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1 Algebraische Strukturen bei
Mengensystemen

Definition 1.1. Sei X eine beliebige nichtleere Menge. Mit P(X) bezeichnen wir die Potenz-
menge, d.h. das System aller Teilmengen, von X. Ein nichtleeres Mengensystem M C P(X)

heifst

(i) Semiring oder zerlegbares Mengensystem in X, wenn gilt:
(a) 0 e M,
(b) ABeM = ANBeM,
(¢) zu jedem Paar A, B € M existieren paarweise disjunkte Mengen

Ay, As, .. A, € M mit A\B: U?:1Az

(ii) Ring in X, wenn gilt:
(a) ABeM = AUBeM,
(b) A, BeM = A\BeM.

(iii) Algebra in X, wenn gilt:
(a) ABeM = AUBe M,
(b)) Ae M = X\AeM.

(iv) o-Ring bzw. o-Algebra in X, wenn M ein Ring bzw. eine Algebra in X ist, fiir den
bzw. fiir die gilt:
A, Ay, .EM = UAZ e M.
i=1

(v) monoton, wenn fiir beliebige Aj, Ay, ... € M gilt:

(a) A CAC ... = UAZ‘GM,
=1

=1

Bemerkung. Man zeigt relativ leicht, dass jede o-Algebra ein o-Ring, jede Algebra ein Ring
und jeder Ring ein Semiring ist.

Fiir A C X werden wir die Menge X \ A im Folgenden auch mit A bezeichnen, wenn klar
ist, beziiglich welcher Grundmenge das Komplement gebildet wird.
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Lemma 1.2. Sei X eine beliebige nichtleere Menge.
(i) Fiir jede Algebra M in X gilt: AABe M = ANBec M.
(ii) Fir jede o-Algebra M C X gilt: A1, As,...e M = (2, 4; € M.

Beweis. Nach den de-Morgan’schen Regeln gilt
oo o0
ANB=AUB und ﬂAZ:UE
i=1 i=1

Die Behauptungen folgen somit direkt aus Definition 1.1. O
Die folgenden Beispiele sollen die definierten Mengenstrukturen etwas illustrieren.
Beispiel 1.3. In X := R ist das Mengensystem M := {(a,b] : a,b € R, a < b} U {0} ein
Semiring, denn
e () € M ist trivialerweise erfiillt,

e der Durchschnitt zweier Intervalle (a,b] und (c,d] ist entweder leer oder gleich dem
Intervall (max{a,c}, min{b, d}],

e fiir zwei Intervalle (a,b] und (c,d] ist (a,b] \ (¢, d] entweder leer oder gleich einer der
Mengen (a, b, (d,b], (a,c] oder (a,c] U (d,b].

Beispiel 1.4. In einer unendlichen Menge X ist das Mengensystem M := {A C X :
A ist endlich oder A ist endlich} eine Algebra, denn

o fiir A, B € M gilt: AU B endlich, falls A und B endlich,
AU B = AN B endlich, falls A oder B endlich,

e aus A € M folgt trivialerweise A € M.

Beispiel 1.5. In einer iiberabzéhlbaren Menge X ist das Mengensystem M := {4 C X :
A hochstens abzihlbar oder A hochstens abzihlbar} eine o-Algebra, denn

o fiir Ay, As,... € M gilt:
U2, A; hochstens abzihlbar, falls alle A; hochstens abzéhlbar,
Uz, Ai = N2, A; hochstens abzéhlbar, falls mindestens ein A; hichstens abzéhlbar,

e aus A € M folgt trivialerweise A € M.
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Satz 1.6. Seien X eine beliebige nichtleere Menge, T eine Indexmenge und (Ry)ier e€i-
ne Familie von Ringen in X. Dann ist der Durchschnitt (\,.p Ry wieder ein Ring in X.
Entsprechendes gilt fiir Algebren, o-Ringe, o-Algebren und monotone Mengensysteme in X .

Beweis. Es gilt

ABe(\Ry = ABERVEET = AUBERVteT = AUBE (R,
teT teT

und

ABe (R = ABERWET = A\BER,VteT = A\Be (R
teT teT

Vollig analog zeigt man die Behauptung fiir Algebren, o-Ringe, o-Algebren und monotone
Mengensysteme. O

Definition 1.7. Sei X eine beliebige nichtleere Menge und M C P(X) ein nichtleeres
Mengensystem. Der Durchschnitt aller M umfassenden Ringe in X heifst der von M erzeugte
Ring R(M). Entsprechend definieren wir die von M erzeugte Algebra A(M), den von M
erzeugten o-Ring R,(M), die von M erzeugte o-Algebra A,(M) und das von M erzeugte
monotone Mengensystem m(M).

Bemerkung.

e Definition 1.7 ist korrekt, da die Potenzmenge P(X) jedes Mengensystem M in X
enthélt und zugleich Ring, Algebra, o-Ring, o-Algebra und monotones Mengensystem
ist; d.h. am Durchschnitt in Definition 1.7 nimmt mindestens eine Menge teil.

e Die von einem Mengensystem M erzeugte o-Algebra A, (M) wird manchmal auch mit
o(M) bezeichnet und Borel’sche Erweiterung von M genannt.

e Der von einem Mengensystem erzeugte Ring ist im Sinne der Inklusion der kleinste
Ring, der dieses Mengensystem enthélt. Entsprechendes gilt fiir Algebren, o-Ringe,
o-Algebren und monotone Mengensysteme.

Lemma 1.8. Sei X eine beliebige nichtleere Menge und seien My, My C P(X) zwei nicht-
leere Mengensysteme. Dann gilt

My C R(Mz), My C R(./\/ll) = R(M1) = R(MQ)
Entsprechendes gilt fiir Algebren, o-Ringe, o-Algebren und monotone Mengensysteme.

Beweis. Aus M; C R(Maj) folgt R(M;1) C R(R(M3)) = R(Mz) und aus Ma C R(M;)
folgt R(M3) € R(R(M;)) = R(M;y), dh. R(M;) = R(Mz). Véllig analog folgt die

Behauptung fiir Algebren, o-Ringe, o-Algebren und monotone Mengensysteme. OJ
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Satz 1.9. FEine Algebra M in einer nichtleeren Menge X ist genau dann eine o-Algebra,
wenn sie ein monotones Mengensystem ist.

Beweis. ,,=*: Sei M eine g-Algebra. Dann gilt fiir Ay, Asg,... mit A; C Ay C ... offensicht-
lich UzoilA’L € M und fir Al,AQ,. L EMmit Ay DA D ... gﬂt ﬂfilAZ = U;ilz S M,
d.h. M ist ein monotones Mengensystem.

»<"“ Sei nun M eine monotone Algebra und seien A, As,... € M. Setzen wir B; :=
Ul 4; fiir j € N, so gilt Bj € Mund By C By C ..., also U?’;l B; € M. Die Behauptung
folgt nun aus U2, 4; = U;2, By € M. O

Der folgende Satz ist sehr konstruktiv und liefert eine Vorschrift dafiir, wie man aus einem
Semiring einen Ring erzeugt.

Satz 1.10. Sei X eine beliebige nichtleere Menge, sei S C P(X) ein Semiring und sei
V C P(X) das System aller Vereinigungen von endlich vielen, paarweise disjunkten Mengen

aus S. Dann gilt R(S) = V.

Beweis. Die Behauptung folgt, wenn wir zeigen konnen, dass V C R(S) gilt und dass V ein
Ring ist.

Sei also A € V. Dann existieren Mengen Aj, Ag, ..., Ay € S CR(S) mit A = AjU---UA,,
und somit gilt A € R(S) (wegen Definition 1.1 (ii)(a)). Also ist V C R(S) gezeigt.

Seien nun A, B € V. Dann existieren paarweise disjunkte Mengen A1, Ao, ..., A € S mit
A = AjU...UA,, und paarweise disjunkte Mengen By, Bs, ..., B, € S mit B = B1U...UB,,.
Da

m n m n
AmB:(UAZ)m U UUAmB
i=1 j=1 i=1j=1
gilt und die Mengen der Form A; N B; paarweise disjunkt sind, folgt zunéchst AN B € V.
Wegen Definition 1.1 (i)(c) existieren fiir ¢ = 1 ;,mund j = 1,...,n paarweise disjunkte
Mengen C’l’J, Cy’, ..., Cpl. e Smit A\ Bj = Ty...uC ’jj und bOIIllt gilt

A\B=A\JB; =4\ B) =) (U(Ai\B ) N (UUC;J)
J=1 J=1 i=1

=1 k=1

Aus der Definition von V folgt
m DPij
UUcalev

fir j = 1,...,n und aus der bereits gezeigten Durchschnittseigenschaft von V erhalten wir
somit A\ B € V.
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Es bleibt AU B € V zu zeigen. Dies folgt aus

AUB:(A\B)UB:ﬁ << @C,i’j>UB>,
j=1 =

i=1k=1
da die Mengen A\ B und B disjunkt sind. O

Lemma 1.11. Ist A eine Algebra in einer nichtleeren Menge X, so ist m(.A) eine o-Algebra.

Beweis. Wenn wir zeigen konnen, dass m(.A) eine Algebra ist, so folgt die Behauptung aus
Satz 1.9. Wir zeigen zunéchst die Abgeschlossenheit von m(.A) beziiglich der Komplementbil-
dung. Sei dazu M := {A € m(A) : A € m(A)}. Offensichtlich ist M abgeschlossen beziiglich
der Komplementbildung und es gilt A C M. Fiir A1, As,... € M mit A1 C Ay C ... gilt
Ay, Ag,...€ Mund 4] D A3 O ... und aus M C m(A) und der Monotonie von m(.A) folgt
somit

[j A;em(A)  und [j A = ﬁ A; € m(A),
i=1 i=1 i=1

d.h. U2, Ai € M (analog fir A; O Ay D ... und ;2 4;). Also ist M monoton und deshalb
gilt M =m(A).

Es verbleibt die Abgeschlossenheit von m(.A) beztiglich endlicher Vereinigungen zu zeigen.
Fir A € m(A) setzen wir dazu My = {B € m(A) : AUB € m(A)} und wir setzen
N :={4 e m(A) : m(A) = Ma}. Wie man leicht sieht, ist My fiir A € A monoton und
es gilt A C My fiir A € A. Also folgt m(A) = My fiir alle A € A und damit A C N. Wir
zeigen nun die Monotonie von N. Seien also Ay, As,... € N mit A; C Ay C .... Dann gilt
m(A) = My, fiir i € N und fiir beliebiges C' € m(A) folgt somit C' U A; € m(A) fiir alle
i € N, also auch C U2, A; € m(A), da m(A) monoton ist. Damit ist m(A) C Mj= 4,
d.h. [J2, A; € N, gezeigt (analog fiir Ay O Ay D ... und ()72, 4;). Aus A € N und der
Monotonie von N folgt nun m(.A) = N. SchlieRlich seien nun A, B € m(A) beliebig. Dann
gilt A, B € N und somit A € Mp, d.h. AUB € m(A). O

Satz 1.12. Ist A eine Algebra in einer nichtleeren Menge X, so gilt m(A) = o(A).

Beweis. Aus A C o(A) und Satz 1.9 folgt m(A) C m(c(A)) = o(A). Und aus A C m(A)
und Lemma 1.11 folgt 0(A) C o(m(A)) = m(A). O

Definition 1.13. Sei X ein metrischer Raum. Die vom System aller offenen Mengen in X
erzeugte o-Algebra heifit Borel’sche o-Algebra. Wir bezeichnen sie mit dem Symbol B(X).
Die Mengen der Borel’schen o-Algebra heifien Borel-Mengen. Eine Menge heifst vom Typ F,,
wenn sie als Vereinigung von abzdhlbar vielen abgeschlossenen Mengen dargestellt werden
kann, und vom Typ Gj, wenn sie als Durchschnitt von abzahlbar vielen offenen Mengen
dargestellt werden kann.

Bemerkung. Man kann zeigen, dass Mengen vom Typ F, und Mengen vom Typ Gs stets
Borel-Mengen sind. Das o in F, steht fiir ,Summe* (Vereinigung), das F' fiir ,fermé* (fran-
z0sisch: abgeschlossen). Das 0 in G bedeutet ,Durchschnitt.
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Beispiel 1.14. Sei X := R” und sei S := {Q;;(a;,bi] : a; < b;, i =1,...,n}U{0} der
Semiring aller halboffenen n-Zellen im R™. Dann ist R(S) die Menge aller Vereinigungen
von endlich vielen paarweise disjunkten n-Zellen aus S. Der Ring R(S) wird als Ring der
FElementarmengen bezeichnet.



2 Mengenfunktionen

Wir bezeichnen mit R := RU{—o0, +00} das erweiterte System der reellen Zahlen und legen
die folgenden Konventionen fest:

(i) #£00 =200, % =0 firzekR,
(ii) x - (*oo) = £(sgnx) - oo fir x € R\ {0},
(if) | + o0 = | — 50| = +o0,
(iv) foo+ (£oo) = £o0, oo — (Foo) = £0o0,
(V) (£o0) - (£o0) = 400, (£o0) - (Foo) = —c0.
Definition 2.1. Sei X eine beliebige nichtleere Menge und sei M C P(X) nichtleer.
(i) Eine Abbildung ¢ : M — R heifit eine auf M definierte Mengenfunktion.

(ii) Eine Mengenfunktion ¢ : M — R, die héchstens einen der Werte 0o annimmt, heifit
additiv auf M, wenn fiir alle Mengen A, B € M mit AUB € M und AN B = () gilt:

(AU B) = p(A) + ¢(B).

(iii) Eine additive Mengenfunktion ¢ : M — R heifit volladditiv (oder o-additiv) auf M,
wenn fiir alle Mengen A, Az, ... € M mit [J;2; 4; € Mund A;NA; =0 firi#j

gilt:
0 (U Ai) => p(4
=1 =1

(iv) Eine additive Mengenfunktion ¢ : M — R heikt subvolladditiv (oder o-subadditiv)
auf M, wenn fiir alle Mengen A, Ay, Ay, ... € M mit A C |J;2, A; gilt:

SZ@O(A)

Bemerkung. Falls die Reihe in Definition 2.1 (iii) konvergiert, so handelt es sich um absolute
Konvergenz, da sich die linke Seite der Gleichung bei Vertauschung der Mengen A; nicht
andert. D.h. die Reihe hat fiir beliebige Permutationen der ¢(A4;) stets den selben Wert. Aus
dem Riemann’schen Umordnungssatz folgt damit die absolute Konvergenz.
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Beispiel 2.2. Seien X eine unendliche Menge und M := P(X). Dann ist die durch

0, A endlich,
p(A) == :
400, A unendlich

gegebene Mengenfunktion offensichtlich additiv, aber weder volladditiv noch subvolladditiv.
Die Additivitét ist offensichtlich, weil bei zwei endlichen Mengen die Vereinigung endlich und
bei wenigstens einer unendlichen Menge darunter die Vereinigung unendlich wird. Vom Schei-
tern der Volladditivitdt und Subvolladditivitat iiberzeugt man sich leicht durch Betrachtung
der folgenden Situation, die sich allgemein iibertragen lasst: Sei X := N und bezeichne A;

o0
die einelementigen Mengen {i} mit p(A4;) = 0 fir ¢ = 1,2,.... Dann ist A :== |J 4, = N
i=1
o0
mit p(A) = 400, aber Y ¢(A;) = 0 ist immer kleiner als ¢(A). Dies wiederspricht den
i=1
Forderungen von Volladditivitdt und Subvolladditivitét.

Beispiel 2.3. Seien X := R und M := {(n,n+ 1] : n € Ny}. Dann ist die durch

0, n gerade,

o((n,n+1]) = {

1, n ungerade

gegebene Mengenfunktion trivialerweise additiv, da keine Mengen A, B € M mit AUB € M
existieren.

Beispiel 2.4. Seien X := R" und M := P(X), sei X := {1, 29,...} € R™ eine hichstens
abzéhlbare Menge und sei f : X — [0,00) eine beliebige Funktion. Dann ist die durch

o(A) = 3 fa)

T, €A
gegebene Mengenfunktion volladditiv.

Satz 2.5 (Eigenschaften von Mengenfunktionen). Seien R ein Ring in einer nichtleeren
Menge X und ¢ : R — R eine additive Mengenfunktion. Dann gilt:

) Ao Ay e R AN A =0 £) = o (0 40) = £ o).
i=1 i=1
(ii)) A,B€R, BCA, o(B)# £oo = ¢(A\B)=p(A4) —¢(B).
(iii) Emistiert ein A € R mit ¢(A) # +o0, so gilt (D) = 0.
(v) A, BeR = ¢(AUB)+ p(ANB) = p(A)+ ¢(B).
Mit der zusatzlichen Forderung ¢(A) > 0 fir alle A € R gilt aufferdem:

(v) AL BER, BCA = ¢(B)<p(A).
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(vi) AABER = o(AUB) < ¢(A) + ¢(B).
(vii) o subvolladditiv < o volladditiv.
Beweis.
(i) Die Behauptung folgt per Induktion aus Definition 2.1 (ii).
(ii) p(A4) = ((A\ B)UB) = p(A\ B) + ¢(B).
(iil) ©(0) = ¢(A\ A) = ¢(4) — (4) = 0.
) ®

(4) +@(B) = ¢((ANB)U(A\ B)) + ¢(B) = ¢(AN B) + ¢(A\ B) + ¢(B)
—<p(AmB)+<p(A\B UB) =¢(ANB)+ p(AUB).
) =

(v) ¢(A) = o((A\ B)UB) = ¢(A\ B) + ¢(B) > ¢(B).
(vi) 9(AUB) <p(AUB) +p(ANB) =¢(A) + ¢(B).

