ 2ε

≤
∫

A1∪A2

f dµ+ 2ε = ν(A1 ∪A2) + 2ε,

wobei man sich die Gleichheit (∗) als Eigenschaft von Treppenfunktionen leicht überlegen
kann. Grenzübergang ε→ 0 liefert die Additivität von ν.
Zurück zum Beweis der Subvolladditivität. Seien nun B,B1, B2, . . . ∈Mmit B ⊆

⋃∞
i=1Bi.

Setzen wir A1 := B∩B1 und Ai := (B∩Bi)\(
⋃i−1
j=1Bj), so gilt B =

⋃∞
i=1Ai und Ai∩Aj = ∅

für i 6= j sowie Ai ⊆ Bi. Also folgt

ν(B) ≤
∞∑
i=1

ν(Ai) ≤
∞∑
i=1

ν(Bi),

d.h. ν ist subvolladditiv (die Additivität haben wir dabei zur Anwendung von Satz 2.5 (v)
benötigt). Aus Satz 2.5 (vii) folgt nun die Volladditivität von ν.
Wie zeigen noch (ii). Wegen f ∈ L(X,µ) sind die durch

ν+(A) :=

∫
A

f+ dµ und ν−(A) :=

∫
A

f− dµ

definierten nichtnegativen Mengenfunktionen endlich, d.h. für alle A ∈ M gilt ν+(A) < ∞
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und ν−(A) <∞. Nach (i) sind ν+ und ν− volladditiv. Wegen

ν(A) =

∫
A

f dµ =

∫
A

f+ dµ−
∫
A

f− dµ = ν+(A)− ν−(A)

sieht man die Volladditivität von ν nun leicht ein.

Folgerung 5.7. Seien (X,M, µ) ein Maßraum, f : X → [0,∞] eine nichtnegative, messbare
Funktion und A,B ∈M mit B ⊆ A und µ(A\B) = 0. Gilt

∫
A f dµ <∞ oder

∫
B f dµ <∞,

so ist auch das jeweils andere Integral endlich und die Werte der beiden Integrale stimmen
überein.

Beweis. Nach Satz 5.6 (i) (benötigen hier nur die Additivität) gilt∫
A

f dµ =

∫
A\B

f dµ

︸ ︷︷ ︸
=0

+

∫
B

f dµ =

∫
B

f dµ,

wobei man sich das Verschwinden des ersten Summanden leicht anhand der Definition des
Integrals überlegen kann.

Definition 5.8. Sei (X,M, µ) ein Maßraum und sei E ∈ M. Zwei messbare Funktionen
f, g : X → R bezeichnen wir als äquivalent auf E und schreiben f E∼ g, wenn µ({x ∈ E :
f(x) 6= g(x)}) = 0 gilt, d.h. wenn f und g fast überall auf E übereinstimmen.

Bemerkung. Man zeigt leicht, dass {x ∈ E : f(x) 6= g(x)} ∈ M gilt und dass E∼ eine
Äquivalenzrelation auf der Menge aller messbaren Funktionen f : X → R ist.

Bemerkung. Aus Folgerung 5.7 erhält man, dass für f, g ∈ L(E,µ) mit f E∼ g die Gleichheit∫
E

f dµ =

∫
E

g dµ

gilt.

Satz 5.9. Seien (X,M, µ) ein Maßraum, E ∈ M und f : X → R messbar. Dann gilt
f ∈ L(E,µ) genau dann , wenn |f | ∈ L(E,µ) erfüllt ist. Dabei ist für alle f ∈ L(E,µ) die
Ungleichung ∣∣∣∣∣∣

∫
E

f dµ

∣∣∣∣∣∣ ≤
∫
E

|f | dµ

gültig.
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Beweis. Sei A := {x ∈ E : f(x) ≥ 0}. Dann gilt∫
E

|f | dµ =

∫
A

|f |dµ+

∫
E\A

|f | dµ =

∫
A

f+ dµ+

∫
E\A

f− dµ =

∫
E

f+ dµ+

∫
E

f− dµ

(bei der ersten Gleichheit haben wir Satz 5.6 (i) verwendet), d.h.
∫
E |f | dµ < ∞ gilt genau

dann, wenn
∫
E f+ dµ < ∞ und

∫
E f− dµ < ∞. Die im Satz formulierte Ungleichung ergibt

sich wegen der Dreiecksungleichung |a+ b| ≤ |a|+ |b| direkt aus der Abschätzung∣∣∣∣∣∣
∫
E

f dµ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
E

f+ dµ−
∫
E

f− dµ

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫
E

f+ dµ

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
E

f− dµ

∣∣∣∣∣∣ =

∫
E

f+ dµ+

∫
E

f− dµ =

∫
E

|f | dµ.

Satz 5.10. Seien (X,M, µ) ein Maßraum, E ∈ M und f, g : X → R messbare Funktionen
mit |f(x)| ≤ g(x) für alle x ∈ E. Aus g ∈ L(E,µ) folgt dann f ∈ L(E,µ) und∫

E

f dµ ≤
∫
E

g dµ.

Beweis. Wegen TE|f | ⊆ T
E
g folgt aus Definition 5.1∫

E

|f | dµ ≤
∫
E

g dµ,

d.h. |f | ∈ L(E,µ). Nach Satz 5.9 gilt dann auch f ∈ L(E,µ) und mit dem Beweis zu Satz 5.9
erhalten wir ∫

E

f dµ =

∫
E

f+ dµ−
∫
E

f− dµ ≤
∫
E

f+ dµ+

∫
E

f− dµ =

∫
E

|f | dµ.
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Satz 6.1 (Satz von Beppo Levi über monotone Konvergenz). Seien (X,M, µ) ein Maßraum,
E ∈ M und f, fn : X → R für n ∈ N messbare Funktionen mit 0 ≤ f1(x) ≤ f2(x) ≤ . . . für
alle x ∈ E und f(x) = limn→∞ fn(x) für alle x ∈ E. Dann gilt

lim
n→∞

∫
E

fn dµ =

∫
E

f dµ.

Beweis. Wegen fn(x) ≤ f(x) für x ∈ E folgt
∫
E fn dµ ≤

∫
E f dµ für alle n ∈ N und somit

lim
n→∞

∫
E

fn dµ ≤
∫
E

f dµ.

Insbesondere ist die Behauptung also für limn→∞
∫
E fn dµ = +∞ gezeigt. Für n ∈ N,

c ∈ (0, 1) und ϕ ∈ TEf (vgl. Definition 5.1) definieren wir

En(ϕ, c) := {x ∈ E : fn(x) ≥ cϕ(x)}.

Dann gilt En(ϕ, c) ∈ M sowie E1(ϕ, c) ⊆ E2(ϕ, c) ⊆ · · · ⊆ E. Wegen f(x) ≥ ϕ(x) für alle
x ∈ E existiert zu jedem x ∈ E ein n ∈ Nmit fn(x) ≥ cϕ(x), d.h. es folgt E =

⋃∞
n=1En(ϕ, c).

Weiter gilt ∫
E

fn dµ ≥
∫

En(ϕ,c)

fn dµ ≥
∫

En(ϕ,c)

cϕdµ = c

∫
En(ϕ,c)

ϕdµ

für alle ϕ ∈ TEf und alle c ∈ (0, 1), wobei die letzte Gleichheit leicht aus Lemma 5.4 als
Eigenschaft aller Treppenfunktionen folgt. Bei Grenzübergang für n→∞ ergibt sich daraus
wegen Satz 5.6 (i) in Verbindung mit Satz 2.6

lim
n→∞

∫
E

fn dµ ≥ c lim
n→∞

∫
En(ϕ,c)

ϕdµ = c

∫
E

ϕdµ .

Durch Übergang zum Supremum über alle ϕ ∈ TEf erhält man schließlich entsprechend der
Definition des Integrals über Treppenfunktionen

lim
n→∞

∫
E

fn dµ ≥ c sup
ϕ∈TEf

∫
E

ϕdµ = c

∫
E

f dµ .
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Der Grenzübergang c→ 1 liefert dann die Behauptung.

Mit Satz 6.1 können wir nun auch den folgenden wichtigen Satz beweisen.

Satz 6.2. Seien (X,M, µ) ein Maßraum, c ∈ R und f, g : X → [0,∞] zwei nichtnegative,
messbare Funktionen. Dann gilt∫

E

(f + g) dµ =

∫
E

f dµ+

∫
E

g dµ und
∫
E

cf dµ = c

∫
E

f dµ

für alle E ∈M.

Beweis. Wir zeigen die Additivität zunächst für zwei messbare Treppenfunktionen ϕ =∑n
i=1 ciχEi und ψ =

∑m
j=1 djχFj (o.B.d.A. gelte

⋃n
i=1Ei = X =

⋃m
j=1 Fj). Es gilt

ϕ+ ψ =
n∑
i=1

ci

m∑
j=1

χEi∩Fj +
m∑
j=1

dj

n∑
i=1

χEi∩Fj =
n∑
i=1

m∑
j=1

(ci + dj)χEi∩Fj

und somit∫
E

(ϕ+ ψ) dµ =

n∑
i=1

m∑
j=1

(ci + dj)µ(Ei ∩ Fj ∩ E) =

n∑
i=1

ci

m∑
j=1

µ(Ei ∩ Fj ∩ E) +

m∑
j=1

dj

n∑
i=1

µ(Ei ∩ Fj ∩ E)

=
n∑
i=1

ciµ(Ei ∩ E) +
m∑
j=1

djµ(Fj ∩ E) =

∫
E

ϕdµ+

∫
E

ψ dµ.

Zu f und g existieren nach Satz 4.16 Folgen (ϕn)n∈N und (ψn)n∈N nichtnegativer (vgl. Beweis
zu 4.16), messbarer Treppenfunktionen auf X mit 0 ≤ ϕ1 ≤ ϕ2 ≤ . . . bzw. 0 ≤ ψ1 ≤ ψ2 ≤
. . . und f(x) = limn→∞ ϕn(x) bzw. g(x) = limn→∞ ψn(x) für alle x ∈ X. Außerdem gilt
0 ≤ ϕ1 + ψ1 ≤ ϕ2 + ψ2 ≤ . . . und (f + g)(x) = limn→∞(ϕn + ψn)(x) für alle x ∈ X. Mit
Satz 6.1 folgt nun∫
E

(f + g) dµ = lim
n→∞

∫
E

ϕn + ψn dµ = lim
n→∞

∫
E

ϕn dµ+ lim
n→∞

∫
E

ψn dµ =

∫
E

f dµ+

∫
E

g dµ.