(iv

(vii) Wir zeigen zundchst die Richtung ,<*. Seien A, A, Ay,... € R mit A C ;2 A;.
Setzen wir B; := AN A; € R fiir i € N sowie C := By und C; := B; \ (U;;ll Bj) € R,
sogilt A=J.2,B; = U2, Ci, C; € B; C A; und die C; sind paarweise disjunkt. Es

folgt
= (U Ci) =Y @(C) <Y (A
=1 =1 =1

d.h. ¢ ist subvolladditiv.

Wir zeigen nun ,=“. Seien Aj,A,... € R mit 4, NA; = 0 fir ¢ # j und
A:=J2,; Ai € R. Dann gilt fir n € N

fj Ai:A\<OAi> ER

i=n+1

und somit

wn=e((0a)o( U a))=+(0a) (U 4)
o (0a) S

Mit n — oo folgt nun

Die vorausgesetzte Subvolladditivitét liefert die Behauptung. O

10
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Satz 2.6. Seien R ein Ring in einer nichtleeren Menge X und ¢ : R — R eine additive
Mengenfunktion. Dann sind dquivalent:

(i) ¢ ist volladditiv.
(ii) Fir alle A1, As,...€ R mit Ay C Ay C ... und A:=J;2, A; € R gilt

lim p(4;) = p(A).

71— 00
Beweis. (i) = (ii): Seien A7, Ag,... € R mit A; C A3 C ... und A := Ufil A; € R. Dazu
fithren wir die Mengen By := A; und B; := A; \ 4,1 (i = 2,3, ...) ein, fiir welche gilt

J oo
AJZUBz und A= UBZ
=1 =1

Offenbar sind die B; paarweise disjunkt. Somit folgt

p(A) = (U Bi) = @(Bi) = lim > ¢(B;) = lim ¢ (U Bi) = lim p(4;).
=1 =1 =1

Jj—00 j—o0 Pt j—o0

(ii) = (i): Seien By, Ba,... € R mit |J;2; B; € R paarweise disjunkt. Setzen wir A; :=

! Bi,sogilt A C Ay C...und A := U]oil A; = ;2 B;. Daraus folgt

o j
v (U Bi) =¢(4) = lim ¢(4;) = lim ¢ <U
i=1

i=1

7 00
B¢> = lim > @(Bi) =)@ (Bi).
i=1 =1

O

Satz 2.7. Seien R ein Ring in einer nichtleeren Menge X und ¢ : R — R eine volladditive
Mengenfunktion. Fir alle B1,Ba,... € R mit By O By O ... und B := ﬂfil B, € R gilt
dann

¢(B) = lim ¢(B;).

1—00
Beweis. Setzen wir A; := By \ B;, so gilt A; € Rund A; C Ay C .... Wegen A :=J2, A; =
B1\ B € R gilt ¢(A) = ¢p(B1) — ¢(B) und mit den Sétzen 2.5 (ii) und 2.6 folgt

p(B) = ¢(B1)—¢(4) = p(B1)— lim o(Ai) = p(B1)— lim (¢(B1)—¢(By)) = lim ¢(B;). O
Satz 2.8. Seien R ein Ring in einer nichtleeren Menge X und ¢ : R — R eine additive

Mengenfunktion. Gilt fir alle B1,Bs,... € R mit By O By O ... und (o Bi = 0 die
Aussage lim;_,o0 p(B;) = 0, so ist ¢ volladditiv.

Beweis. Seien Ay, Ag,... € R paarweise disjunkte Mengen und sei A = (J;2; 4; € R.
Setzen wir Bj := U;’ij_H A;, so gilt By D By D ... und ﬂjoil B;j =0 € R. Damit gilt nach

11
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Voraussetzung lim;_,~ ¢(B;) = 0 und wir erhalten

o J
b o(B - T R @-
0= lim ¢(B;) = lim o | |J 4 jlggos0<z4\<UA>>

i=j+1 i=1

= lim (@(A) - Z@(z‘h)) = @A) = Y (),
=1

—0Q
J i—1

d.h. o(A) =372, @(4).

12



3 Inhalt und Mall — Konstruktion von
Malen

In diesem Kapitel betrachten wir Mengensysteme M in X, wobei wieder X als eine beliebige
nichtleere Menge vorausgesetzt wird. Weiter betrachten wir darauf definierte additive Men-
genfunktionen . Zusétzlich schliefen wir die singuldren Fille p(A) = +oo und p(A) = —o0
fiir alle A € M aus. Wegen Satz 2.5 (iii) gilt dann fiir ¢ : R — R auf dem Mengenring R
stets p(0) = 0.

Definition 3.1. Eine auf einem Ring R definierte Mengenfunktion ¢ : R — R heift Inhalt,
wenn sie additiv und nichtnegativ ist. Ein auf einer o-Algebra definierter Inhalt heifst Mafs,
wenn er volladditiv ist.

Bemerkung. Fir die Maktheorie sind die Begriffe o-Algebra und Mafs von zentraler Bedeu-
tung.

Definition 3.2. Seien M; und My zwei Mengensysteme mit M; C My und seien ¢; :
M1 — R und @3 : My — R zwei Mengenfunktionen. Die Mengenfunktion ¢y heifit Fortset-
zung von ¢y auf My, wenn ¢1(A) = p2(A) fir alle A € M gilt. In diesem Fall heifit ¢
FEinschrinkung von g auf Mj.

Satz 3.3. Sei S ein Semiring.

(i) Jede additive Mengenfunktion ¢ : S — R lisst sich in eindeutiger Weise zu einer
additiven Mengenfunktion @ : R(S) — R fortsetzen.

(ii) Jede additive, subvolladditive und nichtnegative Mengenfunktion ¢ : S — R lisst sich
in eindeutiger Weise zu einem subvolladditiven Inhalt auf R(S) fortsetzen.

Beweis. Wir zeigen zunéchst (i). Sei A € R(S) beliebig. Nach Satz 1.10 existieren paarweise
disjunkte Mengen S, S, ..., Sy, € S mit A = J;~, S;. Wir setzen entsprechend

Zunéchst miissen wir zeigen, dass ¢(A) nicht von der konkreten Wahl der S; abhéngt. Seien
also 71,15, ..., T, € S weitere paarweise disjunkte Mengen mit A = U;”:l T;. Dann gilt

n

Si=SinA=8n |1 | =JEinTy)
j=1 j=1

13



3 Inhalt und Ma#s — Konstruktion von Malen

fir ¢ =1,...,m und analog T; = |J;~,(S; N Tj) fir j = 1,...,n. Somit folgt

m n n

> (s Z@ U@inTy) | =D w(sinTy)
i=1 j=1 i=1 j=1

n

= Zs@ (U(Si ﬂTj)) =) o(1y),
=1  \i=1

j=1

d.h. ¢(A) ist von der konkreten Wahl der S; unabhéngig.

Trivialerweise ist ¢ eine Fortsetzung von ¢ auf R(S). Wir zeigen nun die Additivitdt von
@. Seien also A, B € R(S) mit AN B = () und seien Sy,...,S,, € S paarweise disjunkt mit
A=, S;sowie T1,...,T,, € S paarweise disjunkt mit B = U?:l T;. Offensichtlich gilt
dann auch S; N7 = 0 fiir alle ¢ und j und somit

$(AUB) = (US) Uz || =D 0+ olT) = 3(A) + ¢(B).

j=1 i=1 j=1

Es verbleibt der Beweis zur Eindeutigkeit der Fortsetzung. Sei v R(S) — R eine weitere
additive Fortsetzung von ¢ auf R(S). Dann gilt fir A € R(S) mit A = |J;~, S; und paarweise
disjunkten Si,...,S5, € S die Beziehung

:&(Q&) Zw = 37059 = B(A).

=1

Wir zeigen nun (ii). Sei ¢ wie im Beweis zu (i). Dann gilt offensichtlich ¢(A) > 0 fiir alle
A € R(S) und die Fortsetzung ¢ ist eindeutig bestimmt, da sie additiv ist. Es verbleibt der
Beweis der Subvolladditivitéat.

Seien zunéchst Ay, Az, ... € R(S) und A := |J;2; A; € R(S). Dann existieren paarweise
disjunkte Mengen S1,59,...,5, € S mit A = U;n:1 S; und paarweise disjunkte Mengen
S8, Sfm e S mit A4; = U2, S,i. Fiir jedes feste ¢ sind die Mengen der Form S; N S,i
dann ebenfalls paarweise disjunkt und es gilt

fir 7 =1,2,... sowie
S;=ANS; = <UA1') ns; = (U US,@) ns;=JUsins)
=1 i=1k=1 1=1k=1

14



3 Inhalt und Ma#s — Konstruktion von Malen

fir j =1,...,m. Aufgrund der Subvolladditivitdt von ¢ gilt nun

P(S) <D p(SinS))
i=1 k=1
und somit
BA) =D oS <D D Y @(SinS) =D @(5inS)) Zso
=1 =1 i=1 k=1 i=1 j=1 k=1

Seien nun Ay, Ag, ... € R(S) sowie A € R(S) mit A C |J;2,; Ai. Setzen wir B; := A4; N A
und C; := A; \ A, so gilt A=J;2, B; und B; N C; = 0. Also folgt

<D e(B) <D (BB +9(Ci) = Y _@(BiuC) =) 3(4)
i=1 i=1 i=1 i=1
O
Bemerkung. Nach Satz 2.5 (vii) ist der subvolladditive Inhalt in Satz 3.3 (ii) sogar volladditiv.

Beispiel 3.4. Seien n € Nund S := {Q;";(a;, bi] : a; < b;, i =1,...,n}U{0} der Semiring
aus Beispiel 1.14. Dann ist die Fortsetzung der durch

Iz (@(ai, bi]) =]J®i—a) und @) :=0
=1 i=1

gegebenen Mengenfunktion 4 : & — R auf R(S) entsprechend Satz 3.3 ein subvolladditiver
Inhalt auf R(S), denn man kann zeigen, dass u subvolladditiv ist (die Nichtnegativitét ist
offensichtlich).

Beispiel 3.5 (Dirac-Maf). Seien X := R und M := P(X). Dann ist die durch
1, 0€ A,
p(A) =
0, 0¢A

definierte Mengenfunktion ¢ : P(R) — R ein Maf. Dieses Mafs wird als in Null konzentriertes
Dirac-Mafl oder als Dirac-Maf mit Tragerpunkt Null bezeichnet.

Definition 3.6. Eine nichtnegative Mengenfunktion pu* : P(X) — R heikt duferes Maf,
wenn gilt:

(1) p(0) =0.
(ii) p* ist monoton, d.h. fir A C B C X gilt p*(A) < pu*(B).

15
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(iii) Fir alle Ay, Ag,... C X gilt
© (U Ai) <> ut(A).
i=1 i=1

Bemerkung. Die Nichtnegativitdt des dufseres Mafses muss eigentlich nicht vorausgesetzt
werden, denn sie folgt unmittelbar aus den Forderungen (i) und (ii). Die Eigenschaft (iii)
ist eng verbunden mit der Subvolladditivitét einer Mengenfunktion. Jedoch weisen wir an
dieser Stelle deutlich darauf hin, dass duftere Mafe nicht additiv sein miissen. Zum Beispiel
ist

1 sonst

. 0 A hochstens abzahlbar,
p(A) == {

ein duferes Mak auf der Potenzmenge P(R) von R, jedoch nicht additiv, denn
1= ([0, 1] U [4,5]) # p*([0,1]) + p*([4,5]) = 2.
Beispiel 3.7. Sei X := [0, 1]. Dann ist die durch

. _|supA, A#0,
wiA) = {0, A=

gegebene Mengenfunktion p* : P(X) — R ein dufseres Mafk. Denn p* ist offensichtlich nicht-
negativ und erfiillt (i) und (ii) aus Definition 3.6. Zum Nachweis von (iii) seien Aj, Ag, ... C
X beliebig und es sei A := [J;2; A;. Es gilt nun sup A < sup X = 1 und somit existiert fiir
jedes £ > 0 nach Definition des Supremums ein z. € A mit sup A < z. + . Weiter existiert
ein i € N mit z, € A;_, sodass

[e.e] o
pw(A)=supA<z.+ec<supd;, +e<ec+ ZsupAi =ec+ ZH*(Ai)
i=1 i=1
folgt. Fiir ¢ — 0 folgt Eigenschaft (iii).
Satz 3.8. Seien R ein Ring in X und p ein Inhalt auf R. Fir E C X bezeichne

ME:—{{UiGR:iEN}ZEQGUl‘}

i=1

die Menge aller abzihlbaren Uberdeckungen von E. Dann definiert die durch

() = {inf{z;’il p(U;) : {Ui:i €N} e Mg}, Mg 7_& 0,
—+o00, Mg=0

gegebene Mengenfunktion p* : P(X) — R ein duferes Mag.

16



3 Inhalt und Ma#s — Konstruktion von Malen

Beweis. Offensichtlich ist p*(0) = 0 erfiillt. Fiir beliebige A C B C X folgt M4 2O Mp und
somit p*(A) < p*(B), d.h. p* ist monoton. Zum Beweis von Eigenschaft (iii) in Definition
3.6 seien Eq, Es,... C X beliebig. Existiert ein Index j € N mit p*(E;) = oo, so ist die
Eigenschaft trivialerweise erfiillt. Sei also p*(E;) < oo fiur alle ¢ € N. Zu jedem € > 0
existieren dann Uberdeckungen {U; :j € N} € Mg, von E; mit

o0

) * €
> ;) < p*(B) + o
j=1

fiir alle 4 € N. Da jedoch {U]’ 14,7 € N} die Vereinigung | J:°, E; iiberdeckt, gilt
0
u*(UEZ-><ZZ,uU1 <Z( §>—E+Zu
i=1 i=1 j=1
Fiir e — 0 folgt die Behauptung. O

Satz 3.9. Das duflere Maf pu* aus Satz 3.8 ist genau dann eine Fortsetzung des Inhalts p
von R auf P(X), wenn p subvolladditiv ist.

Beweis. = Es gelte u*(A) = p(A) fiir alle A € R. Fiir beliebige Mengen A, Ay, Ag,... € R
mit A C |J;2, A; folgt dann aus (ii) und (iii) in Definition 3.6

p(A) = p*(A) < p* (U Ai) < (A =D (A
=1 =1 =1

d.h. p ist subvolladditiv.
“<* Sei p subvolladditiv. Fiir beliebiges A € R setzen wir A1 := A und 4; := ( fiir
i = 2,3,.... Dann ist {A; : i € N} eine Uberdeckung von A und somit folgt aus der

Definition von p*
<Y (A = p(A) + ) ) =
i=1 i=2

Umgekehrt existiert zu jedem & > 0 eine Uberdeckung {A; : i € N} C R von A mit

S p(Ai) < ' (A) <.
=1

Setzen wir B; := AN A; € R, so gilt A =J;2; B; und damit

<Y u(Bi) <) p(Ai) < p(A) +e.
=1

Der Grenziibergang € — 0 liefert u(A) < p*(A), d.h. p(A4) = p*(A). O

17



3 Inhalt und Ma#s — Konstruktion von Malen

Satz 3.10. Seien R ein Ring in X, p ein subvolladditiver Inhalt auf R und p* das dufere
Maf aus Satz 3.8. Dann gilt

W (E) = i (BN A) + 1 (B A)
fiir alle A € R und alle E C X.

Beweis. Wegen E = (ENA)U (FE \ A) gilt nach Definition 3.6 (iii) stets
W*(E) < 1 (B0 A)+ (B A),

Fiir p*(F) = oo gilt trivialerweise auch
W (B) 2 p* (BN A) + " (B \ A).

Sei nun also p*(FE) < oo. Zu jedem ¢ > 0 existiert dann eine Uberdeckung {U; € R : i € N}
von E mit
o0
E)+e>> u(U
i=1

Setzen wir V; := ANU; und W; :=U; \ A fiiri = 1,2,..., dann gilt V;, W; e R, U; = V,;UW;
und V; N W; = () sowie

AmEgAﬂ(GUi) :DV E\AC (UU)\A UW
=1 =1 =1

und p(U;) = w(V;) + p(W;). Also erhalten wir aus Satz 3.9 sowie aus Definition 3.6 (iii) und
(i)

pH(E) +e> i Zu +Zu Zu +Zu

> * (U v) + (U W,) > (ENA)+p*(E\ A).
i=1 i=1
Der Grenziibergang € — 0 liefert die Behauptung. O

Definition 3.11 (Caratheodory). Sei p* ein duferes Mak auf P(X). Eine Menge A C X
heifst p*-messbar, falls
W (E) = (B 1 A) + (B A)

fiir alle £ C X gilt. Das System aller y*-messbaren Mengen in X bezeichnen wir mit A« (X).

Lemma 3.12. Sei p* ein dufSeres Maf$ auf P(X). Dann ist jede Menge A C X mit u*(A) =0
p*-messbar, d.h. A € Ay=(X).