Die Homogenität folgt für nichtnegative, messbare Treppenfunktionen sofort aus Lemma
5.4. Zu f wählen wir nun wieder eine Folge (ϕn)n∈N nichtnegativer, messbarer Treppenfunk-
tionen mit 0 ≤ ϕ1 ≤ ϕ2 ≤ . . . und f(x) = limn→∞ ϕn(x) für alle x ∈ X. Dann gilt für c ≥ 0
auch 0 ≤ cϕ1 ≤ cϕ2 ≤ . . . und (cf)(x) = limn→∞(cϕn)(x) für alle x ∈ X, sodass aus Satz
6.1 ∫

E

cf dµ = lim
n→∞

∫
E

cϕn dµ = lim
n→∞

c

∫
E

ϕn dµ = c

∫
E

f dµ
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folgt. Für c ≤ 0 gilt nun (vgl. Definition 5.2)∫
E

cf dµ =

∫
E

(cf)+︸ ︷︷ ︸
=0

dµ−
∫
E

(cf)−︸ ︷︷ ︸
=−cf

dµ = −
∫
E

(−c)f dµ = −(−c)
∫
E

f dµ = c

∫
E

f dµ.

Satz 6.3. Seien (X,M, µ) ein Maßraum, E ∈M und f : X → R messbar. Gilt f ∈ L(E,µ),
so ist f für fast alle x ∈ E endlich.

Beweis. Sei A+ := {x ∈ E : f(x) = +∞} und sei A+
n := {x ∈ E : f(x) > n} für n = 1, 2, . . ..

Dann gilt A+ ⊆ A+
n für n = 1, 2, . . . und somit

0 ≤ µ(A+) ≤ µ(A+
n ) =

∫
A+
n

1 dµ ≤
∫
A+
n

1

n
f dµ =

1

n

∫
A+
n

f+ dµ ≤ 1

n

∫
E

f+ dµ

︸ ︷︷ ︸
<∞

,

d.h. µ(A+) = 0. Für A− := {x ∈ E : f(x) = −∞} und A−n := {x ∈ E : f(x) < −n} erhalten
wir analog

0 ≤ µ(A−) ≤ µ(A−n ) ≤
∫
A−n

1 dµ ≤
∫
A−n

1

n
(−f) dµ =

1

n

∫
A−n

f− dµ ≤ 1

n

∫
E

f− dµ

︸ ︷︷ ︸
<∞

,

d.h. µ(A−) = 0.

Satz 6.4 (Satz von Lebesgue über monotone Konvergenz). Seien (X,M, µ) ein Maßraum,
E ∈ M und f, fn : X → R für n ∈ N messbare Funktionen mit f1(x) ≤ f2(x) ≤ . . . für alle
x ∈ E und f(x) = limn→∞ fn(x) für alle x ∈ E. Existiert ein m ∈ N mit fm ∈ L(E,µ), so
gilt

lim
n→∞

∫
E

fn dµ =

∫
E

f dµ.

Beweis. O.B.d.A. gelte m = 1 (sonst die ersten m − 1 Folgenelemente verwerfen und den
Rest neu nummerieren). Nach Satz 6.3 ist f1 dann fast überall auf E endlich. O.B.d.A.
können wir annehmen, dass f1 auf ganz E endlich ist (sonst f1 durch äquivalente, auf E
endliche Funktion ersetzen). Definieren wir gn : X → R für n ∈ N durch

gn(x) :=

{
fn(x)− f1(x), x ∈ E,
0, x ∈ X \ E,

so ist gn messbar und es gilt 0 ≤ g1 ≤ g2 ≤ . . .. Außerdem setzen wir g(x) := limn→∞ gn(x)
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6 Grenzwertsätze für Integrale

für x ∈ X. Die so definierte Funktion g : X → R ist ebenfalls messbar. Satz 6.1 liefert nun

lim
n→∞

∫
E

fn − f1 dµ = lim
n→∞

∫
E

gn dµ =

∫
E

g dµ =

∫
E

f − f1 dµ,

und somit die Behauptung (unter Verwendung von Satz 5.5 (ii)).

Satz 6.5 (Lemma von Fatou). Seien (X,M, µ) ein Maßraum, E ∈M und fn : X → R für
n ∈ N messbare Funktionen.

(i) Gilt fn ≥ 0 für alle x ∈ E und n ∈ N, so folgt∫
E

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
E

fn dµ.

(ii) Gilt fn(x) ≤ 0 für alle x ∈ E und n ∈ N, so folgt∫
E

lim sup
n→∞

fn dµ ≥ lim sup
n→∞

∫
E

fn dµ.

Beweis. Wir zeigen (i). Setzen wir gn := infk≥n fk : X → R für n ∈ N, so gilt gn(x) ≥ 0 sowie
0 ≤ g1(x) ≤ g2(x) ≤ . . . für alle x ∈ E. Es folgt 0 ≤

∫
E g1 dµ ≤

∫
E

g2 dµ ≤ . . . und damit die

Existenz von limn→∞
∫
E gn dµ ∈ [0,∞]. Außerdem gilt gn ≤ fn, also

∫
E gn dµ ≤

∫
E fn dµ.

Wir erhalten hieraus zunächst

lim
n→∞

∫
E
gn dµ = lim inf

n→∞

∫
E
gn dµ ≤ lim inf

n→∞

∫
E
fn dµ.

Setzen wir nun g := limn→∞ gn = supn∈N gn = lim infn→∞ fn und wenden Satz 6.1 auf g
und gn an, so erhalten wir außerdem∫

E

lim inf
n→∞

fn dµ =

∫
E

g dµ = lim
n→∞

∫
E

gn dµ.

Damit ist (i) gezeigt. Punkt (ii) folgt nun direkt aus (i), da∫
E

lim sup
n→∞

fn dµ = −
∫
E

lim inf
n→∞

(−fn)︸ ︷︷ ︸
≥0

dµ ≥ − lim inf
n→∞

∫
E

−fn dµ = lim sup
n→∞

∫
E

fn dµ

gilt.

Satz 6.6 (Satz von Lebesgue über dominante Konvergenz). Seien (X,M, µ) ein Maßraum,
E ∈ M und f, fn : X → R für n ∈ N messbare Funktionen mit f(x) = limn→∞ fn(x) für
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alle x ∈ E. Existiert eine Funktion g ∈ L(E,µ) mit

|fn(x)| ≤ g(x) für alle x ∈ E,

so gilt f ∈ L(E,µ) und

lim
n→∞

∫
E

fn dµ =

∫
E

f dµ.

Beweis. Wegen |fn(x)| ≤ g(x) für alle x ∈ E und n ∈ N gilt auch |f(x)| ≤ g(x) für alle
x ∈ E, sodass aus Satz 5.10 f ∈ L(E,µ) folgt. Nach Satz 6.5 gilt dann

lim sup
n→∞

∫
E

fn − g︸ ︷︷ ︸
≤0

dµ ≤
∫
E

lim sup
n→∞

(fn − g) dµ =

∫
E

f − g dµ,

sowie ∫
E

(f + g) dµ =

∫
E

lim inf
n→∞

(fn + g)︸ ︷︷ ︸
≥0

dµ ≤ lim inf
n→∞

∫
E

fn + g dµ.

Zusammen liefert dies

lim sup
n→∞

∫
E

fn dµ ≤
∫
E

f dµ ≤ lim inf
n→∞

∫
E

fn dµ,

d.h. limn→∞
∫
E fn dµ existiert und ist gleich

∫
E f dµ.

Bemerkung. Satz 6.6 liefert eine hinreichende Bedingung für die Summierbarkeit einer mess-
baren Funktion. Wir wollen zusätzlich eine notwendige und zugleich hinreichende Bedingung
formulieren:
Gilt für messbare Funktionen f, fn : X → R auf einemMaßraum (X,M, µ) die Eigenschaft

0 ≤ f1(x) ≤ f2(x) ≤ . . . sowie f(x) = limn→∞ fn(x) für alle x ∈ E ∈ M, so ist f ∈ L(E,µ)
genau dann erfüllt, wenn eine Teilfolge (fnk)k∈N mit

∫
E fnk dµ ≤ C < ∞ für alle k ∈ N

existiert, was äquivalent ist zur Bedingung
∫
E fn dµ ≤ C für alle n ∈ N.

Beweis: Mit f ∈ L(E,µ) gilt für n ∈ N

0 ≤
∫
E

fn dµ ≤
∫
E

f dµ := C <∞.

Existiert umgekehrt eine Teilfolge (fnk)k∈N mit der geforderten Eigenschaft für ein C ≥ 0,
so gilt die Eigenschaft aufgrund der Monotonie der Folge (fn) für alle n ∈ N. Mit Satz 6.5
folgt nun

0 ≤
∫
E

f dµ =

∫
E

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
E
fn dµ ≤ C,

d.h. f ∈ L(E,µ).
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Als Gegenbeispiel kann man betrachten

µ(E) = m <∞, fn(x) ≡ n, lim
n→∞

fn = f ≡ +∞,
∫
E

fn dµ = nm <∞

mit
lim
n→∞

∫
E

fn dµ =

∫
E

f dµ =∞.

Es gibt also keine Konstante C > 0 mit
∫
E

fn dµ < C ∀n ∈ N. Wir haben dann zwar

fn ∈ L(E,µ) ∀n ∈ N, aber f /∈ L(E,µ).