18
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Beweis. Sei E C X beliebig. Wegen £ N A C A und Definition 3.6 (i) und (ii) gilt
0<p(ENA) <p(4)=0,
d.h. p*(ENA) =0, und aus F\ A C E folgt mit Definition 3.6 (iii) und (ii)
p(E)=p (ENA)U(E\A) <p (ENA)+p"(E\A) <0+ p7(E),
also p*(E) = p*(ENA) 4+ u*(E\ A). O

Lemma 3.13. Sei u* ein dufleres Mafl auf P(X). Ist A C X u*-messbar, so ist auch X \ A
w*-messbar, d.h.
AcApx(X) = X\Aec Ap(X).

Beweis. Sei E C X beliebig. Aus
E\A=EN(X\A4) und ENA=E\(X\A)
folgt dann
W (B) = (BN A) + 1" (B\ A) = p*(B\ (X \ A) + ' (BN (X \ 4)).
O

Lemma 3.14. Sei p* ein duferes Maf$ auf P(X). Sind A C X und B C X p*-messbar, so
st auch AN B p*-messbar, d.h.

A Be Apx(X) = ANnBeAx(X).
Beweis. Sei E C X beliebig. Wegen A € A, (X) gilt

W(E\(ANB)) = " (EN (AN B)) = w' (BN (AUB)) =y (BN A) + (B \ 4)

— (EAANB) +u (BN = (BN A)\ B) + 4 (B \ A)
und aus B € A, (X) sowie nochmals aus A € A,+(X) folgt damit

W(EN(ANB)) + ' (E\ (AN B)) = p"(ENANB) + w*(ENA)\ B) + u*(E\ A)
— (BN A) + ' (B\ A) = u'(B),

dh. AnNB e A, (X). O
Bemerkung. Fir A, B € A,=(X) folgt aus Lemma 3.13 und Lemma 3.14

AUB=ANB € A, (X),

d.h. A, (X) ist eine Algebra.
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3 Inhalt und Mafs — Konstruktion von Mafsen
Satz 3.15. Seip* ein dufleres Maf auf P(X). Dann ist A, (X) eine o-Algebra und N*’AH* (X)
ein Maf auf Ay=(X).

Beweis. ' Sei E C X beliebig und seien Aj, As,... € A,-(X) paarweise disjunkt. Mit
A =2, A gilt dann

pr(E) = p (BN A1)+ p (BN A1) = p" (B0 AL + 7 ((E\ A1) N Ag) + p7((E\ A1) \ Ag)

=ENA; —E\(A;1UAy)
= W (ENA) + p (BN Az) +p" (BN (A1 U A2)) N Az) +p (B (A1 U A2)) \ 43)
ZEFAg ZE\(A1UA2UA3)
= —Zu (BN A) +p* (BN (Uizg 4)) Z (ENA;)+p(E\ A)

=1 SE\A

und der Grenziibergang n — oo liefert in Verbindung mit Definition 3.6 (iii)
W(E) > S w (BN A) + (B A) > (U(E n A») (BN A)
i=1 i=1
— W(ENA)+ (B \ A).
Wegen E = (ENA)U(E\ A) und Definition 3.6 (iii) gilt auch die umgekehrte Ungleichung,
also p*(E) = p*(ENA)+ p*(E\ A), dh. Ae Au(X). Insbesondere gilt also auch

wH(E) = 3 i (BA) + " (E\ A).

i=1
Setzen wir ' := A, so liefert dies
= (A + (),

d.h. p* ist volladditiv auf A« (X).
Seien nun By, By, ... € Ay (X) beliebig und sei B := U2, Bi. Setzen wir Ay := B; und
A; = B; \ (UZ ! B; ;) fiir i = 2,3,..., so gilt 4; € A+(X) (wegen Lemma 3.13 und Lemma
3.14) und B = U2:1 A;. Nach dem bereits Gezeigten folgt also B € A,«(X), d.h. A,«(X)
ist eine o-Algebra. O

Satz 3.16 (Fortsetzungssatz von Hahn). Sei ¢ : S — [0,00] eine nichtnegative, additive
Mengenfunktion auf einem Semiring S und sei p: R(S) — [0, 00] die Fortsetzung von © 2u
emnem Inhalt auf R(S) (vgl. Satz 3.3). Dann ist die Einschrinkung p*| 4. x) des in Satz 3.8

!Da Additivitét keine Eigenschaft p* ist, wird diese im Beweis auch nicht benétigt.
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definierten auferen Mafes pu* : P(X) — [0,00] genau dann eine Fortsetzung von ¢ auf
A (X)), wenn ¢ subvolladditiv ist.

Beweis. Aus den Sétzen 3.3 (ii) und 3.9 folgt sofort, dass p* genau dann eine Fortsetzung
von ¢ auf P(X) ist, wenn ¢ subvolladditiv ist. Trivialerweise gilt S C R(S) und wegen
Satz 3.10 auch R(S) C A,+(X), falls ¢ subvolladditiv ist. Dies liefert die Behauptung. O

Bemerkung. Satz 3.16 gibt uns eine Moglichkeit, eine nichtnegative, subvolladditive Men-
genfunktion auf einem Semiring zu einem Mafs auf einer o-Algebra (némlich auf A, (X))
fortzusetzen.

Definition 3.17. Sei M C P(X) nichtleer. Eine Mengenfunktion ¢ : M — R heifit
o-endlich, wenn zu jedem A € M abzdhlbar viele paarweise disjunkte Mengen Aq, Ao, ... €

M mit -
lo(Ai)] <oo  und A= ]J4
=1

existieren.

Satz 3.18 (Ergdnzungssatz zum Fortsetzungssatz von Hahn). Sei ¢ eine nichtnegative,
subvolladditive und o-endliche Mengenfunktion auf einem Semiring S und es existiere eine
abzihlbare Uberdeckung von X durch Mengen aus S. Dann ist die Einschrinkung M*’AM*(X)
des zu @ gehdrenden duferen Mafes p* (vgl. Satz 3.16) ein o-endliches Maf$ auf A, (X).

Beweis. Wegen Satz 1.10 ist die Fortsetzung p von ¢ auf R(S) offensichtlich o-endlich;
damit ist also auch p* auf R(S) o-endlich. Nach Voraussetzung existiert eine Uberdeckung
{U; € S :i € N} von X. Setzen wir Uy := Uy und U; := U; \ (U;;ll U;) fiir i = 2,3,...,
so gilt U; € R(S), U; NU; =0 fiir i # j und X = |J;2, U;. Da p* o-endlich auf R(S) ist,
existieren fiir jedes i € N Mengen V1, V2 ... € R(S) mit M*(Vij) < oo fiir alle j € N und
Ui =Uj2, V7. Fiir A € A, (X) gilt somit

A=ANX=AnN fj[jvg :GO(Ang).

i=1j=1 i=1j=1

Da die Mengen A N Vij fiir 4,j € N paarweise disjunkt sind und p*(AN VZ]) < u*(Vij) < o0
gilt, ist die Behauptung gezeigt. O

Definition 3.19. Ein Mafs y auf einer o-Algebra A heiltt vollstindig, wenn fiir jedes A € A
mit p(A) =0 aus B C A stets B € A folgt.

Bemerkung. Aus der Monotoniebedingung von Definition 3.6 (ii) und wegen des Lemmas 3.12
folgt unmittelbar, dass das im Sinne des Fortsetzungssatzes von Hahn iiber eine Einschran-
kung des duferen Mafes p* auf der o-Algebra der nach Caratheodory messbaren Mengen
A+ (X) definierte Mak 1| 4 . (x) ein vollstdndiges Mak ist.
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Satz 3.20. Sei A eine o-Algebra in X und sei i ein Maf$ auf A. Dann ist das Mengensystem
A:={AUN:Ac A N e N},

wobei N :={N C X : 3B € A mit u(B) =0 und N C B} sei, eine o-Algebra in X und die
durch
F(AUN) = u(A)

auf A definierte Mengenfunktion Ti : A — [0, 00] ist ein vollstindiges Maf§ auf A.

Beweis. Wir zeigen als Erstes, dass A eine o-Algebra ist. Sei AUN € A mit A € A und
N € N und sei B € A eine Menge mit u(B) =0 und N C B. Dann gilt

AUN =(AUB)\(B\(AUN))=(AUB)N(B\(AUN))=(AUB)U(B\ (AUN)),
cA CB

d.h. AUN € A. Seien nun A;UNy, AUN>, ... € A mit entsprechenden Mengen By, Bo, ... €
A. Wegen Satz 2.5 (vii) ist p subvolladditiv und damit folgt

<UB> <Zﬂ ) =0.

Also erhalten wir

Wir zeigen nun die Korrektheit der Definition von 7. Seien also AUN € Aund AUN E~j
mit entsprechenden Mengen B, B € A, sodass AUN = AUN gilt. Zu zeigen ist u(A) = pu(A).
Nach Satz 2.5 (iv) gilt zunéchst

p(BU B) + u(B N B) = u(B) + u(B) = 0,

also u(BUB) = 0. Wegen Satz 2.5 (v) gilt dann auch u(AN(BUB)) = 0. Falls pu(A) = oo und
1(A) = o0, so ist die Behauptung trivial. Sei also  (A) < oo (sonst A und A vertauschen).
Aus AUN = AU N folgt AUBU B = AU BU B, sodass Satz 2.5 (ii)

0=pu0) =p((AUBUB)\ (AUBUB)) = u(AUBUB) + u(AUBUB),
d.h. u(AUBUB) = (AU BU B), liefert. Mit Satz 2.5 (iv) folgt wiederum

w(AUBUB) + u(AN(BUB)) = u(A) + u(BU B)
=0 -0
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und analog (AU B U B) = u(A), d.h. es gilt u(A) = u(A).

Wir zeigen nun die Volladditivitéit von fi. Seien also A1 U Ny, Ay U No, ... € A paarwei-
se disjunkt. Dann gilt (vgl. Beweisteil zur Abgeschlossenheit von A beziiglich abzihlbarer
Vereinigungen)

#(Geo) ((UA)U(W%(QAZ')

o oo
= Z u(A Z (A; UN;)
i=1 i=1
Es verbleibt die Vollstindigkeit von i zu zeigen. Sei also AU N € A mit einer entspre-
chenden Menge B O N, u(B) = 0, und mit 7(A U N) = 0. Dann ist auch p(A) = 0. Fir
C CAUN gilt C C AUB € A und Satz 2.5 (iv) liefert

(AU B) + (AN B) = u(A) + p(B) =0,
d.h. (AU B) = 0. Somit folgt C = QU C € A, also ist @ vollstindig. O]

Bemerkung. Das Mafs @ wird Vervollstindigung von p genannt.

Beispiel 3.21 (Lebesgue-Maft im R™). Sei X := R™ und sei R der Ring der Element-
armengen im R" (vgl. Beispiel 1.14). Weiter sei p der subvolladditive Inhalt auf R aus
Beispiel 3.4. Die Einschrankung p*| A (R des entsprechend Satz 3.8 konstruierten dufieren
Mafkes p* ist nach Satz 3.16 eine Fortsetzung von p auf A,«(R™). Das Mafs M*‘Au* (rn) Wird
als (n-dimensionales) Lebesgue-Majf$ bezeichnet und A, (R™) heift o-Algebra der Lebesgue-
messbaren Mengen. Wir verwenden dafiir im Weiteren das Symbol £(R"™).

Offensichtlich ist p(I) < oo fiir alle n-Zellen der Form I = Q)" ,(a;,b;], d.h. p ist auf
dem Semiring dieser n-Zellen o-endlich. Nach Satz 3.18 ist das Lebesgue-Maf p*| A« (R
also og-endlich. Entsprechend der Bemerkung nach Definition 3.19 ist das Lebesgue-Maf
| A, (re) €in vollstéindiges Mak.

Bemerkung. Beschrankte Mengen im R™ haben ein endliches Lebesgue-Maf, da sie in einer
(endlichen) n-Zelle enthalten sind. Man kann ohne grofe Miihe zeigen, dass abzdhlbare
Mengen im R" Lebesgue-messbar sind und dass ihr Lebesgue-Mafs Null ist. Es gibt jedoch
auch tiberabzéhlbare Lebesgue-Nullmengen (z.B. die Cantor-Menge).

Bemerkung. Man kann zeigen, dass jede Borel-Menge im R™ (vgl. Definition 1.13) Lebesgue-
messbar ist, es aber Lebesgue-messbare Mengen gibt, die keine Borel-Mengen sind. Also
gilt mit echter Inklusion B(R™) C £(R"™). Die Einschrénkung des Lebesgue-Mafes auf die o-
Algebra der Borel-Mengen heiftt Borel-Mafs. Entsprechend bezeichnet man die Borel-Mengen
aus B(R™) auch als Borel-messbare Mengen. Das Borel-Mafs im R"™ ist im Gegensatz zum
Lebesgue-Maf nicht vollstéandig, weil es Teilmengen zu Borel-Mengen mit Borel-Maft Null
gibt, die selbst keine Borel-Mengen sind. Vervollstindigt man das Borel-Mafs im R™ im Sinne
von Satz 3.20, so ergibt sich das Lebesgue-Maf als Vervollstandigung.
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Bemerkung. Es gibt auch Mengen in R", die nicht Lebesgue-messbar sind (z.B. die so ge-
nannten Vitali-Mengen).

Beispiel 3.22 (Lebesgue-Maf in R). Sei X := R und sei
S:={[-o0,b] : be R} U{(a,+o0] : a € R}U{(a,b] : a,b € R, a < b} U{0}.
Dann ist S ein Semiring und die durch
u([—00,b]) i= 400, p((a,+oc)) i= +o0, pl(a,b) i=b—a, u(0) =0

gegebene Mengenfunktion p : & — [0,00] ist subvolladditiv und o-endlich. Das analog
zum Lebesgue-Mak im R" aus & und p konstruierte Maf heift Lebesgue-Maff in R. Die
dazugehorige o-Algebra bezeichnen wir entsprechend mit £(R).

Bemerkung. Die Mengen [—oo,b) bzw. (a, +00] sehen wir als offene Kugeln (Umgebungen)
um die uneigentlichen Punkte —oo bzw. 400 von R an, sodass wir eine Grundlage haben, um
iiber offene und abgeschlossene Mengen und deren Konsequenzen in R zu sprechen. Zusétzlich
zu beschriinkten Intervallen (a,b) mit a,b € R, die sowohl in R als auch in R offene Kugeln
bilden, treten in R auch noch die unbeschrinkten Intervalle der Typen [—o0, a) bzw. (b, o0]
als offene Kugeln hinzu. Auch hier ist die Borel’sche o-Algebra B(R) als kleinste o-Algebra,
die alle offenen Mengen von R enthiilt, wieder als echte Teilmenge in £(R) enthalten.

Satz 3.23. Seien X := R", L(R"™) die o-Algebra der Lebesgue-messbaren Mengen und
das Lebesgue-Maf$. Fir A € L(R™) ezistieren zu jedem € > 0 eine abgeschlossene Menge
F € L(R™) und eine offene Menge G € L(R™) mit F C A C G, sodass p(A\ F) < & und
u(G\ A) < e gilt.

Beweis. Erfiillle A € L(R™) zunéchst p(A) < co. Mit u* bezeichnen wir das &dufere Maf, aus
welchem das Lebesgue-Maf konstruiert wurde (vgl. Beispiel 3.21). Wegen p*(A) = p(A) < oo
existiert nach Definition von p* (vgl. Satz 3.8) zu jedem € > 0 eine abzihlbare Uberdeckung
{E; € R:i€ N} von A mit

A+ 5> ;um)

(R sei hier der Ring der Elementarmengen). Nach Satz 1.10 existieren zu jedem E; paarweise
disjunkte, halboffenen n-Zellen I}, IZ,.... I mit E; = Uiz, I. Zur Vereinfachung der

72770
Notation nummerieren wir die Elemente der (abzéahlbaren) Menge {I7 : i € N, 1 < j < m;}
um in {I : k € N}; wir haben also

oo my o]
* € x( 1] *
W+ S = 3w )
i=1 j=1 k=1
Bezeichnen wir die Grenzen der halboffenen n-Zelle I, mit a}g, ...,ap und bllw ..., by, d.h.

I, = Q1 (a,bi], so existiert fiir jedes k € N eine offene n-Zelle Jy, := @, (a, bi + %)
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3 Inhalt und Ma#s — Konstruktion von Malen

mit .
w(Jk) < p*(Ig) + Yy

(die 6% > 0 miissen hinreichend klein gewihlt werden). Die Menge G := (Jjo; Ji ist dann
offen und es gilt

[e.e]

(UJk><§:u () < S mt I + 53 o < (4) +e
_ k=1
=1

k=1

Somit folgt
w(G\A) = w(G) — p(A) = p*(G) — p*(4) <e.