50



7 Vergleich von Lebesgue-Integral und
Riemann-Integral

In diesem Kapitel betrachten wir ausschließlich den Lebesgue’schen Maßraum (R,L(R), µ),
d.h. µ ist das Lebesgue-Maß auf der Lebesgue’schen σ-Algebra L(R). Weiter betrachten wir
messbare Funktionen f : R→ R, d.h. die Urbilder f−1(B) von Borel-Mengen B ∈ B(R) sind
selbst Borel-Mengen und gehören damit zu L(R). Im Mittelpunkt stehen in diesem Kapitel
Funktionen f , die nur auf dem abgeschlossenen Intervall [a, b] mit −∞ < a < b < +∞ zu
definieren sind. Dann kann man sich f als mit Null auf ganz R fortgesetzt betrachten. Ei-
ne alternative Betrachtungsweise besteht darin, gleich den Maßraum ([a, b],L(R) ∩ [a, b], µ)
anzusehen, wobei dann unter L(R) ∩ [a, b] die so genannte Spur-σ-Algebra von L(R) ein-
geschränkt auf das Intervall [a, b] zu vestehen ist. Beides führt in der Regel zum gleichen
Ergebnis.
Es sollen im Weiteren

(R)

b∫
a

f(x) dx bzw. (L)

b∫
a

f(x) dx :=

∫
[a,b]

f dµ

das Riemann- bzw. Lebesgue-Integral von f auf [a, b] bezeichnen. Während der Begriff des
Lebesgue-Integrals aus Kapitel 5 hinreichend gut bekannt ist, wollen wir den Begriff des
Riemann-Integrals hier noch einmal wiederholen und im Lichte von Treppenfunktionen etwas
anders interpretieren.
Dazu betrachten wir eine Folge von Zerlegungen (Zk)k∈N des Intervalls [a, b] mit

Zk = {xk0, xk1, . . . , xkk} und a = xk0 < xk1 < · · · < xkk = b sowie ∆Zk := max1≤i≤k |xki − xki−1| .
Wir nehmen an, dass aufeinanderfolgende Zerlegungen Zk und Zk+1 durch Einfügung eines
zusätzlichen Punktes erfolgen, sodass Z1 ⊂ Z2 ⊂ . . . Zk ⊂ Zk+1 ⊂ . . . gilt, und die maxima-
len Längen von Teilintervallen in der Zerlegung asymptotisch für k →∞ gegen Null gehen,
d.h. limk→∞∆Zk = 0 gilt. Solche Zerlegungsfolgen nennen wir regulär.
Für beschränkte Funktionen f betrachtet man nun die auf ganz R definierten reellen

Unterfunktionen L(x) und Oberfunktionen U(x), die über die Zuordnungen

Uk(a) := Lk(a) := f(a), Uk(x) := Lk(x) := 0 für x ∈ R \ [a, b]

und für x ∈ (xki−1, x
k
i ] (i = 1, 2, . . . , k)

Uk(x) := Mi := sup
ξ∈(xki−1,x

k
i ]

f(ξ) bzw. Lk(x) := mi := inf
ξ∈(xki−1,x

k
i ]
f(ξ)
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7 Vergleich von Lebesgue-Integral und Riemann-Integral

definiert sind. Diese Funktionen sind offenbar messbare Treppenfunktionen, und es gilt

(L)

b∫
a

Lk(x) dx =

k∑
i=1

mi(x
k
i − xki−1) =: s(Zk, f)

bzw.

(L)

b∫
a

Uk(x) dx =
k∑
i=1

Mi(x
k
i − xki−1) =: S(Zk, f).

Wir haben dabei die Untersummen s(Zk, f) und die Obersummen S(Zk, f) der Zerlegung
Zk ins Spiel gebracht. Wegen Z1 ⊂ Z2 ⊂ . . . erhalten wir

U1(x) ≥ U2(x) ≥ · · · ≥ f(x) ≥ · · · ≥ L2(x) ≥ L1(x) für alle x ∈ [a, b].

Wir setzen

U(x) := lim
k→∞

Uk(x) und L(x) := lim
k→∞

Lk(x) für alle x ∈ R.

Definition 7.1. Eine auf [a, b] definierte reelle Funktion f heißt Riemann-integrierbar, wenn
sie beschränkt ist und für jede reguläre Zerlegungsfolge gilt

lim
k→∞

s(Zk, f) = lim
k→∞

S(Zk, f),

wobei wir diesen dann von der konkreten Zerlegungsfolge unabhängigen Grenzwert Riemann-

Integral von f über [a, b] nennen und mit dem Symbol (R)
b∫
a
f(x) dx bezeichnen.

Eine äquivalente Definition der Riemann-Integrierbarkeit auf der Basis von dem Riemann-
Integral angepassten Treppenfunktionen (wir nennen sie hier (R)-Treppenfunktionen) soll
im Folgenden noch erwähnt werden (vgl. B K. D. Schmidt: Maß und Wahrscheinlich-
keit, S.181f). Mit Blick auf das Intervall [a, b] werde dabei eine Treppenfunktion ϕ : R→ R
als (R)-Treppenfunktion bezeichnet, wenn sie die spezielle Gestalt f(x) = ci mit
xi−1 < x < xi (i = 1, 2, ..., k) für eine Zerlegung a = x0 < x1 < ... < xk−1 < xk = b

des Intervalls [a, b] besitzt. Es gilt dann offensichtlich (L)
b∫
a
ϕ(x) dx =

k∑
i=1

ci(xi − xi−1).

Definition 7.2. Eine auf [a, b] definierte reelle Funktion f heißt Riemann-integrierbar, wenn
sie beschränkt ist und die reellen Zahlen

s := sup

(L)

b∫
a

ϕ(x) dx : ϕ ist (R)-Treppenfunktion mit ϕ(x) ≤ f(x) ∀x ∈ [a, b]


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und

S := inf

(L)

b∫
a

ϕ(x) dx : ϕ ist (R)-Treppenfunktion mit f(x) ≤ ϕ(x) ∀x ∈ [a, b]


übereinstimmen, wobei dann als Riemann-Integral (R)

b∫
a
f(x) dx := s = S bezeichnet wird.

Wir werden uns aber auf die erste Version der Definition konzentrieren und können nun auf
der Grundlage der oben durchgeführten Überlegungen leicht den folgenden Satz beweisen.

Satz 7.3. Sei f : R→ R eine Funktion und es gelte −∞ < a < b < +∞.

(i) Ist f Riemann-integrierbar auf [a, b], so gilt f ∈ L([a, b], µ) und

(L)

b∫
a

f(x) dx = (R)

b∫
a

f(x) dx.

(ii) Die Funktion f ist genau dann Riemann-integrierbar auf [a, b], wenn sie auf [a, b]
beschränkt und fast überall auf [a, b] stetig ist.

Beweis. Wir beweisen (i). Da f Riemann-integrierbar ist, ist f beschränkt. Aus der Riemann-
Integrierbarkeit von f folgt für eine reguläre Zerlegungsfolge

lim
k→∞

s(Zk, f) = (R)

b∫
a

f(x) dx = lim
k→∞

S(Zk, f).

Andererseits folgt aus Satz 6.6 (Satz von Lebesgue über dominante Konvergenz)

lim
k→∞

(L)

b∫
a

Uk(x) dx = (L)

b∫
a

U(x) dx und lim
k→∞

(L)

b∫
a

Lk(x) dx = (L)

b∫
a

L(x) dx,

zusammen also

(L)

b∫
a

L(x) dx = (R)

b∫
a

f(x) dx = (L)

b∫
a

U(x) dx.

Schließlich folgt mit Satz 5.5 (v) aus L(x) ≤ f(x) ≤ U(x) für x ∈ [a, b], d.h. U(x)−L(x) ≥ 0,
und (L)

∫ b
a [U(x)− L(x)] dx = 0, dass U(x) = f(x) = L(x) für fast alle x ∈ [a, b] gilt. Somit

erhalten wir f ∈ L([a, b], µ) und

(L)

b∫
a

f(x) dx = (R)

b∫
a

f(x) dx.
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Wir beweisen nun noch (ii). Seien die Bezeichnungen wie im Beweis zu (i). Mit Z :=⋃∞
k=1 Zk gilt dann µ(Z) = 0 (da Z abzählbar ist). Wir zeigen zunächst als wichtige Hilfs-

aussage, dass f genau dann stetig in x0 ∈ [a, b] \ Z ist, wenn U(x0) = L(x0) gilt.
Sei f also stetig in x0 ∈ [a, b] \ Z. Dann existiert zu jedem ε > 0 ein δ > 0 mit
|f(x) − f(x0)| < ε

2 für alle x ∈ [a, b] mit |x − x0| < δ. Wegen ∆Zk → 0 existiert ein
K ∈ N mit ∆Zk < δ für alle k ≥ K. Für i0 ∈ {1, 2, . . . , k} mit x0 ∈ (xi0−1, xi0 ] gilt folglich

Uk(x0)− Lk(x0) = Mi0 −mi0 = (Mi0 − f(x0)) + (f(x0)−mi0) <
ε

2
+
ε

2
= ε

und aus ε → 0 folgt somit U(x0) = L(x0). Es gelte nun U(x0) = L(x0) für x0 ∈ [a, b] \ Z.
Für beliebiges ε > 0 gibt es wegen U(x0) = f(x0) = L(x0) dann ein K ∈ N mit

UK(x0)− f(x0) < ε und f(x0)− LK(x0) < ε.

Setzen wir δ := minx∈Zk |x0 − x|, so gilt außerdem

LK(x0) ≤ f(x) ≤ UK(x0) für alle x ∈ [a, b] \ Z mit |x− x0| < δ.

Zusammen erhalten wir |f(x)− f(x0)| < ε für |x− x0| < δ, d.h. f ist stetig in x0. Damit ist
die Hilfsaussage bewiesen.
Ist f nun Riemann-integrierbar, so ist f beschränkt und aus dem Beweis zu (i) folgt, dass

U(x) = f(x) = L(x) für fast alle x ∈ [a, b] und damit auch für fast alle x ∈ [a, b] \ Z gilt.
Wegen der Hilfsaussage ist f dann für fast alle x ∈ [a, b] \ Z stetig und folglich fast überall
auf [a, b] stetig. Ist umgekehrt f beschränkt und fast überall stetig auf [a, b], so gilt wegen
der Hilfsaussage U(x) = f(x) = L(x) fast überall auf [a, b] \ Z und damit auch fast überall
auf [a, b]. Es folgt

(L)

b∫
a

U(x) dx = (L)

b∫
a

L(x) dx

und mit Satz 6.6 erhalten wir

lim
k→∞

(
S(Zk, f)− s(Zk, f)

)
= lim

k→∞
(L)

b∫
a

Uk(x) dx− lim
k→∞

(L)

b∫
a

Lk(x) dx

= (L)

b∫
a

U(x) dx− (L)

b∫
a

L(x) dx = 0,

d.h. f ist Riemann-integrierbar auf [a, b].

Beispiel 7.4. Die Dirichlet-Funktion auf [0, 1] aus Beispiel 5.3 ist beschränkt, aber nirgends
stetig. Nach Satz 7.3 (ii) ist sie also nicht Riemann-integrierbar.
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Beispiel 7.5. Wir ändern die Dirichlet-Funktion auf [0, 1] aus Beispiel 5.3 wie folgt:

f(x) :=

{
sinx, x ∈ Q ∩ [0, 1],

x2, x ∈ [0, 1] \Q.

Diese Funktion ist messbar und nach Satz 7.3 (i) gilt

(L)

1∫
0

f(x) dx =

∫
[0,1]∩Q

f dµ

︸ ︷︷ ︸
=0

+

∫
[0,1]\Q

f dµ = (L)

1∫
0

x2 dx = (R)

1∫
0

x2 dx =
1

3
,

weil wir den Integranden auf einer Menge vom Maß Null beliebig ändern dürfen. Da f
in keinem Punkt stetig ist, ist f nicht Riemann-integrierbar auf [0, 1], jedoch gibt es eine
äquivalente Riemann-integrierbare Funktion, nämlich x 7→ x2.

Beispiel 7.6. Ein ähnliches, aber doch anders geartetes Beispiel liefert die Thomae-Funktion
auf [0, 1]

f(x) :=


1
n , x = m

n ∈ Q ∩ (0, 1] (m,n teilerfremd),
1, x = 0,

0, x ∈ [0, 1] \Q.

Diese ist genau in allen irrationalen Punkten des Intervalls [0, 1] stetig und somit nur auf
einer Menge vom Maße Null unstetig. Damit ist die Funktion Riemann-integrierbar und
das Riemann-Integral stimmt mit dem Lebesgue-Integral überein, welches offensichtlich den
Wert Null besitzt.

Beispiel 7.7. Wir betrachten die durch

f(x) :=

{
sinx
x , x > 0,

1, x = 0

gegebene Funktion. Diese ist auf [0, T ] stetig für alle T > 0 und damit auf jedem solchen be-
schränkten Intervall Riemann-integrierbar. Im Sinne eines uneigentlichen Riemann-Integrals
gilt

(R)

∞∫
0

sinx

x
dx = lim

T→∞
(R)

T∫
0

sinx

x
dx =

π

2
.

Wegen
∫
[0,∞) |f |dµ = +∞, d.h. |f | /∈ L([0,∞), µ), gilt aber f /∈ L([0,∞), µ). Wegen der

Endlichkeit des uneigentlichen Integrals (R)
∞∫
0

sinx
x dx <∞müssen dann aber beide Integrale∫

[0,∞) f+ dµ und
∫
[0,∞) f− dµ gleich +∞ sein, denn es können nicht beide gleichzeitig endlich

sein und eines davon endlich und das andere +∞ würde dem widersprechen.
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Beispiel 7.8. Wir betrachten eine fast überall stetige Funktion f : R→ R mit f(x) = 0 für
x < 0, f(x) ≥ 0 für x ≥ 0 und (R)

∫ T
0 f(x) dx <∞ für alle T > 0. Setzen wir

fn(x) :=

{
f(x), x ≤ n,
0, x > n,

so gilt 0 ≤ f1 ≤ f2 ≤ . . . und∫
[0,∞)

fn dµ = (L)

n∫
0

f(x) dx = (R)

n∫
0

f(x) dx <∞.

Wegen f(x) = limn→∞ fn(x) für alle x ∈ R folgt aus Satz 6.1

∫
[0,∞)

f dµ = lim
n→∞

∫
[0,∞)

fn dµ = lim
n→∞

(R)

n∫
0

f(x) dx = (R)

∞∫
0

f(x) dx := I.

Somit gilt f ∈ L([0,∞), µ) genau dann, wenn I <∞ gilt.
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8 Lp-Räume und Ausblick auf
Sobolevräume

Definition 8.1. Sei (X,M, µ) ein Maßraum und sei f ∈ L(X,µ).

(i) Mit [f ] := {g : X → R : g messbar, g X∼ f} (vgl. Definition 5.8) bezeichnen wir die
Äquivalenzklasse aller fast überall mit f identischen, messbaren Funktionen auf X.
Die Funktion f heißt dabei Repräsentant der Äquivalenzklasse.

(ii) Für p ∈ [1,∞) setzen wir

‖[f ]‖p :=

∫
X

|f |p dµ

 1
p

und wir setzen

‖[f ]‖∞ := ess sup
X

|f | := inf{c ∈ R : |f(x)| ≤ c für fast alle x ∈ X}.

(iii) Für p ∈ [1,∞] setzen wir

Lp(X,µ) := {[g] : g : X → R messbar ‖[g]‖p <∞}.

Das Paar (Lp(X,µ), ‖•‖p) bezeichnen wir als Lp-Raum.

Bemerkung. Der Kürze halber schreiben wir statt ‖[f ]‖p stets ‖f‖p und statt [f ] ∈ Lp(X,µ)
nur f ∈ Lp(X,µ). Es erweist sich, dass die Zuordnung ‖[f ]‖p für alle p ∈ [1,∞] die drei Nor-
maxiome erfüllt und dass die Paare (Lp(X,µ), ‖•‖p) lineare normierte Räume repräsentieren.
Die Größe ess supX f heißt wesentliches Supremum einer Funktion f auf X.

Beispiel 8.2. Sei X := (0, 1), µ das Lebesguemaß und wir schreiben kurz Lp(0, 1) .

(a) Für die Funktion x(t) = 1√
t
gilt x ∈ Lp(0, 1) genau dann, wenn p < 2 ist.

(b) Für die Funktion x(t) = 1
t gilt x /∈ L∞(0, 1).

(c) Für die Funktion x(t) = sin

(
1

t

)
gilt x ∈ L∞(0, 1).

Definition 8.3. Für p ∈ (1,∞) heißt der durch 1
p + 1

q = 1 eindeutig bestimmte Wert
q ∈ (1,∞) der zu p konjugierte Wert. Statt q schreibt man auch p∗. Für p = 1 bezeichnen
wir q =∞ als konjugierten Wert und für p =∞ setzen wir q = 1.
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Bemerkung. Offensichtlich gilt (p∗)∗ = p.

Lemma 8.4 (Young’sche Ungleichung). Für konjugierte Werte p, q ∈ (1,∞) gilt

ab ≤ ap

p
+
bq

q
für alle a, b ≥ 0.

Beweis. Die zu zeigende Ungleichung ist offensichtlich äquivalent zu c
1
pd

1
q ≤ c

p + d
q für

c, d ≥ 0. O.B.d.A. nehmen wir c ≥ d > 0 an (für c = d = 0 ist die Behauptung trivial).
Mit t := c

d ≥ 1 und Division durch d erhalten wir die äquivalente Ungleichung t
1
p ≤ t

p + 1
q .

Setzen wir g(t) := t
1
p und h(t) := t

p + 1
q , so müssen wir also g(t) ≤ h(t) für t ≥ 1 zeigen. Aus

g′(t) =
1

p
t
1
p
−1

=
1

p
t
− 1
q ≤ 1

p
= h′(t) für t ≥ 1

folgt, dass h stärker wächst als g, und zusammen mit g(1) = h(1) = 1 liefert dies die
Behauptung.

Satz 8.5 (Hölder- und Minkowski-Ungleichung). Seien p, q ∈ [1,∞] konjugierte Exponenten.
Dann gelten

(i) die Hölder-Ungleichung

‖fg‖1 ≤ ‖f‖p‖g‖q für f ∈ Lp(X,µ), g ∈ Lq(X,µ)

und

(ii) die Minkowski-Ungleichung

‖f + g‖p ≤ ‖f‖p + ‖g‖p für f, g ∈ Lp(X,µ) .

Beweis. Wir zeigen (i). Seien zunächst p, q ∈ (1,∞) und o.B.d.A. gelte ‖f‖p 6= 0 sowie
‖g‖q 6= 0 (sonst fg = 0 fast überall). Mit

a :=
|f(x)|
‖f‖p

und b :=
|g(x)|
‖g‖q

liefert Lemma 8.4
0 ≤ |f(x)|

‖f‖p
|g(x)|
‖g‖q

≤ 1

p

|f(x)|p

‖f‖pp
+

1

q

|g(x)|q

‖g‖qq
und Integration über X ergibt

1

‖f‖p‖g‖q

∫
X

|fg|dµ ≤ 1

p‖f‖pp

∫
X

|f |p dµ

︸ ︷︷ ︸
=‖f‖pp

+
1

q‖g‖qq

∫
X

|g|q dµ

︸ ︷︷ ︸
=‖g‖qq

=
1

p
+

1

q
= 1.
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Daraus folgt nun sofort die Behauptung.
Wir zeigen die Behauptung für p = ∞ und q = 1 (für p = 1 und q = ∞ analog). Nach

Definition des wesentlichen Supremums von |f | existiert ein f̃ ∈ [f ] mit

ess sup
X

|f | = sup
X
|f̃ |.

Mit Satz 5.5 (i) gilt also∫
X

|fg|dµ =

∫
X

|f̃ ||g|dµ ≤ ess sup
X

|f |
∫
X

|g|dµ = ‖f‖∞‖g‖1.

Wir zeigen nun (ii). Seien zunächst p, q ∈ (1,∞). Für alle x ∈ X gilt

|f(x) + g(x)|p = |f(x) + g(x)||f(x) + g(x)|p−1 ≤ (|f(x)|+ |g(x)|)|f(x) + g(x)|p−1.

Integration über X liefert

‖f + g‖pp ≤
∫
X

|f ||f + g|p−1 dµ+

∫
X

|g||f + g|p−1 dµ

und mit q := p
p−1 erhalten wir aus (i)

‖f + g‖pp ≤ ‖f‖p‖(f + g)p−1‖q + ‖g‖p‖(f + g)p−1‖q = (‖f‖p + ‖g‖p)

∫
X

(f + g)p dµ

 1
q

= (‖f‖p + ‖g‖p)‖f + g‖
p
q
p = (‖f‖p + ‖g‖p)‖f + g‖p−1p .

Damit folgt die Behauptung.
Für p = 1 folgt die Behauptung durch Integrieren über X von

|f(x) + g(x)| ≤ |f(x)|+ |g(x)|

und für p =∞ folgt die Behauptung aus der Definition des wesentlichen Supremums.

Bemerkung. Nach Satz 8.5 (i) gilt für konjugierte Werte p, q ∈ [1,∞] stets

f ∈ Lp(X,µ), g ∈ Lq(X,µ) ⇒ fg ∈ L1(X,µ).

Satz 8.6. Für p ∈ [1,∞] ist Lp(X,µ) mit der Norm ‖•‖p ein reeller Banach-Raum.