Gilt fir A € L(R") nun pu(A) = oo, so existieren aufgrund der o-Endlichkeit von p
(vgl. Beispiel 3.21) paarweise disjunkte Mengen Aj, A, ... € L(R™) mit pu(A;) < oo und
A = J:2, A;. Nach dem bereits gezeigten existieren fiir £ > 0 entsprechend offene Mengen
G1,Ga,... € L(R™) mit 4; C G; und u(G; \ 4;) < 5 Setzen wir G := U2, G, so gilt
A C G und G ist offen. Es folgt

WG\ A) = (G )\ U = [U e [Ua

j=1 i=1 j=1

§M<U(G1\Ai)> §;M(Gi\z4i) <5;211~:

=1

Es verbleibt die Existenz einer abgeschlossenen Menge F' mit den behaupteten Eigenschaf-
ten zu zeigen. Seien also A € L£(R") und ¢ > 0. Dann gilt A € £(R") und somit existiert
eine offene Menge G € L(R") mit A C G und u(G \ A) < . Setzen wir F := G, so ist F
abgeschlossen und wir erhalten F C A sowie

ANF) = u(ANF) = p(ANG) = w(G\ 4) <e
O

Satz 3.24. Sei A C R" Lebesgue-messbar, d.h. A € L(R™). Dann existieren eine Menge F
vom Typ Fy und eine Menge G vom Typ G mit F C A C G, sodass p(A\ F) = 0 und
u(G\ A) =0 gilt, wobei p das Lebesque-Mafs im R™ bezeichne.

Beweis. Nach Satz 3.23 existieren zu jedem m € N eine abgeschlossene Menge F;,, und eine
offene Menge G,, mit F,, C A C G,,, sodass

pANE) < wnd G\ A) <
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3 Inhalt und Ma#s — Konstruktion von Malen

gilt. Setzen wir F := ;7| F, und G :=(),"_; G, so gilt fiir jedes M € N

b 1
A\ F) = p (A\ (U Fm>> < (AN Fu) < 47
m=1
und
= 1
WG\ A) = ((ﬂ Gm> \A) < WG\ A) < o
m=1
Der Grenziibergang M — oo liefert die Behauptung. O

Bemerkung. Bezeichne B(R™) die Borel’sche o-Algebra im R™ (vgl. Definition 1.13), welche
alle Mengen vom Typ F, und alle Mengen vom Typ G enthélt. Dann folgt aus Satz 3.24,
dass jede Lebesgue-messbare Menge A € L(R™) als Vereinigung zweier disjunkter Mengen
B € L(R™) und N € L(R") dargestellt werden kann, wobei B € B(R"™) und u(N) = 0 gilt.
Mit den Bezeichnungen aus Satz 3.24 miissen wir nur B := F und N := A\ F setzen.

Satz 3.24 und die nachfolgende Bemerkung lassen sich tibertragen auf den Fall, dass man
X =R und die entsprechenden o-Algebren B(R) bzw. L(R) betrachtet.
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4 Messbare Funktionen

4.1 Definitionen und Eigenschaften

Definition 4.1. Seien X eine beliebige nichtleere Menge, M C P(X) eine o-Algebra in X
und p ein Maf auf M. Das Paar (X, M) heifft messbarer Raum und das Tripel (X, M, )
heifst Mafsraum. Eine Menge A C X heifst wieder messbar (oder M-messbar), wenn A € M
gilt.

Bemerkung. Wir betrachten in diesem Kapitel Funktionen f, deren Urbilder in X und deren
Bilder in Y liegen. Um den Begriff der Messbarkeit solcher Funktionen sinnvoll zu definieren,
miissen die Funktionen jedoch als Funktionen zwischen zwei messbaren Raumen (X, M) und
(Y, N) betrachtet werden. Wenn keine Verwechslungen zu befiirchten sind, verzichtet man
oft auf die explizite Erwdhnung der o-Algebren und schreibt nur kurz f: X — Y.

Besonders wichtig sind in diesem Zusammenhang reelle Funktionen f : X — R bzw. die
so genannten numerischen Funktionen f : X — R. Ohne es im Weiteren immer explizit
zu erwahnen, betrachten wir diese stets als Funktionen zwischen den messbaren Raumen
(X, M) und (R, B(R)) bzw. (R, B(R)), d.h. im Bildraum wird stets die Borel’sche o-Algebra
zugrunde gelegt.

Definition 4.2. Seien (X, M) und (Y, ) messbare Rdume. Eine Funktion f : X — YV
heifst (bezogen auf dieses Paar messbarer Rdume) messbar, wenn das Urbild jeder messbaren
Menge messbar ist, d.h.

BeN = f 4B eM.

Eine reelle Funktion f : X — R bzw. eine numerische Funktion f : X — R nennen wir
messbar, wenn sie jeweils als Funktionen zwischen (X, M) und (R, B(R)) bzw. (R, B(R))
messbar sind. Im Falle X = R™ nennen wir reelle und numerische Funktionen messbar,
wenn sie als Funktionen zwischen (R™, B(R")) und (R, B(R)) bzw. (R, B(R)) messbar sind.

Bemerkung. Manchmal spricht man von Lebesgue-messbaren reellen Funktionen f : R — R
bzw. von Lebesgue-messbaren numerischen Funktionen f : R” — R, wenn sie als Funktionen
zwischen (R”, £L(R")) und (R, B(R)) bzw. (R, B(R)) messbar sind. Da jedoch B(R") C L(R")
gilt, ist jede solche messbare Funktion im Sinne der Definition 4.2 auch eine Lebesgue-
messbare Funktion.

Mit Hilfe des folgenden Lemmas 4.3 lisst sich danach direkt der zur Uberpriifung der
Messbarkeit von Funktionen und Funktionenklassen wichtige Satz 4.4 beweisen. Nochmals sei
erwihnt, dass sich offene Kugeln in R mit a, b € R sowohl durch beschriinkte offene Intervalle
(a, b) als auch durch unbeschrankte Intervalle der Typen [—o00, a) bzw. (b, co] darstellen lassen
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4.1 Definitionen und Eigenschaften

(vgl Bemerkung nach Beispiel 3.22). Weiter sei hier die Verwandtschaft dieses Lemmas mit
dem spéater erwahnten und bewiesenen Lemma 4.10 vermerkt. Der Beweis von Lemma 4.3
verlauft analog zu dem von Lemma 4.10 auf der Grundlage der Tatsache, dass die Menge
der rationalen Zahlen abzéhlbar ist und dicht in der Menge der reellen Zahlen. Hier miissen
aber noch unbeschrénkte Intervalle einbezogen werden.

Lemma 4.3. Jede offene Menge in R ist als abzihlbare Vereinigung offener Kugeln in R
darstellbar.

Satz 4.4. Sei (X, M) ein messbarer Raum. Dann ist eine numerische Funktion f : X — R
genau dann messbar im Sinne von Definition 4.2, wenn

X(f>a)={xeX: f(x)>a}eM

fiir alle a € R gilt.

Beweis. Sei zuerst die Funktion f : X — R messbar im Sinne von Definition 4.2. Dann ist
X(f > a) € M, weil (a,+0o0] fiir beliebige reelle Zahlen a als offene Menge in R auch zur
Borel’schen o-Algebra B(R) gehort.

Um die fiir den Beweis notwendige zweite Implikation zu zeigen, nehmen wir an, dass
X(f > a) € M fiir alle a € R gilt und schlieRen daraus auf f~'(B) € M fiir beliebige
B € B(R). Dazu betrachten wir das Mengensystem & = {(a,+oc] : @ € R} und dessen
erzeugte o-Algebra o(€). Wegen f~1(B) € M fiir alle B € & gilt auch f~1(B) € M fiir alle
B € o(€). Gewiss enthilt (&) alle halboffenen Intervalle (a,b] als Differenzmengen zweier
Elemente aus £ und alle Intervalle des Typs [—o0, a] als Komplemente. Da sich auch alle
Intervalle der Art (a, b) bzw. [—00, a) mittels abzihlbarer Vereinigungen der bereits erzeugten
Typen darstellen lassen, gehéren alle offenen Kugeln in R zu o(€), wegen Lemma 4.3 damit
auch alle offenen Mengen. Somit haben wir B(R) C o(€). Fiir B € B(R) gilt dann auch
f~YB)eM O

Bemerkung. Wie eine Inspektion des Beweises zeigt, bleibt die Aussage des Satzes 4.4 na-
tiirlich auch richtig, wenn reelle Funktionen f : X — R betrachtet werden.

Satz 4.5. Sei (X, M) ein messbarer Raum und sei f : X — R eine beliebige Funktion. Dann
sind die folgenden Aussagen dquivalent:

(i) X(f >a) € M fir alle a € R,
(ii) X(f > a) € M fiir alle a € R,
(iii) X(f <a) € M fir alle a € R,
(iv) X(f <a)€ M fiir alle a € R.

Beweis. Beweis:
(i) = (iv):

FH([=o0,a]) = FTHRN (g, +00]) = fTHR)\ £ ((a, +oc]) = X\ fH((a, +00]) € M.
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4.1 Definitionen und Eigenschaften

(iv) = (iii):

Bemerkung. Statt X (f > a) kann in Satz 4.4 also auch X (f < a), X(f > a) oder X(f < a)
stehen.

Beispiel 4.6. Die durch

_ e z#0,

gegebene Funktion f: R — R ist wegen Satz 4.4 messbar, denn es gilt
[0,1) € BR), a>0,
X(f >a)=14][0,400) € B(R), a=0,
(—o00, 1)U [0, +00) € B(R), a<O0.
Satz 4.7. Jede stetige Funktion f :R™ — R ist messbar.

Beweis. Die Mengen (a,+00) C R fiir a € R sind offen. Da f stetig ist, sind somit auch die
Mengen f~1((a, +00)) offen und gehoren zu B(R™). Aus Satz 4.4 folgt daher die Behauptung.
0

Bemerkung. Aus dem Beweis zu Satz 4.7 folgt sofort, dass jede auf einem metrischen Raum
X definierte stetige Funktion f : X — R messbar beziiglich der Borel’schen o-Algebra in X
ist.

Satz 4.8. Sei (X, M) ein messbarer Raum. Ist f : X — R messbar, so ist auch |f] : X — R
messbar. Die Umkehrung gilt im Allgemeinen nicht.

Beweis. Sei f : X — R messbar. Fiir a > 0 gilt dann X(f > a) € M und X(f < —a) € M
(Sétze 4.4 und 4.5). Also erhalten wir

X([fl >a)=X(f <=a)UX(f>a) eM,
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d.h. | f] ist nach Satz 4.4 messbar.
Wir geben ein Gebenbeispiel fiir die Gegenrichtung an. Sei A C X mit A ¢ M und sei

f:X — R durch
1, x € A,
=]
-1, z¢A

gegeben. Dann gilt
XeM, a<l,

DeM, a>1,
d.h. | f] ist messbar. Jedoch erhalten wir X(f > 0) = A ¢ M, d.h. f ist nicht messbar. [J

X(If1> a) :{

Satz 4.9. Sei (X, M) ein messbarer Raum und seien die Funktionen f, : X — R fiirn € N
messbar. Dann sind auch die durch

g(x) :=sup fn(x), h(z):= 71Lr€1fN fu(z), p(x):=limsup f,(x), ¢(x):=liminf f,(z)

neN n—o00 n—oo

gegebenen Funktionen g, h,p,q: X — R messbar.

Beweis. Aufgrund der Messbarkeit der Funktionen f,, fiir alle n € N gilt X (f,, > a) € M
und nach Satz 4.5 auch X (f,, > a) € M fiir alle n € N und a € R. Somit folgt

Xg>a)=JX(fa>a)eM md X(h>a)=[)X(fo>a)eM,
n=1 n=1
d.h. g und h sind messbar.
Es gilt
limsup fy,(z) = inf sup fi(z) und liminf f,(z) = sup inf fi(x).
n—00 neN k>n n—00 neN k=>n

Nach dem bereits gezeigten sind gp, := supy>,, fx und hy = infg>, fr messbar und damit
auch p = inf,en g, und ¢ = sup,,cy hn- O

Bemerkung. Existiert f(z) := lim, o fn(z) fir alle 2 € X, so ist mit f,, fiir n € N auch f
messbar, da dann lim,_, fn, = limsup,,_, ., fn gilt.

Lemma 4.10. Jede offene Menge G C R"™ ist als abzdhlbare Vereinigung offener n-Zellen
Q- (ai, b;) darstellbar.

Beweis. Fall n = 1: Sei M eine offene Menge in R. Dann kann man sie darstellen als Vereini-

gung iiber offene Intervalle (Kugeln) um jeden einzelnen Punkt z € M mit geeigneten Radien

ez >0 M = | (v — ez, v +¢&;). Da die Menge der rationalen Zahlen Q abzéhlbar und
zeM

dicht in R ist, kann man jedes offene Intervall (a, b) in R darstellen als (a,b) = | (as, b;) mit

T3

(2
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rationalen Intervallgrenzen a;,b; € Q (rationale Approximation des Intervalls von innen).
o0

Dann ist M = |J U (ag,,bs,), wobel ag,, by, € Q. Da es aber nur abzéhlbar viele ratio-
i=1

nale Zauhlenpauarer fgjl\i[)}c, ist die Vereinigung zur Darstellung von M eine mit abzahlbar vielen
offenen Intervallen.

Fall n > 1: Der Beweis erfolgt mit analogen Hilfsmitteln. Jede offene n-Zelle ldsst sich wieder
von innen durch offene n-Zellen mit rationalen Eckpunkten beliebig genau approximinieren.
Es gibt aber auch nur abzihlbar viele derartige (rationale) n-Zellen. Bleibt zu zeigen, dass
um jeden inneren Punkt von M eine offene n-Zelle existiert, die ganz in M liegt. Jede offene
Kugel in R™ enthélt aber eine offene n-Zelle. Man kann auch argumentieren, dass Kugeln
nicht im Sinne der Euklidischen Norm, sondern im Sinne der Maximumnorm betrachtet
werden und alle Normen in R” dquivalent sind. O

Satz 4.11. Sei (X, M) ein messbarer Raum und seien f,g: X — R messbare Funktionen.
Ist die Funktion F : R? — R stetig, so ist die durch h(x) := F(f(x), g(x)) definierte Funktion
h: X — R messbar.

Beweis. Sel a € R und sei
Go = {(u,v) € R?: F(u,v) > a} = F~((a, +o0)).

Da (a,+0o0) offen und F' stetig ist, ist G, offen, sodass nach Lemma 4.10 offene 2-Zellen
It = (ak, by) ® (ck, dy) fur k € N mit G, = (J,—; I existieren. Es folgt nun

X(h>a)=A{zeX:(f(x)9(x)) GG}—U{IGX f(x), 9(x)) € I}

k=1

= JX(f > an)nX(f <bp) N X(G > ) N X(g < dp)) € M,
k=1

d.h. h ist messbar. O

Folgerung 4.12. Sei (X, M) ein messbarer Raum und seien f,g: X — R messbar. Dann
sind auch die (punktweise definierten) Funktionen f + g, f-g, c- f (mit ¢ € R) sowie die
durch

Fi@) = max{f(x),0}  und  f_(x):= —min{f(x),0}

definierten Funktionen fi und f_ messbar.

Beweis. Fir f+ g, f-g, c- f folgt die Behauptung aus Satz 4.11, da die Zuordnungen
(x,y) = x + vy, (x,y) = xy, (x,y) — cx fir z,y € R stetig sind. Die Messbarkeit von f
und f_ folgt aus

fe=3(F+1f1)  wnd  fo=3(fI- 5.
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Bemerkung. Die Funktion fi > 0 heifst positiver Anteil, f— > 0 negativer Anteil von f. Es
gilt stets f = fy — f_ sowie |f| = f+ + f-.

Definition 4.13. Sei X eine beliebige nichtleere Menge. Eine Funktion ¢ : X — R heifit
Treppenfunktion, falls ihre Bildmenge {y € R : 3z € X mit ¢(x) = y} endlich ist. Fiir
E C X heifdt die durch

_ 1, z€F,
A P

gegebene spezielle Treppenfunktion yg : X — R charakteristische Funktion der Menge F.

Lemma 4.14. Sei X eine beliebige nichtleere Menge und sei ¢ : X — R eine Treppenfunk-
tion mit den paarweise verschiedenen Funktionswerten ci,ca,...,c, € R. Dann existieren
paarweise disjunkte Mengen Eq, Fo, ..., E, C X mit

n
¥ = Z CiXE;-
i=1
Beweis. Die Behauptung folgt sofort mit
EBi={zecX:px)=c}=¢ Y.
O

Bemerkung. Wenn wir Treppenfunktionen in der Form )" ;| ¢;xp, darstellen, nehmen wir
im Folgenden stets an, dass die Mengen E; paarweise disjunkt sind.

Satz 4.15. Fine auf einem messbaren Raum (X, M) definierte Treppenfunktion
© =", ¢XE ist genau dann messbar, wenn Ey, Es, ..., E, € M gilt.

Beweis. O.B.d.A. sei ¢; < cg < -+ < ¢y Fira <ep gilt X(p <a) =0 und fir a > ¢, gilt
X(p < a) = X. Ansonsten, d.h. fir ¢; < a < ¢, gibt es ein j € {1,2,...,n — 1} derart,
dass ¢;j < a < ¢j4q gilt und wir X(p < a) = ngl E; haben. Aus Eq,Es,....E, €¢ M
folgt dann sofort X(p < a) € M Va € R und ¢ ist messbar. Umgekehrt folgt aus der
Messbarkeit von ¢ die Messbarkeit von X (¢ < a) fiir alle a € R. Es ist dann némlich
F; == \Jl_{E € M fir j = 1,2,...,n. Somit erhalten wir E; = F; \ F,_1 € M fiir
1=2,3,...,nund By = F} € M. O

Bemerkung. In der Literatur werden messbare Treppenfunktionen vielfach als einfache Funk-
tionen bezeichnet. Bereits hier sei darauf verwiesen, dass solche Funktionen das entschei-
dende Hilfsmittel zur Definition des Lebesgue-Integrals in Kapitel 5 sein werden. Fiir eine
alternative Definition des Riemann-Integrals (siche Definition 7.2) in Kapitel 7 muss man
sich allerdings auf spezielle Treppenfunktionen einschrénken, die wir (R)-Treppenfunktionen
nennen werden.
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Satz 4.16. Sei (X, M) ein messbarer Raum und sei f : X — R eine messbare Funktion.
Dann existiert eine Folge (¢n)nen von messbaren Treppenfunktionen ¢, : X — R mit

f(z) = ILm on(z)  fir alle x € X.