Beweis. Sei zunächst 1 ≤ p < ∞. Offensichtlich gilt für f ∈ Lp(X,µ) und λ ∈ R stets
λf ∈ Lp(X,µ) und wegen Satz 8.5 (ii) folgt aus f, g ∈ Lp(X,µ) auch f + g ∈ Lp(X,µ) (da
es sich bei Lp(X,µ) eigentlich um Äquivalenzklassen handelt, müssen wir [f ] + [g] := [f + g]
und λ[f ] := [λf ] definieren; man überlegt sich leicht, dass diese Definition korrekt ist). Die
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Axiome des linearen Raumes kann man leicht zeigen. Ebenso sieht man leicht, dass ‖•‖p eine
Norm ist. Es verbleibt also nur noch der Beweis der Vollständigkeit des normierten linearen
Raumes Lp(X,µ).
Sei also (fk)k∈N ein Cauchy-Folge in Lp(X,µ). Zu jedem n ∈ N existiert dann einN(n) ∈ N

mit
‖fk − fl‖pp ≤

1

22n
für alle k, l ≥ N(n),

wobei wir o.B.d.A. N(1) < N(2) < . . . annehmen können. Konvergiert nun die durch gn :=
fN(n) definierte Teilfolge (gn)n∈N von (fk) gegen ein g ∈ Lp(X,µ), d.h. ‖gn − g‖p → 0, so
folgt

‖fk − g‖p ≤ ‖fk − gn‖p + ‖gn − g‖p = ‖fk − fN(n)‖p + ‖gn − g‖p ≤
1

2
2n
p

+ ‖gn − g‖p

für k ≥ N(n). Da die rechte Seite für großes n beliebig klein wird, folgt ‖fk − g‖p → 0, d.h.
Lp(X,µ) ist vollständig. Wir zeigen also die Konvergenz der Folge (gn). Dazu setzen wir für
n ∈ N

Yn :=

{
x ∈ X : |gn+1(x)− gn(x)|p ≥ 1

2n

}
sowie

Zn :=

∞⋃
k=n

Yk und Z :=

∞⋂
n=1

Zn.

Es gilt

µ(Yn) =

∫
Yn

1 dµ ≤
∫
Yn

2n|gn+1 − gn|p dµ ≤ 2n
∫
X

|gn+1 − gn|p dµ

= 2n‖gn+1 − gn‖pp ≤
2n

22n
=

1

2n

und somit

0 ≤ µ(Z) = µ

( ∞⋂
k=1

Zk

)
≤ µ(Zn) = µ

( ∞⋃
k=n

Yk

)
≤
∞∑
k=n

µ(Yk)

≤
∞∑
k=n

1

2k
=

1

1− 1
2

−
1− 1

2n

1− 1
2

=
1

2n−1
,

d.h. µ(Z) = 0 (da n ∈ N beliebig). Wir setzen nun

g(x) :=

{
g1(x) +

∑∞
n=1(gn+1(x)− gn(x)), x ∈ X \ Z,

0, x ∈ Z.

Die auftretende Reihe konvergiert, da zu x ∈ X \Z ein n ∈ N mit x /∈ Yk für k ≥ n existiert.
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Wir haben dann für solche x
∞∑
k=n

|gk+1(x)− gk(x)| ≤
∞∑
k=n

1

2
k
p

=
1

2
n−1
p

,

d.h. die Reihe ist absolut konvergent. Man sieht leicht, dass g messbar ist. Mit Satz 6.1 folgt
nun ∫

X

|g − gn|p dµ =

∫
X\Z

|g − gn|p dµ =

∫
X\Z

∣∣∣∣∣
∞∑
k=n

(gk+1 − gk)

∣∣∣∣∣
p

dµ

≤
∫

X\Z

( ∞∑
k=n

|gk+1 − gk|

)p
dµ =

∫
X\Z

lim
m→∞

(
m∑
k=n

|gk+1 − gk|

)p
dµ

= lim
m→∞

∫
X\Z

(
m∑
k=n

|gk+1 − gk|

)p
dµ = lim

m→∞

∥∥∥∥∥
m∑
k=n

|gk+1 − gk|

∥∥∥∥∥
p

p

≤ lim
m→∞

(
m∑
k=n

‖gk+1 − gk‖p

)p
=

( ∞∑
k=n

‖fN(k+1) − fN(k)‖p

)p

≤

( ∞∑
k=n

1

2
2k
p

)p
=

(
1

2
2(n−1)
p

)p
=

1

22(n−1)
n→∞−→ 0,

d.h. g − gn ∈ Lp(X,µ) für n ∈ N und ‖g − gn‖p → 0 für n → ∞. Außerdem folgt g =
(g − g1) + g1 ∈ Lp(X,µ).
Sei nun p = ∞. Man zeigt leicht, dass mit f, g ∈ L∞(X,µ) auch f + g ∈ L∞(X,µ) gilt.

Ebenso gilt λf ∈ L∞(X,µ) für λ ∈ R und f ∈ L(X,µ). Zum Beweis der Normaxiome (die
des linearen Raums sind leicht zu prüfen) bedarf nur die Homogenität näherer Ausführungen.
Seien also λ ∈ R und f ∈ L∞(X,µ). Dann gilt offensichtlich ‖λf‖∞ ≤ |λ|‖f‖∞. Für die
Umkehrung sei t ∈ (0, 1) beliebig. Dann gilt t‖f‖∞ < ‖f‖∞ (o.B.d.A. sei f 6= 0), d.h.
|f(x)| ≤ t‖f‖∞ gilt nicht für fast alle x ∈ X, also µ({x ∈ X : |f(x)| ≥ t‖f‖∞}) > 0. Somit
folgt µ({x ∈ X : |λf(x)| > t|λ|‖f‖∞}) > 0 und daher ‖λf‖∞ ≥ t|λ|‖f‖∞ für alle t ∈ (0, 1).
Der Grenzübergang t→ 1 liefert ‖λf‖∞ ≥ |λ|‖f‖∞ und damit die Homogenität von ‖•‖∞.
Es verbleibt die Vollständigkeit von L∞(X,µ) zu zeigen.
Sei also (fn)n∈N eine Cauchy-Folge in L∞(X,µ). Wir setzen K := supn∈N ‖fn‖∞ < ∞

sowie für k, n,m ∈ N

Fk := {x ∈ X : |fk(x)| > K} und En,m := {x ∈ X : |fn(x)− fm(x)| > ‖fn − fm‖∞}.

Offensichtlich gilt µ(Fk) = 0 und µ(En,m) = 0. Setzen wirE := (
⋃∞
k=1 Fk)∪(

⋃∞
m=1

⋃∞
n=1En,m),

so gilt daher auch µ(E) = 0. Jedes x ∈ X \ E erfüllt nun

|fn(x)− fm(x)| ≤ ‖fn − fm‖∞ → 0 für m,n→∞
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sowie |fn(x)| ≤ K für alle n ∈ N. Da R vollständig ist, existiert f(x) := limn→∞ fn(x) für
alle x ∈ X \ E. Mit f(x) := 0 für x ∈ E folgt |f(x)| ≤ K für alle x ∈ X und f ist eine
messbare Funktion, d.h. f ∈ L∞(X,µ). Sei nun ε > 0 beliebig. Dann existiert ein N ∈ N
mit

|fn(x)− fm(x)| ≤ ‖fn − fm‖∞ < ε für alle m,n ≥ N und alle x ∈ X \ E.

Der Grenzübergang m → ∞ liefert |fn(x) − f(x)| < ε für alle n ≥ N und alle x ∈ X \ E,
d.h. ‖fn − f‖∞ < ε (da µ(E) = 0). Damit ist ‖fn − f‖∞ → 0 gezeigt.

Satz 8.7. In L2(X,µ) kann mittels

〈f, g〉L2(X,µ) :=

∫
X

fg dµ für f, g ∈ L2(X,µ)

ein Skalarprodukt eingeführt werden, sodass

‖f‖2 =
√
〈f, f〉L2(X,µ) für f ∈ L2(X,µ)

gilt. Mit diesem Skalarprodukt ist L2(X,µ) also ein Hilbertraum.

Beweis. Nach Satz 8.5 (i) gilt ∫
X

|fg| dµ ≤ ‖f‖2‖g‖2 <∞

und mit Satz 5.9 folgt daraus, dass 〈f, g〉L2(X,µ) als reelle Zahl wohldefiniert ist. Die Gül-
tigkeit der Axiome des Skalarprodukts lässt sich leicht nachprüfen. Offensichtlich gilt auch
〈f, f〉L2(X,µ) = ‖f‖22.

Im restlichen Teil dieses Kapitels betrachten wir als Grundmenge X ausschließlich
X = (a, b) mit −∞ < a < b < ∞. Als σ-Algebra wählen wir die Spur-σ-Algebra
M = L(R) ∩ (a, b) := {A ∩ (a, b) : A ∈ L(R)} ⊆ L(R), wobei L(R) die Lebesgue’sche
σ-Algebra auf R bezeichnet. Als Maß verwenden wir das Lebesgue-Maß auf (a, b), d.h. die
Einschränkung µ|M auf M des Lebesgue-Maßes µ auf R. Wir setzen

∫ b
a f dµ :=

∫
(a,b) f dµ

und bezeichnen das Riemann-Integral einer Funktion f auf [a, b] mit (R)
∫ b
a f(x) dx. Weiter

setzen wir Lp(a, b) := Lp((a, b), µ|M) für p ∈ [1,∞]. An dieser Stelle sei angemerkt, dass
es wegen µ({a, b}) = 0 egal ist, ob wir X = (a, b) oder X = [a, b] betrachten, d.h. die ent-
sprechend definierten Lp-Räume sind identisch (genauer: isometrisch isomorph). Man zeigt
leicht, dass Lp1(a, b) ⊇ Lp2(a, b) für 1 ≤ p1 ≤ p2 ≤ ∞ gilt (Satz 8.5 (i) mit p := p2

p1
und

q := p2
p2−p1 auf |f |p1 und 1 anwenden).

Mit C̊∞(a, b) bezeichnen wir im Folgenden die Menge aller beliebig oft differenzierba-
ren Funktionen f : R → R mit supp f := {x ∈ R : f(x) 6= 0} ⊂ (a, b), d.h. mit in (a, b)
enthaltenem Träger. Die Elemente von C̊∞(a, b) heißen auch Testfunktionen.
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Definition 8.8. Sei f ∈ L1(a, b). Eine Funktion g ∈ L1(a, b) heißt (erste) verallgemeinerte
Ableitung von f (Schreibweise: f ′ := g), wenn

b∫
a

fϕ′ dµ = −
b∫
a

gϕdµ für alle ϕ ∈ C̊∞(a, b)

gilt. Entsprechend definiert man die zweite verallgemeinerte Ableitung als verallgemeinerte
Ableitung von g usw.