Gilt f(x) > 0 fiir ein x € X, so ist die Folge (pn(x)) monoton wachsend (nicht notwendig
streng). Ist f beschrinkt, so konvergiert die Folge (vy) sogar gleichmdf$ig auf X gegen f.

Beweis. Wir zeigen die Behauptung zunéchst fir f > 0. Fir n € N setzen wir dazu

1 —1 1
o < fl@) <5

E! ::{xeX:

n }, i:1,2,...,n2n
und F, := X(f > n). Aufgrund der Messbarkeit von f sind alle E% und alle F,, messbar.
Fiir n € N gilt aukerdem X = F,, U (UZL:21 E!). Wir setzen nun

n2" .

1—1
Pn 1= Z “on XEj + NXF,-
1=1

Nach Satz 4.15 sind die Treppenfunktionen ¢,, messbar.
Wir zeigen die punktweise Konvergenz. Fiir z € X mit f(x) = +oo gilt © € F, fiir alle
n € N und somit lim,, o @n(x) = +00. Sei x € X mit f(z) < co. Dann existiert fiir jedes

n € N mit n > f(z) ein Index 4, € {1,2,...,n2"} mit x € Ei», d.h. p,(z) = 21 und

iy — 1 1

AL <2n'

n i@ o 0< i) -

Somit folgt fiir hinreichend grofie n

1 n—aoo

£@) = pal@)] < 5 50,

Die Monotonie der Folge (¢, (x)) fiir jedes € X im Falle f > 0 kann man sich leicht
iiberlegen, wenn man die Zerlegungen beim Ubergang von n zu n + 1 betrachtet.

Sei nun f beschrankt, f > 0 sowie € > 0. Dann existiert ein ng € N mit f < ng und
2%0 < e. AuRerdem gilt F,, = ) fiir n > ng, sodass zu jedem z € X und jedem n > ng ein

Index in(z) € {1,2,...,n2"} mit z € Eir®) existiert. Folglich gilt

7(@) ~ pn(@)| < 5 < g <& fiiralle n > n,
d.h. ¢, = f fiir n — oo.

Sei nun f beliebig (d.h. nicht notwendig f > 0). Dann gilt f = fi — f- mit fi > 0
und f_ > 0 und nach dem bereits Gezeigten existieren Folgen (¢ )nen und (¢;, Jnen, die
die Aussage des Satzes fiir f und f_ erfiillen. Setzen wir ¢, := ¢} — ¢, so gilt f(z) =
limy, 00 @n () fiir alle 2 € X und wenn f beschrénkt ist, so ist die Konvergenz gleichméfig
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auf X (da fy und f_ beschrénkt). Gilt f(z) > 0 fir ein 2 € X, so ist f_(x) = 0, d.h.
o, () =0, also v, (x) = ¢ (x); und (p;f (x)) ist monoton wachsend. O

4.2 Konvergenzsatze

Definition 4.17. Sei (X, M, i) ein Mafraum und sei £ € M. Man sagt, eine Aussage iiber
die Elemente von X gilt fast diberall auf E oder fiir fast alle x € E, wenn eine Menge B € M
mit p(B) = 0 existiert, sodass die Aussage fiir alle z € E'\ B gilt.

Etwas verkiirzt kann man sagen: Eine Aussage gilt fast iiberall oder fiir fast alle Elemente
einer betrachteten Menge, wenn sie héchstens auf einer Teilmenge vom Mafse Null nicht gilt.

Satz 4.18. Sei (X, M, ) ein Mafsraum mit vollstindigem Mafs p. Sind die Funktionen
fn: X = R fiir n € N messbar und gilt fir f: X — R, dass f(z) = limp,—o0 fn(x) fir fast
alle x € X, so ist auch f messbar.

Beweis. Sei B € M eine Menge mit p(B) = 0 und lim,, o frn(z) = f(x) fir alle z € X \ B.
Dann sei A C B die Menge der x € X, auf welcher entweder lim,,_,, f,,(x) gar nicht existiert
oder aber der Grenzwert existiert und féllt nicht mit f(x) zusammen. Fiir alle x € X \ A
gilt demzufolge lim, o fn(x) = f(z). Aus der Vollstandigkeit von p folgt A € M sowie
X(f>a)NAe M fir a € R. Andererseits gilt wegen Satz 4.9

X(f>a)ﬂ(X\A):{xeX\A:T}Ln;ofn(x)>a}:{x€X\A:Iimsupfn(x) >a} € M.

n—o0

Wir erhalten also
X(f>a)=(X(f>a)nA)UX(f>a)N(X\A))eM,
d.h. f ist messbar. O

Definition 4.19. Seien (X, M, u) ein Mafraum, (f,)nen eine Folge fast iiberall endlicher
messbarer Funktionen f, : X — R und f : X — R eine fast iiberall endliche messbare
Funktion. Die Folge (f,) heift auf X konvergent dem Mafle nach gegen f (Schreibweise:
fn LN f), wenn fiir jedes € > 0 die Beziehung

Jim (X (|fo = fl =€) =0
gilt.

Satz 4.20 (Satz von Lebesgue). Sei (X, M, pu) ein Mafraum mit p(X) < oo und einem
vollstindigen MafS . Weiter seien f, : X — R fiirn € N und f : X — R fast tberall endlich
und die f, messbar. Dann gilt

fu(x) = f(x) fir fast allex € X = f, s
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Beweis. Sei zunéchst f > 0. Nach Satz 4.18 ist f messbar. Setzen wir

A={zeX: f(z) =00}, Ap i ={x € X : fu(x) = o0}
B:={recX: nh—>r2<> fn(z) existiert nicht oder nh_)n(r)lo fu(x) # f(x)},

so gilt fir @ := AU (U, An) U B nach Voraussetzung p(Q) = 0. Fiir n € N und € > 0
definieren wir zusétzlich

Bn(e) = X(Ifn — fl =€),  Rule)=|J Ex(e),  M(e):= () Rule).
k=n n=1

Die Mengen Ej(¢), R,(¢) und M (e) sind dann messbar und es gilt Ri(e) D Ra(e) 2 ...
Wegen u(X) < oo ist Satz 2.7 anwendbar, d.h. es folgt

lim (R (e)) = p(M(e)).

n—oo

Wenn nun M (e) C Q gilt, so folgt
T p(Bn(e)) < lim u(Ra()) = (M () < (@) = 0.

Wir nehmen also an, es wiirde ein z € M(e) mit x ¢ @ existieren. Dann gilt f(z) < oo,
fn(z) < 0o und lim, o0 fu(x) = f(x), d.h. |fu(z) — f(x)] — 0. Somit existiert ein ng € N
mit z ¢ Ry, (¢) und folglich = ¢ M(e). Dies ist ein Widerspruch, womit M (e) C Q gezeigt
ist.

Sei nun f beliebig (d.h. nicht notwendig f > 0). Schreiben wir f = f4 — f_ und f, =

(fu)+ — (fn)—, so folgt aus dem bereits bewiesenen (f,)4 = fi und (f,)— & f_. Aus

[fu(@) = ()] < |(fo)+ (@) = [ (@) + [(fn) - (2) — f-(2)]
< 2max{|(fn)+(2) = fr(2)|, |(fn) - (2) = f-(2)[}

fir z € X erhalten wir

X(Ifa =112 2) € X (max{|(fa)s = fol.[(f)- = I} = 5)
X (|(fn)+ i g) UXx (|(fn)_ P g) '

Dies liefert

X fa = 112 2) < (X (I0)s = 212 5) )+ (X (1) = 112 5)) =50
O

Bemerkung. Ohne die Forderung p(X) < oo gilt Satz 4.20 im Allgemeinen nicht. Beispiel:
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4.2 Konvergenzsitze

Wir betrachten X = [0, 00) mit dem Lebesgue-Maf . Seien
fal@)=(x+ 12 und  f(zx) =2%
Dann gilt lim,,_,o fn(z) = f(z) fiir alle x € X, aber
p(X(Ifn—fl>e)=p{zeX:2 4+ 1L >e)) =400

fir alle n € N.

Bemerkung. Anstelle der Vollstandigkeit von p kann in Satz 4.20 auch die Messbarkeit von
f vorausgesetzt werden (dies sieht man sofort anhand des Beweises).

Bemerkung. Die Umkehrung von Satz 4.20 gilt im Allgemeinen nicht, wie das folgende Ge-
genbeispiel zeigt: Wir betrachten X = (0, 1] mit dem Lebesgue-Maf u. Das Lebesgue-Mafs
pu(X) = 1 des Raumes X ist also hier endlich. Wir betrachten die halboffenen Intervalle
Elr = ((k—1)-27" k-27"] fir m € Nund k € {1,2,3,...,2™}. Weiter sei die Funktio-
nenfolge (f,)nen wie folgt definiert:

formik—1(2) = X(h=1).2-m p2-m)(7) firz € (0,1, meN, k=1,2,...,2™.
Fiir € € (0,1) gilt dann
p(X(fomsnaal Z ) =p(E) =27" = lim p(X(|fu] 2 ¢)) =0,

also konvergiert die Funktionenfolge dem Mafie nach gegen die Nullfunktion. Jedoch konver-
giert diese Funktionenfolge fiir gar keinen Punkt z¢ € (0,1] (also gewiss nicht fast tiberall)
gegen die Nullfunktion, denn fiir jedes m € N gibt es ein k,, = kp(m) € {1,2,...,2™} mit
fam ik, —1(z0) = 1, ndmlich gerade so, dass zg € E}’ gilt. Diese Teilfolge verhindert nun
eine Konvergenz der Folge (fy,(20))nen gegen Null.
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5 Das Lebesgue-Integral

Definition 5.1. Seien (X, M, u) ein Makraum, E € M, f: X — [0, 00] eine nichtnegative
messbare Funktion und

Tf = {gpz ZCiXEi nmeN, ¢ >0, B; e M, o(x) < f(x) Vo € E}
i=1

die Menge aller nichtnegativen messbaren Treppenfunktionen, die auf F punktweise Mino-
ranten von f sind. Dann heifst die Zahl

/fd,u sup Zcz,uEﬂE)

LpGTE =1

Lebesgue-Integral von f auf E.

Bemerkung. Das Lebesgue-Integral einer nichtnegativen Funktion kann den Wert +oo an-
nehmen. Die Definition ist sinnvoll, da nach Satz 4.16 jede nichtnegative, messbare Funktion
beliebig genau von unten durch Treppenfunktionen angenéhert werden kann.

Definition 5.2. Seien (X, M,u) ein Mafraum, £ € M und f : X — R messbar. Gilt
Jg f+du < 400 oder [ f—du < 400, so heift

[ran= [ redu- [ 1 au
FE E FE

Lebesgue-Integral von f auf E (mit fi und f_ wie in Folgerung 4.12). Die Funktion f heifst
summierbar auf E, wenn [ fi dpu < 400 und [, f— du < 400 gilt. Mit £(E, ;1) bezeichnen
wir die Menge der beziiglich p auf £ summierbaren Funktionen.

Bemerkung (Alternative Definition des Lebesgue-Integrals fiir beschrinkte Funktionen).
Im Falle beschrankter, messbarer Funktionen kann das Lebesgue-Integral dquivalent wie folgt
definiert werden: Fiir

m = inf f(z) > —o0 und M :=sup f(z) < 400
zel el

bezeichne
Z = {{yl,yQ,...,yn}:m:yl <Y << yYp =M, nGN}
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5 Das Lebesgue-Integral

die Familie aller endlichen Zerlegungen von [m,M] und fir Z = {y1,y2,...,yn} € Z
setzen wir E;j(Z) = {v € E : y; < f(x) < ¥i+1}, wenn ¢ € {1,2,...,n — 1}, und
E.(Z) ={x € E: f(x) = yo}. Dann kann man

/fdu = sup Y yip(Ei(2))

J zez

zeigen.

Beispiel 5.3. Wir betrachten X = R mit dem Lebesgue-Maf p und wéhlen E := [0, 1]
sowie
1, ze€Q,

.

(die so genannte Dirichlet-Funktion). Da u(Q) = 0 gilt, ist f messbar. Fiir f ist das Riemann-
Integral nicht definiert, weil die Funktion in keinem Punkt stetig ist. Jedoch existiert das
Lebesgue-Integral. Wir zeigen

/ fdp=0.

E

Sei also {y1,y2,...,yn} eine Zerlegung von [0, 1] (vgl. vorhergehende Bemerkung). Dann gilt

Ei:={zecE: 0=y < f(z) <y} =1[0,1]\ Q,
Ei={2eE:0<y < flx)<yp1 <1}=0 firi=2,3,...,n—1,
En::{l'EEif(lL‘):yn:1}:[0,1}ﬂ(@,
also "
> yi(E:) =0 p([0,1]\ Q) + 1 p([0,1] N Q) = 0.
=1 S———

<u(Q)=0

Beachte: Das gleiche Ergebnis folgt auch unmittelbar aus Definition 5.1, weil f selbst eine
Treppenfunktion ist.

Lemma 5.4. Seien (X, M, pn) ein Maffraum, E € M und ¢ = > | cixg, : X — R eine
messbare Treppenfunktion. Dann gilt

n
/cpd,u:Zci,u,(EﬂEi).
7 i=1
Beweis. Setzen wir I, :={i e N:1<i<n, ¢ >0tund I_:={i e N:1<i<n, ¢ <0},

so gilt w4 = Zi€I+ cixg, und ¢ = —3 . ¢iXg;- Aus Definition 5.1 folgt nun sofort

/gp.,. dp = Z cip(E N Ey) und /cp_ dp = — Z cip(E N E;).

i iely 5 iel_
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5 Das Lebesgue-Integral

Nach Definition 5.2 gilt somit

/soduz/wdu—/«pduchm(EﬂEz)-

E E E =1
O

Satz 5.5 (Eigenschaften des Lebesgue-Integrals). Seien (X, M,pu) ein Mafiraum, E € M
sowie f,g: X — R messbar.

(1) Gilt m < f(x) < M fir alle x € E mit Konstanten m, M € R, so folgt

mu(E) < /fdu < Mu(E).
E

(ii) 1 Mit f,g € L(E,pu) und c € R gilt f + g,cf € L(E,p) und

/(f+g)du:/fdu+/gdu sowie /Cfduzc/fd,u.
E E E E

E

(11i) Ist A C E messbar (d.h. A € M) und gilt f(x) >0 fir alle x € E, so folgt

[ran< [ran

A E

(i) Gilt 0 < f(z) < g(x) fur alle v € E, so folgt

og/fwg/ﬁw.
E

E

(v) Aus f(x) >0 fiir alle z € E folgt die Aquivalenz

/fdu:() & f(x) =0 fir fast alle z € E.
E

Beweis. (i) Man tiberlegt sich leicht, dass
max{0,m} < fy(r) <max{0,M} und —min{0,M} < f_(z)<-—min{0,m}

fir alle z € E gilt. Da somit max{0, m}xg bzw. —min{0, M } xg am Supremum in der

!Diese Aussage kann erst spiter mit Mitteln des Kapitels 6 bewiesen werden.
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Definition von [}, fy du baw. [, f— du teilnehmen (vgl. Definition 5.1), folgt

max{0,m}u(E /f+ dp bzw. — min{0, M }u(E /f_ dp.

Andererseits gilt fiir jede Treppenfunktion ¢, die am Supremum in der Definition von
Jg f+dp bzw. [ f— dp teilnimmt, ¢ < max{0, M}xg bzw. ¢ < —min{0, m}xg, also

/f+ dp < max{0, M }u(FE) bzw. /f_ dp < —min{0, m}u(E).
E E

Zusammen erhalten wir
() = (masx{0, m} + min{0, m} ) / Frdu - / - du
< (max{0, M} + min{0, M })u(E) = M,u(E)
Fiir den Beweis der beiden Aussagen bendtigen wir Sétze, die wir erst in Kapitel 6

formulieren werden.