Bemerkung. Man kann zeigen, dass die verallgemeinerte Ableitung g eindeutig bestimmt ist
(im Sinne der Äquivalenzklasse [g]).

Bemerkung. Für f ∈ C1[a, b], d.h. f ist stetig differenzierbar auf [a, b] (wobei an den Rändern
nur einseitige Differenzierbarkeit bzw. Stetigkeit betrachtet wird), stimmen klassische und
verallgemeinerte Ableitung überein. Denn für ϕ ∈ C̊∞(a, b) mit suppϕ ⊆ [c, d] ⊆ (a, b), d.h.
ϕ(x) = 0 für x ∈ (a, c)∪ (d, b) und somit ϕ′(x) = 0 für x ∈ (a, c]∪ [d, b), folgt durch partielle
Integration

b∫
a

fϕ′ dµ =

d∫
c

fϕ′ dµ = (R)

d∫
c

f(x)ϕ′(x) dx = [f(x)ϕ(x)]x=dx=c︸ ︷︷ ︸
=0

−(R)

d∫
c

f ′(x)ϕ(x) dx

= −
d∫
c

f ′ϕdµ = −
b∫
a

f ′ϕdµ.

Die Definition der verallgemeinerten Ableitung entspricht also der bekannten Regel der par-
tiellen Integration.

Beispiel 8.9. Seien a = −1, b = 1 und f : (−1, 1)→ R durch

f(x) :=

{
0, x ∈ (−1, 0],

x, x ∈ (0, 1)

gegeben. Dann ist f in (−1, 0) ∪ (0, 1) differenzierbar, jedoch nicht in x = 0. Wir zeigen,
dass die durch

g(x) :=

{
0, x ∈ (−1, 0],

1, x ∈ (0, 1)

definierte Funktion g : (−1, 1) → R die verallgemeinerte Ableitung von f ist. Für ϕ ∈
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C̊∞(−1, 1) mit suppϕ ⊆ [c, d] ⊆ (−1, 1) gilt

1∫
−1

fϕ′ dµ =

d∫
c

fϕ′ dµ = (R)

d∫
c

f(x)ϕ′(x) dx = (R)

d∫
0

xϕ′(x) dx

= [xϕ(x)]x=dx=0︸ ︷︷ ︸
=0

−(R)

∫ d

0
ϕ(x) dx = −

d∫
0

ϕdµ = −
1∫
−1

gϕdµ.

Beispiel 8.10. Seien a = −1, b = 1 und f : (−1, 1)→ R die Heaviside-Funktion, d.h.

f(x) :=

{
0, x ∈ (−1, 0),

1, x ∈ [0, 1).

Für ϕ ∈ C̊∞(−1, 1) mit suppϕ ⊆ [c, d] ⊆ (−1, 1) gilt

1∫
−1

fϕ′ dµ =

d∫
c

fϕ′ dµ = (R)

d∫
c

f(x)ϕ′(x) dx = (R)

d∫
0

1 · ϕ′(x) dx

= [ϕ(x)]x=dx=0︸ ︷︷ ︸
=−ϕ(0)

− (R)

d∫
0

0 · ϕ(x) dx

︸ ︷︷ ︸
=0

= −ϕ(0).

Wenn f also eine verallgemeinerte Ableitung g ∈ L1(−1, 1) besitzt, so muss

1∫
−1

gϕdµ = ϕ(0) für alle ϕ ∈ C̊∞(−1, 1)

gelten. Man kann zeigen, dass dies für kein g ∈ L1(−1, 1) erfüllt ist. Der Ableitungsbegriff
kann allerdings noch weiter verallgemeinert werden, sodass dann auch die Heaviside-Funktion
eine Ableitung besitzt, und zwar die in Null konzentrierte Dirac’sche Deltadistribution (siehe
Distributionentheorie).

Definition 8.11. Mit W k,p(a, b) für k ∈ N0, 1 ≤ p < ∞, bezeichnen wir die Menge
aller Funktionen f ∈ Lp(a, b), die k verallgemeinerte Ableitungen f ′, f ′′, . . . , f (k) ∈ Lp(a, b)
besitzen. Für f ∈W k,p(a, b) führen wir unter Verwendung der Lp-Norm ‖•‖p die Norm

‖f‖Wk,p(a,b) :=

(
k∑
l=0

‖f (l)‖pp

) 1
p

ein. Der Raum W k,p(a, b) mit dieser Norm heißt für alle p Sobolevraum der Ordnung k. Im
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Falle p = 2 bezeichnen wir diesen Raum mit Hk(a, b) und können für f, g ∈ Hk(a, b) ein
Skalarprodukt

〈f, g〉Hk(a,b) :=
k∑
l=0

〈f (l), g(l)〉L2(a,b)

einführen, wobei gilt

‖f‖Hk(a,b) :=
√
〈f, f〉Hk(a,b) = ‖f‖Wk,2(a,b) =

(
k∑
l=0

‖f (l)‖22

) 1
2

.

Auf der Grundlage der L∞-Norm ‖•‖∞ kann analog auch der Raum W k,∞(a, b) mit der
Norm

‖f‖Wk,∞(a,b) :=
k∑
l=0

‖f (l)‖∞

eingeführt werden.

Bemerkung. Natürlich handelt es sich bei den Elementen der Sobolevräume wieder um Klas-
sen äquivalenter Funktionen, die sich nur auf Mengen vom Maß Null unterscheiden.

Satz 8.12. Für k ∈ N0 ist W k,p(a, b) für alle 1 ≤ p ≤ ∞ ein Banachraum, Hk(a, b) sogar
ein Hilbertraum. Insbesondere gilt W 0,p(a, b) = Lp(a, b) und H0(a, b) = L2(a, b).

Beweis. Der Beweis der Vollständigkeit macht einige Arbeit und entfällt deshalb. Alle an-
deren Eigenschaften können leicht nachgeprüft werden.

Wir betrachten im Weiteren noch etwas genauer die Sobolevräume Hk(a, b) vom Hilber-
traumtyp.

Bemerkung. Offensichtlich gilt H0(a, b) ⊇ H1(a, b) ⊇ . . ., d.h. die Räume Hk(a, b) bilden
eine Skala von Hilberträumen.

Satz 8.13 (Sobolev’scher Einbettungssatz). Fürm ≥ k+1 ≥ 1 ist Hm(a, b) stetig eingebettet
in Ck[a, b], d.h. zu jedem f ∈ Hm(a, b) existiert ein f̃ ∈ Ck[a, b] mit f̃ |(a,b) ∈ [f ] und

‖f̃‖Ck[a,b] ≤ K‖f‖Hm(a,b)

für eine von f unabhängige Konstante K ≥ 0.

Beweis. Der nicht ganz einfache Beweis entfällt.

Bemerkung. Der Begriff der Einbettung wird in der Literatur selten exakt definiert und oft
missverständlich verwendet. Deshalb: Ein normierter linearer Raum (U, ‖•‖U ) heißt eingebet-
tet in einen normierten linearen Raum (V, ‖•‖V ), wenn es eine injektive, lineare Abbildung
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8 Lp-Räume und Ausblick auf Sobolevräume

E : U → V gibt. U heißt stetig eingebettet in V , wenn E stetig ist (dies ist äquivalent zur
Beschränktheit von E), d.h. wenn eine Konstante K ≥ 0 mit

‖Eu‖V ≤ K‖u‖U für alle u ∈ U

existiert. Im Falle einer stetigen Einbettung schreiben wir auch U ↪→ V (oft wird verwirren-
derweise auch „⊆“ statt „↪→“ geschrieben).

Bemerkung. Wir betrachten Satz 8.13 für den Spezialfall m = 1 und k = 0. Es gilt also
H1(a, b) ↪→ C[a, b], d.h. zu f ∈ H1(a, b) existiert ein f̃ ∈ C[a, b] mit f(x) = f̃(x) für fast
alle x ∈ (a, b) und

max
x∈[a,b]

|f̃(x)| ≤ K

 b∫
a

f2 dµ+

b∫
a

(f ′)2 dµ


1
2

.

Wir können die Konstante K ≥ 0 sogar konkret angeben: Dazu nehmen wir ohne Beschrän-
kung der Allgemeinheit f(x) = f̃(x) für alle x ∈ (a, b) an (Repräsentant geeignet wählen).
Zunächst kann man

f(x) = f(a) +

x∫
a

f ′ dµ

für x ∈ (a, b) zeigen. Daraus folgt unter Benutzung der in Satz 5.9 formulierten Ungleichung∣∣∣∣∣∣
∫
E

f dµ

∣∣∣∣∣∣ ≤
∫
E

|f | dµ

die Abschätzung

|f(x)| ≤ |f(a)|+

∣∣∣∣∣∣
x∫
a

f ′ dµ

∣∣∣∣∣∣ ≤ |f(a)|+
x∫
a

|f ′| · 1 dµ ≤ |f(a)|+

√√√√√ x∫
a

(f ′)2 dµ

√√√√√ x∫
a

12 dµ

≤ |f(a)|+
√
b− a‖f ′‖L2(a,b).

Des Weiteren gilt (wegen (c± d)2 ≤ 2c2 + 2d2)

f(a)2 ≤

f(x)−
x∫
a

f ′ dµ

2

≤ 2f(x)2 + 2

 x∫
a

f ′ dµ

2

≤ 2f(x)2 + 2

 x∫
a

|f ′| · 1 dµ

2

≤ 2f(x)2 + 2(b− a)‖f ′‖2L2(a,b)
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8 Lp-Räume und Ausblick auf Sobolevräume

und Integration über (a, b) liefert

(b− a)f(a)2 ≤ 2‖f‖2L2(a,b) + 2(b− a)2‖f ′‖2L2(a,b).