O.B.d.A. gelte f > 0 (auf E erfiillt, Verhalten auf X \ E uninteressant). Wir setzen
T:={pc€ ij‘ t¢(x) =0Vz € X\ A} (vgl. Definition 5.1). Zu jedem ¢ = > 7" | ¢iXE, €
T]‘f‘ existiert dann ein ¢ = > " dixp, € T mit > i (AN E;) = >0 dipn(AN Fy);
man setze einfach m :=n, d; := ¢; und F; := E; N A. Somit gilt

sup Zczu ANE;) <suchzu ANE;)

peTf i1 PET i

und aus 7' C Tf folgt
suchlu ENE;) < sup Zcz,u ENE;).
wel ' p€TF i1
Wegen A C E, d.h. (AN E;) < pu(ENE;) fur E; € M, folgt die Behauptung.
Die Behauptung folgt wegen T}E - TgE sofort aus Definition 5.1.
»,="“ Setzen wir
F:={zeFE: f(x)>0}eM ud  E,:={z€E: f(z)> 1}

so gilt B, C Ep4q fir alle n € Nund F = |J;2 | E,. Zu zeigen ist u(F) = 0. Wir
nehmen also an, es wiirde pu(F) > 0 gelten. Nach Satz 2.6 gilt u(E,) — p(F) fir
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5 Das Lebesgue-Integral

n — 00, sodass dann ein € > 0 und ein ng € N mit u(E,,) > ¢ existieren. Aus (iii)
und (i) des Satzes folgt nun

1
0= [fau> [ fanz B> = >0
FE

Dies ist ein Widerspruch, d.h. u(F) = 0 ist gezeigt.

,<=“ O.B.d.A. gelte f > 0 (auf E erfiillt, Verhalten auf X \ F uninteressant). Sei
N € M eine Menge mit u(N) = 0 und f(xz) = 0 fir alle x € E\ N. Fiir jede
Treppenfunktion ¢ = Y7 | ¢;XE,, die am Supremum in der Definition von fEfd,u
teilnimmt, muss dann (¢; > 0 fiir i = 1,2,...,n vorausgesetzt) E N E; C F und somit
W(ENE;) <p(F)=0firi=1,2,...,n gelten. Also folgt > ; c;u(E N E;) = 0 und
damit [, fdu = 0.

0

Satz 5.6. Seien (X, M, ) ein MaBraum, f: X — R messbar sowie v : M — R die durch

=/fdu, AeM,
A

definierte Mengenfunktion.
(i) Gilt f >0, so ist v volladditiv.
(i) Gilt f € L(X, ), so ist v volladditiv.

Beweis. Wir zeigen (i). Seien zunéchst Aj, As,... € M paarweise disjunkt und sei A :=
Uj2, 4. Fiir alle o = Y1 cixp, € Tf‘ (vgl. Definition 5.1) gilt dann

Z CZ,U,(A N EZ) = ZCZ'M U (A] N El) = Z Z ci,u(AJ N E;
i=1 i=1 j=1 j=1 i=1
—Z/s@du<2/fdu 4j)
J= 1A J= lA

und der Ubergang zum Supremum liefert

/fdu— sup Zcm (AN E;) iy(Aj)
j=1

WGTA =1

Hieraus werden wir weiter unten die Subvolladditivitdt folgern; dazu benétigen wir jedoch
die Additivitdt von v.
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5 Das Lebesgue-Integral

Seien also A1, Ay € M disjunkt. Nach dem schon Bewiesenen gilt mit A3 = A4 =--- =10
Z/(A1 U Ag) < I/(Al) + I/(AQ).

Fiir beliebiges € > 0 existieren ¢; € Tf und ¢y € Tf 2 mit

[rans [oranse wd [rans [eadure

Ay Ay Az Az

p1(x) fallsx € Ay
Setzen wir  @(z) 1= { @o(x) fallsz € Ay , sogilt p € TthUAQ, und es folgt

0 sonst

V(A1)+V(A2):/fdﬂ+/fdu</<P1du+/<ﬂzdﬂ+25

Ao

Aq As Ay
:/wd,u—l—/godu+25(2 / pdp + 2e
Ay Ao A1UA5
< / fdu+2e =v(A; U Ag) + 2,
A1UA5
wobei man sich die Gleichheit (x) als Eigenschaft von Treppenfunktionen leicht iiberlegen
kann. Grenziibergang € — 0 liefert die Additivitat von v.
Zurtick zum Beweis der Subvolladditivitit. Seien nun B, By, B, ... € M mit B C Uiz, Bi.
Setzen wir A; := BN By und A; := (BDBZ)\(U;;Il Bj),sogilt B=J;2; A; und 4;NA; =0
fiir ¢ # j sowie A; C B;. Also folgt

v(B) < _Z v(4;) < Z v(By),

i=1 i=1

d.h. v ist subvolladditiv (die Additivitat haben wir dabei zur Anwendung von Satz 2.5 (v)
benétigt). Aus Satz 2.5 (vii) folgt nun die Volladditivitét von v.
Wie zeigen noch (ii). Wegen f € £(X, ) sind die durch

o) = [fede wd ()= [ g
A A

definierten nichtnegativen Mengenfunktionen endlich, d.h. fir alle A € M gilt v (A) < 0o
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5 Das Lebesgue-Integral

und v_(A) < oo. Nach (i) sind v4 und v_ volladditiv. Wegen

/fdu /f+du /f dpi = v (4) — v (A)

sieht man die Volladditivitat von v nun leicht ein. O

Folgerung 5.7. Seien (X, M, u) ein Mafiraum, f : X — [0, 00| eine nichtnegative, messbare
Funktion und A,B € M mit BC A und p(A\B) =0. Gilt [, fdp < co oder [5 fdp < oo,
so ist auch das jeweils andere Integral endlich und die Werte der beiden Integrale stimmen
tberein.

Beweis. Nach Satz 5.6 (i) (bendtigen hier nur die Additivitét) gilt

[ran= [ raus [rau= [ ran
B

A A\B B
~——
=0

wobei man sich das Verschwinden des ersten Summanden leicht anhand der Definition des
Integrals tiberlegen kann. O

Definition 5.8. Sei (X, M, pu) ein Makraum und sei E € M. Zwei messbare Funktionen

f,g : X — R bezeichnen wir als dquivalent auf E und schreiben f L g, wenn p({z € E :
f(z) # g(x)}) = 0 gilt, d.h. wenn f und g fast iiberall auf E tibereinstimmen.

Bemerkung. Man zeigt leicht, dass {x € E : f(z) # g(z)} € M gilt und dass L eine
Aquivalenzrelation auf der Menge aller messbaren Funktionen f: X — R ist.

Bemerkung. Aus Folgerung 5.7 erhalt man, dass fir f,¢g € L(E, u) mit f L g die Gleichheit
/ fdp= / gdu
E E

gilt.

Satz 5.9. Seien (X, M,pu) ein Mafraum, E € M und f : X — R messbar. Dann gilt
f € L(E,u) genau dann , wenn |f| € L(E, ) erfillt ist. Dabei ist fir alle f € L(E,u) die

Ungleichung
[ ranl< [ 11
E E

giltrg.
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5 Das Lebesgue-Integral

Beweis. Sei A:={x € E: f(x) > 0}. Dann gilt
/mw=/mw+/mw=/hw+/fmP/ﬁw+/fw
E A E\A A F\A B E

(bei der ersten Gleichheit haben wir Satz 5.6 (i) verwendet), d.h. [, |f]du < oo gilt genau
dann, wenn [ fy dp < oo und [ f— du < oo. Die im Satz formulierte Ungleichung ergibt
sich wegen der Dreiecksungleichung |a + b| < |a| 4 |b| direkt aus der Abschétzung

[ran|=| [ redu= [ra <|[reanls] [ 1-au = [ feans [ 1= [ 17100
E E E E E E E E

O

Satz 5.10. Seien (X, M, u) ein Mafiraum, E € M und f,g: X — R messbare Funktionen
mit |f(z)| < g(x) fir alle x € E. Aus g € L(E, ) folgt dann f € L(E, u) und

Zf@s/ﬁw.

E

Beweis. Wegen T|?| C TgE folgt aus Definition 5.1

/!f!duﬁ/gdu,
E

E

d.h. |f| € L(E, p). Nach Satz 5.9 gilt dann auch f € £(E, ;1) und mit dem Beweis zu Satz 5.9

erhalten wir
[ran=[teau—[rans [t [ 1 au= 17100
E E E E E E
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6 Grenzwertsatze fir Integrale

Satz 6.1 (Satz von Beppo Levi iiber monotone Konvergenz). Seien (X, M, u) ein Mafiraum,
E e Mund f, f, : X = R fiir n € N messbare Funktionen mit 0 < fi(x) < fo(z) < ... fiir
alle v € E und f(x) = limy, 00 frn(x) fir alle x € E. Dann gilt

nlggo/fnduz/fdu-
E E

Beweis. Wegen fy(z) < f(z) fir z € E folgt [ fadp < [ fdp fiir alle n € N und somit

lim /fndu < /fdu.
E FE

Insbesondere ist die Behauptung also fiir lim, o [ pfndp = +oo gezeigt. Fir n € N,
ce (0,1) und ¢ € T}E (vgl. Definition 5.1) definieren wir

Eu(p.c) i={z € B fu(2) > cp(a)).

Dann gilt E,(p,c) € M sowie Ei(p,c) C Ea(p,c)
z € E existiert zu jedem z € E einn € Nmit f,(x)
Weiter gilt

- C E. Wegen f()Z(p( ) fiir alle
(), A es folgt E = U, By (p,c).

/fndu> / fndp = / codp=c / @dp

En(% E'n((,p,c) E’ﬂ(ﬂarc)

fiir alle ¢ € T}E und alle ¢ € (0,1), wobei die letzte Gleichheit leicht aus Lemma 5.4 als
Eigenschaft aller Treppenfunktionen folgt. Bei Grenziibergang fiir n — oo ergibt sich daraus
wegen Satz 5.6 (i) in Verbindung mit Satz 2.6

c-
>c

n—00
E En(p:0) E

lim [ fodu>c li_>m / god,u:c/gpd,u.

Durch Ubergang zum Supremum iiber alle ¢ € Tf erhélt man schlieflich entsprechend der
Definition des Integrals iiber Treppenfunktionen

hm fndu > c sup /apdu:c/fdu.

TE
B L E
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6 Grenzwertsédtze fiir Integrale

Der Grenziibergang ¢ — 1 liefert dann die Behauptung. O
Mit Satz 6.1 konnen wir nun auch den folgenden wichtigen Satz beweisen.

Satz 6.2. Seien (X, M, u) ein Mafiraum, ¢ € R und f,g : X — [0,00] zwei nichtnegative,
messbare Funktionen. Dann gilt

/(f+g)du=/fdu+/gdu und /cfdu:c/fdu
E E E E

E

fiir alle E € M.

Beweis. Wir zeigen die Additivitdt zunéchst flir zwei messbare Treppenfunktionen ¢ =
>y cixp; und ¥ =370 dixp; (0.B.d.A. gelte UL, By = X =L, F)). Es gilt

o+ = ZCZZXEmF +Zd ZXEOF —ZZ (¢ci + dj)XEinF,
=1 7j=1 =1 j=1

und somit

n m

/(p—i—wdu ZZcH—d (EiNFjNE) chzuEijmE)Jridj w(E;NF;NE)

o) =1 j=1 =1 j=1 J=1 =1
n m
:Zciu(EiﬂE)—i—Zdju(FjﬂE /god /wdu.
i=1 j=1 %

Zu f und g existieren nach Satz 4.16 Folgen (¢, )nen und (¢, )nen nichtnegativer (vgl. Beweis
zu 4.16), messbarer Treppenfunktionen auf X mit 0 < ¢1 < @9 < ... bzw. 0 < ¢ < Py <

cund f(x) = limyeo @n(z) bzw. g(z) = lim, oo ¥ (x) fir alle z € X. Auferdem gilt
0<pi+¢1 <pa+12 <...und (f + g)(x) = limy—oo(n + ¥p)(x) fir alle x € X. Mit
Satz 6.1 folgt nun

/(f+g)dM=nlggo/son+¢nduZHILH;O/sDndqu?}LH;o/%du:/fdu+/gdu-
E E E E E E

Die Homogenitéat folgt fiir nichtnegative, messbare Treppenfunktionen sofort aus Lemma
5.4. Zu f wéahlen wir nun wieder eine Folge (¢, )nen nichtnegativer, messbarer Treppenfunk-
tionen mit 0 < 1 < o < ... und f(z) = limy, o0 ¢n(z) fir alle z € X. Dann gilt fiir ¢ > 0
auch 0 < cp1 < cpg < ... und (cf)(z) = limy, 00 (cpn)(z) fiir alle z € X, sodass aus Satz

6.1
/cfd,u: lim /cgond,u: lim c/gond,u:c/fdu
n—oo n—oo

E E E E
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6 Grenzwertsédtze fiir Integrale

folgt. Fiir ¢ < 0 gilt nun (vgl. Definition 5.2)
[etau=[enan- [endu=- [Cora=-¢o [ran=c [ ran
E E =0 E =—cf E E E
0

Satz 6.3. Seien (X, M, ) ein Mafraum, E € M und f : X — R messbar. Gilt f € L(E, 1),
so ist f fir fast alle x € E endlich.

Beweis. Sei AT :={zx € E: f(z) = +oo} undsei A :={x € E: f(z) >n} firn=1,2,....
Dann gilt AT C Al fir n=1,2,... und somit
N N 1 1 1
0<puA")<uwAN)= [ 1dp< [ —fdp== [ frdu<— [ frdpy,
At AF T n n
At E

——

<00

dh. p(AT)=0.Fir A~ :={z € E: f(z) = —occ} und A,, :={z € E: f(x) < —n} erhalten

wir analog

0<p) <uan < [1ans [Lenan=1 [rduss [ £

An Ay An

d.h. u(A7) =0. O

Satz 6.4 (Satz von Lebesgue iiber monotone Konvergenz). Seien (X, M, ) ein MafSraum,
EeMund f, f, : X — R fiir n € N messbare Funktionen mit f1(x) < fo(x) < ... fiir alle
x € E und f(x) = lim, o0 fn(z) fiir alle x € E. Existiert ein m € N mit f,, € L(E, ), so

gilt
ﬁ&/hwz/ﬁw
E E

Beweis. O.B.d.A. gelte m = 1 (sonst die ersten m — 1 Folgenelemente verwerfen und den
Rest neu nummerieren). Nach Satz 6.3 ist f; dann fast iiberall auf E endlich. O.B.d.A.
konnen wir annehmen, dass f; auf ganz E endlich ist (sonst f; durch dquivalente, auf E
endliche Funktion ersetzen). Definieren wir g, : X — R fiir n € N durch

gn() = {fn<x> Ch@), zek,
0, zre X\ E,

so ist g, messbar und es gilt 0 < g1 < go < .... Auferdem setzen wir g(z) := lim, o0 gn(2)
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fiir € X. Die so definierte Funktion g : X — R ist ebenfalls messbar. Satz 6.1 liefert nun
i [ £ = tim [gndu= [gdu= [ £ pian,
n—oo n— o0
E E E E
und somit die Behauptung (unter Verwendung von Satz 5.5 (ii)). O

Satz 6.5 (Lemma von Fatou). Seien (X, M, ) ein Mafiraum, E € M und f, : X — R fiir
n € N messbare Funktionen.

(i) Gilt f, >0 fiir alle x € E und n € N, so folgt

/lim inf f, dp < lim inf/fn du.
n—oo n—oo
E E

(i) Gilt fr(z) <0 fir alle x € E und n € N, so folgt

/lim sup fpdyp > lim sup/fn dp.
E

n—00 n—00
E

Beweis. Wir zeigen (i). Setzen wir g, := infg>,, fr : X — R fiir n € N, so gilt g, (x) > 0 sowie
0<g1(z) < go(x) < ... fiirallex e E. Esfolgt 0 < [g1dpu < [godp < ... und damit die
E

Existenz von limy, o0 5 gn dp € [0, 00]. AuRerdem gilt g, < f,, also [pgndp < [5 fndp.
Wir erhalten hieraus zunéchst

lim gndp = lim inf/ gndp < lim inf/ fn dpu.

n—oo

Setzen wir nun g := lim, o gn = SUP, ey gn = liminf, o f, und wenden Satz 6.1 auf g
und g, an, so erhalten wir aufserdem

/liminffnd,u:/gduz lim /gnd,u,.
n—oo n—o0
E E E

Damit ist (i) gezeigt. Punkt (ii) folgt nun direkt aus (i), da

n—o0 n—oo

/limsupfn dp = —/liminf (—fn) du > —liminf/ —fndp = limsup/fn dp
N—00 N = n—oo
E B >0 B E

gilt. O

Satz 6.6 (Satz von Lebesgue iiber dominante Konvergenz). Seien (X, M, u) ein Mafiraum,
EecMund f, fn : X — R fir n € N messbare Funktionen mit f(x) = limy, o0 fn(z) fir
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alle x € E. Euxistiert eine Funktion g € L(E, u) mit
ful@)| < gla) fiir alle x € E,

so gilt f € L(E,p) und
Jim fn du = /fdu

Beweis. Wegen |f,(z)| < g(z) fiir alle x € E und n € N gilt auch |f(z)| < g(z) fur alle
x € E, sodass aus Satz 5.10 f € L(E, u) folgt. Nach Satz 6.5 gilt dann

n—oo n—o0

1imsup/fn—gdus/limsup(fn—g)dMZ/f—gdu,
0 E E

sowie
/(f—l—g)d,u = /liminf(fn +g)du < liminf/fn + gdp.
n—oo A,—/ n—oo
E ) >0 E

Zusammen liefert dies

n—0o0

limsup/fndug/fduglirginf/fndu,
E E

d.h. lim, fE fn dp existiert und ist gleich fE fdu. O

Bemerkung. Satz 6.6 liefert eine hinreichende Bedingung fiir die Summierbarkeit einer mess-
baren Funktion. Wir wollen zusétzlich eine notwendige und zugleich hinreichende Bedingung
formulieren:

Gilt fiir messbare Funktionen f, f,, : X — R auf einem Mafraum (X, M, 1) die Eigenschaft
0 < fi(z) < fa(x) < ...sowie f(x) = limy, o fn(z) fiir alle x € E € M, so ist f € L(E, u)
genau dann erfiillt, wenn eine Teilfolge (fn,)reny mit [5 fr, dp < C < oo fiir alle k € N
existiert, was dquivalent ist zur Bedingung | g fndp < C fiir alle n € N.

Beweis: Mit f € L(E, u) gilt fiir n € N

Og/fnd,u,g/fd,u,::0<oo.
E E

Existiert umgekehrt eine Teilfolge (fy, )reny mit der geforderten Eigenschaft fiir ein C' > 0,
so gilt die Eigenschaft aufgrund der Monotonie der Folge (f,) fiir alle n € N. Mit Satz 6.5
folgt nun

0< /fdp = /liminffnd,u < liminf/ fadu <C,
n—0o0 n—oo E
E E

d.h. fe L(E, p).
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Als Gegenbeispiel kann man betrachten

pE)=m <o fule)=n,  lim fu=f=too [ fudu=nm<oc
E

mit
lim fndu:/fdu:oo.
n—o0
E E
Es gibt also keine Konstante C' > 0 mit [ f,dp < C Vn € N. Wir haben dann zwar
E

fn€ L(E,pn) VneN,aber f & L(E,p).
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7 Vergleich von Lebesgue-Integral und
Riemann-Integral

In diesem Kapitel betrachten wir ausschlieflich den Lebesgue’schen Mafkraum (R, L(R), i),
d.h. p ist das Lebesgue-Mafs auf der Lebesgue’schen o-Algebra £(R). Weiter betrachten wir
messbare Funktionen f : R — R, d.h. die Urbilder f~!(B) von Borel-Mengen B € B(R) sind
selbst Borel-Mengen und gehoren damit zu £(R). Im Mittelpunkt stehen in diesem Kapitel
Funktionen f, die nur auf dem abgeschlossenen Intervall [a,b] mit —co < a < b < 400 zu
definieren sind. Dann kann man sich f als mit Null auf ganz R fortgesetzt betrachten. Ei-
ne alternative Betrachtungsweise besteht darin, gleich den Mafkraum ([a, b], L(R) N [a, b], 1)
anzusehen, wobei dann unter £(R) N [a,b] die so genannte Spur-o-Algebra von L£(R) ein-
geschriankt auf das Intervall [a,b] zu vestehen ist. Beides fithrt in der Regel zum gleichen
Ergebnis.
Es sollen im Weiteren

b b
(R)/f(m) dz bzw. (L)/f(:c) de:= [ fdu
a a ]

[a7b

das Riemann- bzw. Lebesgue-Integral von f auf [a, b] bezeichnen. Wahrend der Begriff des
Lebesgue-Integrals aus Kapitel 5 hinreichend gut bekannt ist, wollen wir den Begriff des
Riemann-Integrals hier noch einmal wiederholen und im Lichte von Treppenfunktionen etwas
anders interpretieren.

Dazu betrachten wir eine Folge von Zerlegungen (Zi)reny des Intervalls [a,b] mit
Z), = {a:'{j,:rlf, e ,x’,:} und a = $]5 < xlf < < xi = b sowie AZ}, := maxj<;<k \xf — xf_l\ )
Wir nehmen an, dass aufeinanderfolgende Zerlegungen Z;, und Zyy; durch Einfiigung eines
zusétzlichen Punktes erfolgen, sodass Z1 C Zy C ... Zy C Zpyq1 C ... gilt, und die maxima-
len Léngen von Teilintervallen in der Zerlegung asymptotisch fiir & — oo gegen Null gehen,
d.h. limg_, o AZ = 0 gilt. Solche Zerlegungsfolgen nennen wir regulér.

Fiir beschriankte Funktionen f betrachtet man nun die auf ganz R definierten reellen
Unterfunktionen L(x) und Oberfunktionen U (x), die iiber die Zuordnungen

Uk(a) := Lg(a) := f(a), Uk(x) := Lg(z) :==0 fiir z € R\ [a, b

und fiir z € (2% |, 2% (i=1,2,...,k)
Uk(x) :=M; == sup f(&) bzw. Li(z) :=m; := i/?f . f(€)
ée(al |2k g€z 7]
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7 Vergleich von Lebesgue-Integral und Riemann-Integral

definiert sind. Diese Funktionen sind offenbar messbare Treppenfunktionen, und es gilt

b k
©) [ Lulo)de =Y mitek — o) = 5(Z0. )
a =1

bzw.

b k
m/wmm-mecﬁﬁaa%ﬂ

a

Wir haben dabei die Untersummen s(Z, f) und die Obersummen S(Zy, f) der Zerlegung
Z ins Spiel gebracht. Wegen Z; C Zs C ... erhalten wir

Ui(x) > Us(x) > -+ > f(x) > -+ > Lao(x) > Li(z) fur alle z € [a, b].
Wir setzen

U(z) := lim Ug(x) und  L(z) := lim Lg(z) fir alle z € R.

k—o0 k—o0

Definition 7.1. Eine auf [a, b] definierte reelle Funktion f heift Riemann-integrierbar, wenn
sie beschrankt ist und fiir jede reguldre Zerlegungsfolge gilt

lim s(Z, f) = lim S(Z, f),
k—o0 k—o0
wobei wir diesen dann von der konkreten Zerlegungsfolge unabhéngigen Grenzwert Riemann-
b
Integral von f tiber [a,b] nennen und mit dem Symbol (R) [ f(z) dz bezeichnen.
a
Eine dquivalente Definition der Riemann-Integrierbarkeit auf der Basis von dem Riemann-
Integral angepassten Treppenfunktionen (wir nennen sie hier (R)-Treppenfunktionen) soll

im Folgenden noch erwdhnt werden (vgl. > K. D. ScHMIDT: Maf und Wahrscheinlich-
keit, S.181f). Mit Blick auf das Intervall [a, b] werde dabei eine Treppenfunktion ¢ : R — R

als (R)-Treppenfunktion bezeichnet, wenn sie die spezielle Gestalt f(x) = ¢ mit
Tio1 < x < m (1 = 1,2,...,k) fir eine Zerlegung a = z9 < 21 < ... < 1 < T = b
b k
des Intervalls [a, b] besitzt. Es gilt dann offensichtlich (L) [ ¢(z)dz = > ¢;(x; — @i—1).
a =1

Definition 7.2. Eine auf [a, b] definierte reelle Funktion f heift Riemann-integrierbar, wenn
sie beschrankt ist und die reellen Zahlen

b
$ 1= sup (L)/go(w) dz: @ist (R)-Treppenfunktion mit ¢(x) < f(x) Vx € [a, b]
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7 Vergleich von Lebesgue-Integral und Riemann-Integral

und
b
S :=inf (L)/gp(w) dz: ¢ist (R)-Treppenfunktion mit f(z) < ¢(x) Vz € [a, b]

b

tibereinstimmen, wobei dann als Riemann-Integral (R) [ f(z)dz := s = S bezeichnet wird.
a

Wir werden uns aber auf die erste Version der Definition konzentrieren und kénnen nun auf
der Grundlage der oben durchgefithrten Uberlegungen leicht den folgenden Satz beweisen.

Satz 7.3. Sei f: R — R eine Funktion und es gelte —o0o < a < b < +00.
(i) Ist f Riemann-integrierbar auf [a,b], so gilt f € L([a,b], ) und

(L)/bf(x) dr = (R)/bf(fr) dz.

(ii) Die Funktion f ist genau dann Riemann-integrierbar auf [a,b], wenn sie auf [a,b]
beschrinkt und fast iberall auf [a,b] stetig ist.

Beweis. Wir beweisen (i). Da f Riemann-integrierbar ist, ist f beschriankt. Aus der Riemann-
Integrierbarkeit von f folgt fiir eine regulédre Zerlegungsfolge

b
i s(Ze, £) = (®) [ f(o)do = lim S(Ze. ).

Andererseits folgt aus Satz 6.6 (Satz von Lebesgue iiber dominante Konvergenz)

b b

b b
kli)ngo(L)/Uk(x) dz = (L)/U(az) dz und kh_}nolo(L)/Lk(x) dz = (L)/L(m) dz,

zusammen also
b

(L) / L(z)dz = (R) /b f@)dz = (L) / U(z) da.

a a

SchlieRlich folgt mit Satz 5.5 (v) aus L(z) < f(z) < U(z) fir x € [a,b], d.h. U(x)—L(z) > 0,
und (L) fab[U(a:) — L(z)]dz =0, dass U(z) = f(z) = L(x) fir fast alle z € [a, b] gilt. Somit
erhalten wir f € L([a,b], u) und
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Wir beweisen nun noch (ii). Seien die Bezeichnungen wie im Beweis zu (i). Mit Z :=
Urey Zi gilt dann p(Z) = 0 (da Z abzéhlbar ist). Wir zeigen zunéchst als wichtige Hilfs-
aussage, dass f genau dann stetig in zg € [a,b] \ Z ist, wenn U(xo) = L(xo) gilt.

Sei f also stetig in xg € [a,b] \ Z. Dann existiert zu jedem ¢ > 0 ein 6 > 0 mit
|f(x) = f(zo)] < § fiir alle z € [a,b] mit |z — x| < §. Wegen AZ, — 0 existiert ein
K € Nmit AZy, <0 fiir alle k > K. Fur ip € {1,2,...,k} mit zg € (zi,—1,x;,] gilt folglich

k(o) ~ Li(ro) = My — may = (Myy — F(w0)) + (Flao) — mig) < = + 5 = ¢

und aus € — 0 folgt somit U(xg) = L(zo). Es gelte nun U(xg) = L(xz¢) fir z¢ € [a,b] \ Z.
Fiir beliebiges € > 0 gibt es wegen U(x¢) = f(x0) = L(xg) dann ein K € N mit

Uk (x0) — f(xo) <€ und f(zo) — L (z0) < €.
Setzen wir § := mingcy, |ro — z|, so gilt auferdem
Lk (xo) < f(z) < Ugk(xo) fir alle z € [a,b] \ Z mit |z — zo| <.

Zusammen erhalten wir |f(x) — f(xo)| < € fiir |z — 20| < J, d.h. f ist stetig in xp. Damit ist
die Hilfsaussage bewiesen.

Ist f nun Riemann-integrierbar, so ist f beschriankt und aus dem Beweis zu (i) folgt, dass
U(x) = f(x) = L(x) fir fast alle x € [a,b] und damit auch fiir fast alle z € [a,b] \ Z gilt.
Wegen der Hilfsaussage ist f dann fiir fast alle = € [a,b] \ Z stetig und folglich fast {iberall
auf [a, b] stetig. Ist umgekehrt f beschriankt und fast iiberall stetig auf [a, b], so gilt wegen
der Hilfsaussage U(z) = f(x) = L(z) fast iiberall auf [a,b] \ Z und damit auch fast iiberall
auf [a,b]. Es folgt

(L) /b U(z)dz = (L) /b L(z)da

und mit Satz 6.6 erhalten wir

b b

lim (S(Zy, f) — s(Zy, f)) = lim (L)/Uk(x) dzr — lim (L)/Lk(a:) dx

k—o00 k—o00

d.h. f ist Riemann-integrierbar auf [a, b]. O

Beispiel 7.4. Die Dirichlet-Funktion auf [0, 1] aus Beispiel 5.3 ist beschrénkt, aber nirgends
stetig. Nach Satz 7.3 (ii) ist sie also nicht Riemann-integrierbar.
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7 Vergleich von Lebesgue-Integral und Riemann-Integral

Beispiel 7.5. Wir dndern die Dirichlet-Funktion auf [0, 1] aus Beispiel 5.3 wie folgt:

_Jsinz, x€Qn]0,1],
f@) = {372, x €[0,1]\ Q.

Diese Funktion ist messbar und nach Satz 7.3 (i) gilt

(L)/lf(x)dx: / fdu+ / fdu:(L)/ledx:(R)/ledx:;,
0 0 0

[0,1]NQ [0,1\Q
=0
weil wir den Integranden auf einer Menge vom Maft Null beliebig &ndern diirfen. Da f

in keinem Punkt stetig ist, ist f nicht Riemann-integrierbar auf [0, 1], jedoch gibt es eine
dquivalente Riemann-integrierbare Funktion, namlich = + x2.

Beispiel 7.6. Ein dhnliches, aber doch anders geartetes Beispiel liefert die Thomae-Funktion
auf [0,1]

fx) = {L, x =0,
0, z€l0,1]\Q.

L 2=2¢cQn(0,1] (m,n teilerfremd),

Diese ist genau in allen irrationalen Punkten des Intervalls [0, 1] stetig und somit nur auf
einer Menge vom Mafe Null unstetig. Damit ist die Funktion Riemann-integrierbar und
das Riemann-Integral stimmt mit dem Lebesgue-Integral iiberein, welches offensichtlich den
Wert Null besitzt.

Beispiel 7.7. Wir betrachten die durch

sinz7 J}>0,
)= r
o= {5

gegebene Funktion. Diese ist auf [0, T] stetig fiir alle 7" > 0 und damit auf jedem solchen be-
schrinkten Intervall Riemann-integrierbar. Im Sinne eines uneigentlichen Riemann-Integrals
gilt

oo T
sin x sinx s
dz = li de = —.
®) f 5570 = i B [ 52 0w = 3
0 0
Wegen f[o 00) |fldp = 400, d.h. |f| ¢ L(][0,00), 1), gilt aber f ¢ L£([0,00), u). Wegen der
Endlichkeit des uneigentlichen Integrals (R) [ % dx < oo miissen dann aber beide Integrale

0
f[O,oo) f+dp und f[o,oo) f— dp gleich 400 sein, denn es konnen nicht beide gleichzeitig endlich

sein und eines davon endlich und das andere +oo wiirde dem widersprechen.
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Beispiel 7.8. Wir betrachten eine fast iiberall stetige Funktion f: R — R mit f(z) = 0 fur
x <0, f(x) >0 fir z > 0 und (R) fOT f(z)dz < oo fiir alle T > 0. Setzen wir

_ ) f@), z<n,
D A
sogilt 0 < f1 < fo <...und
/ Jndp = (L)/f(a?)dx = (R)/f(ac)dx < o0.
[0,00) 0 0

Wegen f(z) = limy,_,o0 fn(x) fiir alle 2 € R folgt aus Satz 6.1

[ fau=tin [ fau= tim @) / f(x)dxz(R)]of(x)dx = 1.
[0,00) 0

[0,00) 0

Somit gilt f € £([0,00), ) genau dann, wenn I < oo gilt.
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8 L’-Raume und Ausblick auf
Sobolevraume
Definition 8.1. Sei (X, M, ) ein Mafraum und sei f € L(X, p).
(i) Mit [f] := {g : X — R : g messbar, g X f} (vgl. Definition 5.8) bezeichnen wir die

Aquivalenzklasse aller fast iiberall mit f identischen, messbaren Funktionen auf X.
Die Funktion f heift dabei Reprisentant der Aquivalenzklasse.

Ifllp == Qf”du

I[£]lloo := ess sup | f| := inf{c € R: |f(x)| < c fiir fast alle z € X}.
X

(ii) Fiir p € [1,00) setzen wir
und wir setzen

(iii) Fir p € [1, o0] setzen wir
LP(X,p) :={[g] : g+ X — R messbar ||[g]|[, < oo}

Das Paar (LP(X, p1), | ||p) bezeichnen wir als LP-Raum.

Bemerkung. Der Kiirze halber schreiben wir statt ||[f]||, stets || f||, und statt [f] € LP(X, p)
nur f € LP(X, ). Es erweist sich, dass die Zuordnung ||[f]||, fiir alle p € [1, oo] die drei Nor-
maxiome erfiillt und dass die Paare (LP(X, p1), ||+||,) lineare normierte Réume représentieren.
Die Grofse ess supy f heiltt wesentliches Supremum einer Funktion f auf X.

Beispiel 8.2. Sei X :=(0,1), p das Lebesguemaf und wir schreiben kurz LP(0,1) .
(a) Fiir die Funktion z(t) = ﬁ gilt x € LP(0,1) genau dann, wenn p < 2 ist.

(b) Fiir die Funktion z(¢) = + gilt z ¢ L>(0,1).

1
(c¢) Fiir die Funktion z(t) = sin (t) gilt x € L>(0,1).
Definition 8.3. Fiir p € (1,00) heifst der durch %—G— % = 1 eindeutig bestimmte Wert

q € (1,00) der zu p konjugierte Wert. Statt ¢ schreibt man auch p*. Fiir p = 1 bezeichnen
wir ¢ = oo als konjugierten Wert und fiir p = oo setzen wir ¢ = 1.
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8 LP-Raume und Ausblick auf Sobolevraume

Bemerkung. Offensichtlich gilt (p*)* = p.

Lemma 8.4 (Young’sche Ungleichung). Fir konjugierte Werte p,q € (1,00) gilt

al b
ab < — + —  fir alle a,b > 0.
p q

1 1
Beweis. Die zu zeigende Ungleichung ist offensichtlich dquivalent zu crded < 2% + g fiir
¢,d > 0. O.B.d.A. nehmen wir ¢ > d > 0 an (fir ¢ = d = 0 ist die Behauptung trivial).