Wir erhalten also(
max
x∈[a,b]

|f̃(x)|
)2

= sup
x∈(a,b)

f(x)2 ≤ (|f(a)|+
√
b− a‖f ′‖L2(a,b))

2

≤ 2f(a)2 + 2(b− a)‖f ′‖2L2(a,b) ≤
4

b− a
‖f‖2L2(a,b) + 4(b− a)‖f ′‖2L2(a,b) + 2(b− a)‖f ′‖2L2(a,b)

≤ max

{
4

b− a
, 6(b− a)

}
‖f‖2H1(a,b),

d.h.
K = max

{
2√
b− a

,
√

6(b− a)

}
.
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9 Integration in Produkträumen

Wir verzichten in diesem Kapitel auf die Beweise und bitten den Leser, diese bei Bedarf aus
den entsprechenden Kapiteln zu Produkmaßen und dem Satz von Fubini aus den empfohle-
nen Lehrbüchern zu entnehmen.

Definition 9.1. Seien (X1,M1) und (X2,M2) zwei messbare Räume. Als Produkt-σ-Algebra
M1 ⊗M2 bezeichnen wir die durch das Mengensystem

M1 ×M2 := {A1 ×A2 : A1 ∈M1, A2 ∈M2}

in X1 ×X2 erzeugte σ-Algebra.

Lemma 9.2. Das Mengensystem M1 × M2 aus Definition 9.1 ist ein Semiring und
R(M1 ×M2) ist eine Algebra.

Lemma 9.3. Seien (X1,M1, µ1) und (X2,M2, µ2) zwei Maßräume mit σ-endlichen Maßen.
Dann ist die aufM1 ×M2 durch

ϕ(A1 ×A2) := µ1(A1)µ2(A2) für A1 ×A2 ∈M1 ×M2

definierte Mengenfunktion nichtnegativ, additiv und subvolladditiv mit ϕ(∅) = 0, falls wir
0 · ∞ = ∞ · 0 = 0 setzen. Diese kann eindeutig zu einem Maß µ : M1 ⊗M2 → R auf der
σ-AlgebraM1 ⊗M2 fortgesetzt werden.

Bemerkung. Das Maß µ aus Lemma 9.3 wird als Produktmaß bezeichnet (Schreibweise:
µ = µ1⊗µ2). Die Fortsetzbarkeit von ϕ zu einem Maß auf der σ-AlgebraM1⊗M2 ist eine
unmittelbare Folgerung aus den Ergebnissen von Kapitel 3 rund um den Fortsetzungssatz
von Hahn.

Beispiel 9.4. Seien X1 := Rn, X2 := Rm, M1 := L(Rn), M2 := L(Rm) sowie µ1 und µ2
die entsprechenden Lebesgue-Maße. Dann kann man X1 ×X2 = Rn+m sowieM1 ⊗M2 =
L(Rn+m) zeigen und µ1 ⊗ µ2 ist das Lebesgue-Maß in Rn+m.

Definition 9.5. Seien X1 und X2 nichtleere Mengen. Für A ⊆ X1 × X2, x1 ∈ X1 und
x2 ∈ X2 heißen die Mengen

A2(x1) := {x2 ∈ X2 : (x1, x2) ∈ A} ⊆ X2 und A1(x2) := {x1 ∈ X1 : (x1, x2) ∈ A} ⊆ X1

Schnitte von A.
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9 Integration in Produkträumen

Lemma 9.6. Seien (X1,M1) und (X2,M2) messbare Räume. Für A ∈ M1 ⊗M2 sowie
x1 ∈ X1 und x2 ∈ X2 gelten für die Schnitte von A die Beziehungen A2(x1) ∈ M2 und
A1(x2) ∈M1.

Lemma 9.7. Ist f : X1 ×X2 → R messbar bezüglich der σ-Algebra M1 ⊗M2, so sind für
x1 ∈ X1 und x2 ∈ X2 auch f(x1, •) : X2 → R sowie f(•, x2) : X1 → R messbar.

Lemma 9.8. Seien (X1,M1, µ1) und (X2,M2, µ2) Maßräume mit σ-endlichen Maßen. De-
finieren wir für A ∈ M1 ⊗M2 Funktionen ηA : X1 → R und ξA : X2 → R mittels der
Vorschriften

ηA(x1) := µ2(A2(x1)) und ξA(x2) := µ1(A1(x2)),

so sind diese Funktionen messbar und es gilt∫
X2

ξA dµ2 =

∫
X1

ηA dµ1.

Wichtig sind für messbare Funktionen f(x1, x2) ∈ R zweier Veränderlicher x1 ∈ X1 und
x2 ∈ X2 Fragen der Existenz von Doppelintegral und iterierten Integralen und deren Zu-
sammenhänge. Der folgende Satz liefert dabei entscheidende Aussagen.

Satz 9.9 (Satz von Fubini). Seien (X1,M1, µ1) und (X2,M2, µ2) zwei Maßräume mit
σ-endlichen Maßen. Falls f ∈ L(X1×X2, µ1⊗µ2) gilt, d.h. f summierbar auf dem Produkt-
raum im Sinne des Produktmaßes ist, so gelten die beiden folgenden Aussagen:

(i) Es ist f(•, x2) ∈ L(X1, µ1) für fast alle x2 ∈ X2 und f(x1, •) ∈ L(X2, µ2) für fast alle
x1 ∈ X1. Mit

F1(x2) :=

∫
X1

f(•, x2) dµ1 bzw. F2(x1) :=

∫
X2

f(x1, •) dµ2

gilt F1 ∈ L(X2, µ2) und F2 ∈ L(X1, µ1).

(ii) Wir haben Gleichheit ∫
X1×X2

f d(µ1 ⊗ µ2) =

∫
X2

F1 dµ2 =

∫
X1

F2 dµ1

zwischen den drei auftretenden Lebesgue-Integralen.

Bemerkung. Durch dem Satz 9.9 von Fubini wird gezeigt, dass unter den formulierten Vor-
aussetzungen aus der Existenz des Doppelintegrals (

∫
X1×X2

) die Existenz der iterierten In-
tegrale (

∫
X1

∫
X2

und
∫
X2

∫
X1

) folgt. Die Umkehrung gilt jedoch nicht, d.h. aus der Existenz
der iterierten Integrale kann man nicht auf das Doppelintegral schließen. Sehr wohl gibt es
aber eine Umkehrung im schwächeren Sinne, wenn man statt der Funktion deren Betrag im
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9 Integration in Produkträumen

Integranden der iterierten Integrale stehen hat. Man kann nämlich Folgendes zeigen:
Ist f : X1 × X2 → R messbar und gilt |f(•, x2)| ∈ L(X1, µ1) für fast alle x2 ∈ X2 sowie
F1 ∈ L(X2, µ2) für F1(x2) :=

∫
X1
|f(•, x2)| dµ1, so bekommt man f ∈ L(X1 ×X2, µ1 ⊗ µ2)

und Doppelintegral und iteriertes Integral stimmen überein. Analoges gilt bei Vertauschung
der Indizes 1 und 2.
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10 Der Satz von Radon-Nikodym

Auch im Sinne einer Vorabinformation vor der Stochastik-Vorlesung wollen wir abschließend
kurz absolut stetige Maße und den Satz von Radon-Nikodym streifen.

Definition 10.1. Seien (X,M) ein messbarer Raum sowie µ und ν zwei σ-endliche Maße in
X. Das Maß ν heißt absolut stetig bezüglich µ (Schreibweise: ν � µ), wenn für jedes A ∈M

µ(A) = 0 =⇒ ν(A) = 0

gilt, d.h. µ-Nullmengen sind auch stets ν-Nullmengen.

Bemerkung. Die Relation „�“ ist reflexiv und transitiv, aber nicht symmetrisch.

Satz 10.2. Für endliche zum messbaren Raum (X,M) gehörende Maße µ und ν gilt ν � µ
genau dann, wenn für alle ε > 0 ein δ = δ(ε) > 0 existiert, sodass für alle A ∈ M die
Beziehung µ(A) < δ die Ungleichung ν(A) < ε nach sich zieht.

Beweis. Wir nehmen an, dass die ε-δ-Bedingung verletzt ist. Dann findet man ein ε > 0
und für n = 1, 2, ... Mengen An ∈M mit µ(An) < 2−n und ν(An) ≥ ε. Die Betrachtung der
Werte µ(A) und ν(A) für die Menge A =

⋂
n≥1

(⋃
i≥nAi

)
liefert einen Widerspruch.

Bemerkung. Das obige Lemma begründet die Bezeichnung absolut stetig, denn eine analo-
ge ε-δ-Bedingung findet man im Zusammenhang mit der absoluten Stetigkeit einer reellen
Funktion x(t), t ∈ [a, b]. Eine solche Funktion heißt absolut stetig, wenn wenn für alle
ε > 0 ein δ = δ(ε) > 0 existiert, sodass für paarweise disjunkte offene Teilintervalle von
(ai, bi), i = 1, 2, ..., k, von [a, b] mit

∑k
i=1(bi−ai) < δ die Ungleichung

∑k
i=1 |x(bi)−x(ai)| < ε

gilt. Absolut stetige Funktionen sind übrigens gleichmäßig stetig, damit auch stetig und sie
sind stets von beschränkter Variation, gehören also zu BV [a, b]. Sie besitzen fast überall eine
Ableitung, die mit der verallgemeinerten Ableitung übereinstimmt und zu L1(a, b) gehört.
Diese Funktionen gehören also zum Sobolevraum W 1,1(a, b). Lipschitz-stetige Funktionen
sind stets auch absolut stetig.
Wir betrachten nun speziell integraldefinierte Maße:

Definition 10.3. Sei (X,M, µ) ein Maßraum und sei f ∈ L(X,µ). Dann heißt die durch

µf (A) :=

∫
A

f dµ

gegebene Mengenfunktion µf :M→ R unbestimmtes Integral von f .
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10 Der Satz von Radon-Nikodym

Lemma 10.4. Ist (X,M, µ) ein Maßraum und gilt f ∈ L(X,µ) sowie f ≥ 0, so ist auch
µf ein Maß und es gilt µf � µ.

Beweis. Nach Satz 5.6 ist die Mengenfunktion µf volladditiv und damit wegen der Nicht-
negativität auch ein Maß. Die Eigenschaft µf � µ folgt aus der Definition der absoluten
Stetigkeit von Maßen unmittelbar mit der Definition des unbestimmten Integrals.

Von zentraler Bedeutung in der Maßtheorie, speziell in Hinblick auf die Wahrscheinlich-
keitsrechnung, ist der folgende Satz von Radon-Nikodym.

Satz 10.5 (Satz von Radon-Nikodym). Seien µ und ν σ-endliche Maße auf dem messbaren
Raum (X,M) mit ν � µ. Dann existiert eine bis auf µ-äquivalente Funktionen eindeutig
bestimmte nichtnegative Funktion f ∈ L(X,µ) mit

ν(A) =

∫
A

f dµ für alle A ∈M.

Definition 10.6. Die Funktion f aus Satz 10.5 heißt Radon-Nikodym-Ableitung von ν be-
züglich µ (Schreibweise: f = dν

dµ).

Bemerkung. In der Wahrscheinlichkeitstheorie heißt für ein Wahrscheinlichkeitsmaß ν die
Funktion dν

dµ Wahrscheinlichkeitsdichte bezüglich des Maßes µ.
Wir werden vor dem Beweis einige Begriffsstrukturen und Hilfseigenschaften diskutieren,

wobei zuerst wir von der Wahrscheinlichkeitssituation µ(X) = 1 ausgehen.

Definition 10.7. Sei (X,M) ein messbarer Raum mit den Maßen µ und ν. Wir sagen, dass
das Maß µ das Maß ν dominiert, wenn gilt

0 ≤ ν(A) ≤ µ(A) ∀A ∈M.

Offenbar gilt in diesem Falle ν � µ.

Definition 10.8. Wir nennen die P = {A1, A2, ..., Ak} eine (endliche) Zerlegung von X,
wenn P aus paarweise disjunkten Elementen aus M besteht, deren Vereinigung X liefert.
Wir nennen eine Zerlegung P ′ von X eine Verfeinerung von P, wenn jedes Element aus P
als disjunkte Vereinigung von Elementen aus P ′ dargestellt werden kann.

Der folgende Satz ist eine simplifizierte Version des Satzes von Radon-Nikodym, dessen
Beweis unten angegeben wird. Für das Update dieses Beweises Capiński/Kopp hin zum
eigentlichen Satz 10.5 sei auf Kapitel 7 in Capiński/Kopp verwiesen.

Satz 10.9. Sei µ(X) = 1 und gelte 0 ≤ ν(A) ≤ µ(A) ∀A ∈ M. Dann existiert eine
nichtnegative messbare Funktion f auf X mit

ν(A) =

∫
A

f dµ für alle A ∈M.
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10 Der Satz von Radon-Nikodym

Beweis. In Schritt 1 definieren wir Treppenfunktionen ϕP für Mengen in einer (endlichen)
Zerlegung P and vergleichen die Funktionen ϕP2 und ϕP1 , wenn P2 eine Verfeinerung von P1
ist. Dies erlaubt uns zu zeigen, dass die die Integrale

∫
X ϕ

2
P dµ nichtfallend sind, wenn wir zu

zunehmenden Verfeinerungen kommen. Da die Integrale beschränkt sind durch µ(X) = 1,
existiert c = sup

∫
X ϕ

2
P dµ als endliche reelle Zahl. In Schritt 2 konstruieren wir dann die

gewünschte Funktion f mit Hilfe von Grenzwertargumenten, die früher bewiesene Konver-
genzsätze nutzen. In Schritt 3 schließlich zeigen wir, dass f die gewünschten Eigenschaften
besitzt.
Schritt 1: Konstruktion geeigneter Treppenfunktionen. Sei nun 0 ≤ ν(A) ≤ µ(A) ∀A ∈ M
und P = {A1, A2, ..., Ak} eine (endliche) Zerlegung von X mit Elementen Ai ∈ M. Wir
definieren nun die Treppenfunktionen ϕP : X → R mittels der Vorschrift

ϕP(x) = ci =
ν(Ai)

µ(Ai)
(x ∈ Ai, µ(Ai) > 0), ϕP(x) = 0 (sonst).

Die Treppenfunktion hat die folgenden Eigenschaften:
(i) Es gilt 0 ≤ ϕP(x) ≤ 1 für alle x ∈ X.
(ii) Wenn A =

⋃
j∈J Aj für eine Indexteilmenge J ⊂ {1, 2, ..., k}, dann gilt ν(A) =

∫
A ϕP dµ.

Daher ist ν(X) =
∫
X ϕP dµ.

(iii) P2 sei nun Verfeinerung von P1 und ϕ1, ϕ2 die entsprechenden Treppenfunktionen. Dann
gilt für alle A ∈ P1 :

∫
A ϕ1 dµ = ν(A) =

∫
A ϕ2 dµ,

∫
A ϕ1ϕ2 dµ =

∫
A ϕ

2
1 dµ.

(iv) Folglich gilt
∫
X(ϕ2

2 − ϕ2
1) dµ =

∫
X(ϕ2 − ϕ1)

2 dµ und damit∫
X
ϕ2
2 dµ =

∫
X
ϕ2
1 dµ+

∫
X

(ϕ2 − ϕ1)
2 dµ ≥

∫
X
ϕ2
1 dµ.

Diese Funktionen sind nichtfallend, wenn wir die Zerlegung verfeinern.
Schritt 2: Übergang zum Grenzwert und Konstruktion der Funktion f . Wie im Schritt 1
gezeigt wurde, wachsen die Integrale

∫
X ϕ

2
P dµ höchstens, wenn die Zerlegung verfeinert

wird. Wegen (i) haben wir außerdem ein endliches Supremum 0 ≤ c = sup
∫
X ϕ

2
P dµ ≤ 1

über alle Zerlegungen.
Wir betrachten nun eine Folge von Zerlegungen {Pn}∞n=1 mit

∫
X ϕ

2
Pn dµ > c − 4−n. Dabei

bezeichnen wir mit Qn die kleinste gemeinsame Verfeinerung der Zerlegungen P1, ...,Pn.
Dann verfeinert Qn+1 die Zerlegung Qn, weil Qk aus allen Schnitten A1 ∩A2 ∩ ... ∩Ak mit
Ai ∈ Pi (i ≤ k) besteht. Folglich ist Qn eine disjunkte Vereinigung von Mengen aus Qn+1.
Folglich gelten die Ungleichungen:

c− 4−n <

∫
X
ϕ2
Pn dµ ≤

∫
X
ϕ2
Qn dµ ≤

∫
X
ϕ2
Qn+1

dµ ≤ c.

Wegen (iv) haben wir dann∫
X

(ϕQn+1 − ϕQn)2 dµ =

∫
X

(ϕ2
Qn+1

− ϕ2
Qn) dµ < 4−n.
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10 Der Satz von Radon-Nikodym

Die Cauchy-Schwarzsche Ungleichung liefert dann für all n ∈ N∫
X
|ϕQn+1 − ϕQn |dµ < 2−n.

Nach Capiński/Kopp, S.95 kann man eine Variante des Lemmas von Beppo Levi wie

folgt formulieren: Wenn
∞∑
k=1

∫
E

|fk|dµ endlich ist, dann konvergiert die Reihe
∑∞

k=1 fk(x)

fast überall auf E und man kann die Grenzwertbildung von Reihe und Integral wie folgt
vertauschen: ∫

E

∞∑
k=1

fk dµ =
∞∑
k=1

∫
E

fk dµ.

Mit diesem Lemma gilt wegen der Endlichkeit von
∑∞

n=1

∫
X |ϕQn+1 − ϕQn | dµ, dass die

Reihe
∑∞

n=1(ϕQn+1 − ϕQn) fast überall konvergiert, sodass mit Q1 = P1 die Grenzfunktion

f = ϕP1 +
∞∑
n=1

(ϕQn+1 − ϕQn) = lim
n→∞

ϕQn

µ-fast überall definiert ist, auf den verbleibenden Nullmengen wird sie zu Null gesetzt.
Schritt 3: Nach Voraussetzung und Konstruktion ist 0 ≤ f(x) ≤ 1 ∀x ∈ X und f messbar.
Wir müssen noch zeigen, dass gilt

ν(A) =

∫
A

f dµ für alle A ∈M.

Wir fixieren A ∈ M und definieren als Rn die kleinste gemeinsame Verfeinerung von Qn
und {A,A}. Da A eine endliche disjunkte Vereinigung von Mengen aus Rn ist, haben wir
ν(A) =

∫
A ϕRn dµ aus Schritt 1 (ii). Aus Schritt 2 erhalten wir

c− 4−n <

∫
X
ϕ2
Qn dµ ≤

∫
X
ϕ2
Rn dµ ≤ c

und wir können wie oben schließen dass
∫
X(ϕRn−ϕQn)2 dµ < 4−n gilt und mit der Cauchy-

Schwarzschen Ungleichung∣∣∣∣∫
A

(ϕRn − ϕQn) dµ

∣∣∣∣ ≤ ∫
A
|ϕRn − ϕQn | dµ < 2−n.

Für alle A ∈M und n = 1, 2, ... haben wir dann also

ν(A) =

∫
A
ϕRn dµ =

∫
A

(ϕRn − ϕQn) dµ+

∫
A
ϕQn dµ.

Das erste Integral auf der rechten Seite konvergiert für n → ∞ gegen Null, während das
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10 Der Satz von Radon-Nikodym

zweite Integral nach dem Satz von Lebesgue über die dominante Konvergenz gegen
∫
A f dµ

konvergiert. Also gilt ν(A) =
∫
A f dµ wie verlangt.

Satz 10.10 (Kettenregel für Radon-Nikodym-Ableitungen). Seien µ und ν σ-endliche Maße
auf dem messbaren Raum (X,M) mit ν � µ und sei f := dν

dµ . Dann gilt für g ∈ L(X, ν)
und A ∈M ∫

A

g dν =

∫
A

gf dµ.

Beweis. Kann wieder mit Hilfe von Treppenfunktionen und unter Verwendung von Grenz-
wersätzen für Integrale geführt werden.

Beispiel 10.11. In der Stochastik betrachtet man Wahrscheinlichkeitsmaße ν der Zufalls-
größen Z definiert als P (Z ∈ A) = ν(A) mit A ∈ L(R), X = R und ν(X) = 1, wobei der
Maßraum (X,L(R), ν) die σ-Algebra der entsprechenden Lebesgue-messbaren Mengen auf
R als zweite Komponente enthält. Eine solche Zufallsgröße bzw. deren Verteilung heißt ab-
solut stetig, wenn ν absolut stetig bezüglich des Lebesguemaßes λ ist, also ν � λ gilt. Dann
existieren Dichtefunktionen g : R→ [0,∞) mit

∫
R g(t) dt = 1 (Radon-Nikodym-Ableitungen

des Wahrscheinlichkeitsmaßes bezüglich λ).
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