1
Mit ¢ := § > 1 und Division durch d erhalten wir die dquivalente Ungleichung t» < % + %.

1
Setzen wir g(t) := t» und h(t) := %—I— %, so miissen wir also g(t) < h(t) fiir t > 1 zeigen. Aus

1 1_ 1 _1
gt)=—-tr = 2¢"a <
b

=h'(t) firt>1
p

"=

folgt, dass h stiarker wéchst als g, und zusammen mit g(1) = h(1l) = 1 liefert dies die
Behauptung. O

Satz 8.5 (Holder- und Minkowski-Ungleichung). Seien p, q € [1, 00| konjugierte Exponenten.
Dann gelten

(i) die Holder-Ungleichung

I fgllt < I fllpllglly — fir fe LP(X,u), g € LYX, 1)

und

(i) die Minkowski-Ungleichung
1F+gllp < fllp +llglly — fir fig € LP(X,p).

Beweis. Wir zeigen (i). Seien zunéchst p,q € (1,00) und o.B.d.A. gelte ||f||, # 0 sowie
llgllg # 0 (sonst fg = 0 fast iiberall). Mit

@, e
™ YT,

liefert Lemma 8.4

P q
0 < @la@)] 1|f($)]1 +}Ig(l‘)q|
1l llglle = 2 If1Ip a llgllg
und Integration tiber X ergibt

1 / 1 1 1 1
L Ifgldu</f\pdu+ /Iglqdu=+=1-
HprHquX pllfllﬁx quHZX P q

N—— N——
=[I£115 =llgllg
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8 LP-Raume und Ausblick auf Sobolevraume

Daraus folgt nun sofort die Behauptung.
Wir zeigen die Behauptung fiir p = co und ¢ = 1 (fiir p =1lund ¢ =00 analog). Nach
Definition des wesentlichen Supremums von |f| existiert ein f € [f] mit

ess sup |f] = sup | fI.
X X

Mit Satz 5.5 (i) gilt also

/ ol du = / llg < ess sup 1 / gl dae = [ loellglh-
X X X

Wir zeigen nun (ii). Seien zunéchst p, ¢ € (1,00). Fiir alle x € X gilt

(@) + g(@)P = |f (@) + g(@)l| f(2) + g(@) P~ < (1f (@)] + g(@) )| f(2) + g(a) P~

Integration iiber X liefert

I+l < / IS+ g du+ / gl1f + gl du
X X

und mit ¢ := ;25 erhalten wir aus (i)

q

1+ allp < 1F Il + 9~ g + gllp I (f + 9P Hlg = (1F 1l + llgll) /(f +9)" dp

= (171l + gl S+ gll3 = (Ll + gl +alp™

Damit folgt die Behauptung.
Fiir p =1 folgt die Behauptung durch Integrieren iiber X von

|f(2) + g(2)] < |f(2)] + |g(x)]
und fiir p = oo folgt die Behauptung aus der Definition des wesentlichen Supremums. O

Bemerkung. Nach Satz 8.5 (i) gilt fiir konjugierte Werte p, ¢ € [1, 00| stets
felP(X,p), g€ LI(X,p) = fgeL'(X,p)
Satz 8.6. Fiirp € [1,00] ist LP(X, p) mit der Norm ||«||, ein reeller Banach-Raum.

Beweis. Sei zunéchst 1 < p < oo. Offensichtlich gilt fir f € LP(X,u) und A € R stets
Af € LP(X, ) und wegen Satz 8.5 (ii) folgt aus f,g € LP(X, ) auch f+ g € LP(X, p) (da
es sich bei LP(X, i) eigentlich um Aquivalenzklassen handelt, miissen wir [f] + [g] := [f + g]
und A[f] := [\f] definieren; man {iberlegt sich leicht, dass diese Definition korrekt ist). Die
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8 LP-Raume und Ausblick auf Sobolevraume

Axiome des linearen Raumes kann man leicht zeigen. Ebenso sieht man leicht, dass || «[|, eine
Norm ist. Es verbleibt also nur noch der Beweis der Vollstandigkeit des normierten linearen
Raumes LP(X, u).

Sei also (fx)ken ein Cauchy-Folge in LP(X, u). Zu jedem n € N existiert dann ein N(n) € N
mit

L
Ife = fillf < 5 fiir alle k.1 > N(n),

wobei wir 0.B.d.A. N(1) < N(2) < ... annechmen koénnen. Konvergiert nun die durch g,, :=
fn(n) definierte Teilfolge (gn)nen von (fy) gegen ein g € LP(X, ), d.h. ||gn — gl — 0, so
folgt

1
1% = gllp < [1fx = gnllo + llgn = gllp = 1fx = Fnmyllp + [lgn = gllp < =T lgn — gllp
p

fir K > N(n). Da die rechte Seite fiir groftes n beliebig klein wird, folgt || fr — ¢g||, — 0, d.h.
LP(X, p) ist vollstandig. Wir zeigen also die Konvergenz der Folge (gy,). Dazu setzen wir fiir
neN

1
Y, = {x € X :|gnt1(x) — gn(x)|P > 2n}
sowie
o o0
o 1= U Y, und Z:= ﬂ Zn.
k=n n=1
Es gilt
w(Yn) = /ldu < /2"|gn+1 — gn|Pdp < 2”/ |9n+1 — gnl? dp
A 1
=2"lgn+1 — gnll}) < o = on
und somit

0<u(Z)=np (ﬂ Zk) < ul(Zn) = p (U Yk) <> u(Yr)
k=1

k=n

00 1

1 1 1— 357 1
SZ%ZI 1_1 21 :27171’
k=n T2 T2

d.h. u(Z) =0 (da n € N beliebig). Wir setzen nun

(z) == 91(x) + 3021 (gny1(2) — gn(z)), € X\ Z,
! ' 0, LRA

Die auftretende Reihe konvergiert, da zu x € X\ Z ein n € N mit x ¢ Y}, fiir k£ > n existiert.
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8 LP-Raume und Ausblick auf Sobolevraume

Wir haben dann fiir solche x

[e's) 0 1 1
Y lgrn(@) —ge(@) <D 5 = —=
k=n k=n i

k n
2p 2

d.h. die Reihe ist absolut konvergent. Man sieht leicht, dass g messbar ist. Mit Satz 6.1 folgt

nun
o0 P
X X\Z X\Z k=n
00 P m »
< _ _ . B
< [ (Smo-at) o [ g (S -] o
x\z “k=n X\z k=n
m p m P
= (Z 941 = gk') dp = lim Z |9k+1 — gkl
X\Z kZTL -n »
p

IN

m p 0
m (; lgk+1 ngp) = (; 1N (t1) = fN(k)”p)
< 1\ 1\ 1 noeo
Z 2 | T 22(n—1) - 922(n—1) — 0

k=n 2? b

IN

dh. g —g, € LP(X,p) fir n € N und ||g — gnll[p — 0 fiir n — co. Auberdem folgt g =
(9—91) + g1 € LP(X, ).

Sei nun p = co. Man zeigt leicht, dass mit f,g € L>°(X, u) auch f+ g € L®(X, ) gilt.
Ebenso gilt A\f € L*°(X, p) fir A € Rund f € L(X, ). Zum Beweis der Normaxiome (die
des linearen Raums sind leicht zu priifen) bedarf nur die Homogenitét naherer Ausfithrungen.
Seien also A € R und f € L*°(X,u). Dann gilt offensichtlich |[Af|lcc < [A|||f|loo. Fiir die
Umkehrung sei t € (0,1) beliebig. Dann gilt ¢[|f|lcc < ||f|lcc (0.B.d.A. sei f # 0), d.h.
|f(z)] <t flloo gilt nicht fiir fast alle x € X, also pu({x € X : |f(z)| > t||flloc}) > 0. Somit
folgt u({x € X : [Af(x)] > t|Al||flloo}) > 0 und daher ||Af|loo > tIA|||flloo fiir alle ¢ € (0,1).
Der Grenziibergang t — 1 liefert [|Af]|c > |A|||f|lcc und damit die Homogenitét von || ¢||c.
Es verbleibt die Vollstandigkeit von L (X, u) zu zeigen.

Sei also (fn)nen eine Cauchy-Folge in L>®(X, ). Wir setzen K := sup, ey || fnlloc < 00
sowie fur k,n,m € N

Fp={zeX:|fu(x)] > K} und E,, ={xeX:|fu(x)— fm(@)| > |fn— fmlle}

Offensichtlich gilt pu(Fy) = 0 und p(Ey m) = 0. Setzen wir E := (Upe Fi)U(Ue1 Unei Enm),
so gilt daher auch p(E) = 0. Jedes x € X \ E erfiillt nun

61



8 LP-Raume und Ausblick auf Sobolevraume

sowie |fr(z)] < K fir alle n € N. Da R vollstandig ist, existiert f(x) := limy_ oo fn(z) fiir
alle z € X \ E. Mit f(z) := 0 fiir z € E folgt |f(z)| < K fiir alle z € X und f ist eine
messbare Funktion, d.h. f € L% (X, u). Sei nun € > 0 beliebig. Dann existiert ein N € N
mit

|fr(x) = fm(@)| < ||fn — fmlloo < e fir alle m,n > N und alle x € X \ E.

Der Grenziibergang m — oo liefert |f,(z) — f(x)| < ¢ fir alle n > N und alle z € X \ E,
d.h. || fn = flleo < e (da p(E) = 0). Damit ist || f, — fllco — 0 gezeigt. O

Satz 8.7. In L*(X, ) kann mittels

0 ) = / Jgdu fir f,g € L2(X, )
X

ein Skalarprodukt eingefiihrt werden, sodass

Ifll2 = \/fs P2, fir f € DX, p)

gilt. Mit diesem Skalarprodukt ist L*>(X, i) also ein Hilbertraum.

Beweis. Nach Satz 8.5 (i) gilt

/ Foldu < [1fll2llgl < oo
X

und mit Satz 5.9 folgt daraus, dass (f,g)r2(x,,) als reelle Zahl wohldefiniert ist. Die Giil-
tigkeit der Axiome des Skalarprodukts ldsst sich leicht nachpriifen. Offensichtlich gilt auch

<f7 f)LQ(X,,u) = HfH% O

Im restlichen Teil dieses Kapitels betrachten wir als Grundmenge X ausschlieklich
X = (a,b) mit —c0 < a < b < oo. Als o-Algebra wihlen wir die Spur-o-Algebra
M = L(R) N (a,b) = {AN(a,b) : A € LR)} C L(R), wobei L(R) die Lebesgue’sche
o-Algebra auf R bezeichnet. Als Mak verwenden wir das Lebesgue-Maf auf (a,b), d.h. die
Einschrankung p|p auf M des Lebesgue-Mafies p auf R. Wir setzen f; fdu = f(a’b) fdu

und bezeichnen das Riemann-Integral einer Funktion f auf [a,b] mit (R) fab f(z)dz. Weiter
setzen wir LP(a,b) := LP((a,b), u|m) fir p € [1,00]. An dieser Stelle sei angemerkt, dass
es wegen u({a,b}) = 0 egal ist, ob wir X = (a,b) oder X = [a, b] betrachten, d.h. die ent-
sprechend definierten LP-Raume sind identisch (genauer: isometrisch isomorph). Man zeigt
leicht, dass LP'(a,b) D LP?(a,b) fir 1 < p; < py < oo gilt (Satz 8.5 (i) mit p := g—f und
4= 52

Mit C*°(a,b) bezeichnen wir im Folgenden die Menge aller beliebig oft differenzierba-
ren Funktionen f : R — R mit supp f := {x € R: f(z) # 0} C (a,b), d.h. mit in (a,b)
enthaltenem Triger. Die Elemente von C'* (a,b) heifen auch Testfunktionen.

auf |f|P* und 1 anwenden).
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8 LP-Raume und Ausblick auf Sobolevraume

Definition 8.8. Sei f € L!(a,b). Eine Funktion g € L'(a,b) heifit (erste) verallgemeinerte
Ableitung von f (Schreibweise: f’ := g), wenn

b b
/fgo’du =— /ggpd,u fiir alle p € C™(a, b)

gilt. Entsprechend definiert man die zweite verallgemeinerte Ableitung als verallgemeinerte
Ableitung von g usw.

Bemerkung. Man kann zeigen, dass die verallgemeinerte Ableitung g eindeutig bestimmt ist
(im Sinne der Aquivalenzklasse [g]).

Bemerkung. Fiir f € C'[a,b], d.h. f ist stetig differenzierbar auf [a, b] (wobei an den Réndern
nur einseitige Differenzierbarkeit bzw. Stetigkeit betrachtet wird), stimmen klassische und
verallgemeinerte Ableitung iiberein. Denn fiir ¢ € C°°(a, b) mit supp ¢ C [¢,d] C (a,b), d.h.
e(x) =0 fir x € (a,c)U(d,b) und somit ¢'(z) = 0 fiir z € (a,c]U]d,b), folgt durch partielle
Integration

b d d
/ fo' du = / fodu=(R) / F@)g! () dx = [f()p(@)E=t — (R) / f(@)plx) de

d b
:—/f’sodu=—/f’<pdu-

Die Definition der verallgemeinerten Ableitung entspricht also der bekannten Regel der par-
tiellen Integration.

Beispiel 8.9. Seien a = -1, b=1und f:(—1,1) = R durch

gegeben. Dann ist f in (—1,0) U (0,1) differenzierbar, jedoch nicht in z = 0. Wir zeigen,

dass die durch
0, ze€(—1,0],
g(z) = (=1,0
1, ze€(0,1)

definierte Funktion g : (—1,1) — R die verallgemeinerte Ableitung von f ist. Fir ¢ €
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8 LP-Raume und Ausblick auf Sobolevraume

C>(—1,1) mit suppp C [¢,d] C (—1,1) gilt

/jst’d/L C/dst’du (R)c/df(x)go’(x) do = (R)O/dw'(x) da

d d 1
— (@)= —(R) /0 p(2)do = — 0/ oy = / g dp.

=0

Beispiel 8.10. Seien a = —1,b=1und f: (—1,1) — R die Heaviside-Funktion, d.h.

Fiir ¢ € C*(—1,1) mit supp ¢ C [¢,d] C (=1,1) gilt

/lfw'duz/dfw’duz (R)/df(w)w'(l‘) dz = (R)/dl-@'(l‘) dz
-1 c c 0

—_——

d
— @)= - ®) [ 0- pla)d = —p(0).
=—¢(0) 0

=0

Wenn f also eine verallgemeinerte Ableitung g € L'(—1,1) besitzt, so muss
1
/ggod,u = (0) fiir alle p € C®(—1,1)
~1

gelten. Man kann zeigen, dass dies fiir kein g € L*(—1,1) erfiillt ist. Der Ableitungsbegriff
kann allerdings noch weiter verallgemeinert werden, sodass dann auch die Heaviside-Funktion
eine Ableitung besitzt, und zwar die in Null konzentrierte Dirac’sche Deltadistribution (siehe
Distributionentheorie).

Definition 8.11. Mit W*P?(a,b) fir k € Ng, 1 < p < oo, bezeichnen wir die Menge
aller Funktionen f € LP(a,b), die k verallgemeinerte Ableitungen f’, f”,..., f*) € L?(a,b)
besitzen. Fiir f € W¥*P(a,b) fiihren wir unter Verwendung der LP-Norm ||« ||, die Norm

1
k P
LA wwr (e = (E Hf<’)H£>
1=0

ein. Der Raum W¥P(a,b) mit dieser Norm heift fiir alle p Sobolevraum der Ordnung k. Im
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8 LP-Raume und Ausblick auf Sobolevraume

Falle p = 2 bezeichnen wir diesen Raum mit H*(a,b) und kénnen fiir f,g € H¥(a,b) ein

Skalarprodukt
k
< Hk (a,b) Z L2 (a,b)
=0

einfithren, wobei gilt

[ s ) ircapy = If llwezan) (Z 1FO H2>

Auf der Grundlage der L>®°-Norm ||«||oc kann analog auch der Raum W">(a,b) mit der
Norm

£ lsoo ap) Z £l

eingefiithrt werden.

Bemerkung. Natiirlich handelt es sich bei den Elementen der Sobolevraume wieder um Klas-
sen dquivalenter Funktionen, die sich nur auf Mengen vom Maf Null unterscheiden.

Satz 8.12. Fiir k € Ng ist W*P(a,b) fiir alle 1 < p < oo ein Banachraum, H*(a,b) sogar
ein Hilbertraum. Insbesondere gilt W%P(a,b) = LP(a,b) und H%(a,b) = L*(a,b).

Beweis. Der Beweis der Vollstédndigkeit macht einige Arbeit und entfillt deshalb. Alle an-
deren Eigenschaften kénnen leicht nachgepriift werden. O

Wir betrachten im Weiteren noch etwas genauer die Sobolevriume H¥(a,b) vom Hilber-
traumtyp.

Bemerkung. Offensichtlich gilt H%(a,b) O H'(a,b) O ..., d.h. die Riume H*(a,b) bilden
eine Skala von Hilbertraumen.

Satz 8.13 (Sobolev’scher Einbettungssatz). Firm > k+1 > 1ist H™(a, ) stetig eingebettet
in C*[a,b], d.h. zu jedem f € H™(a,b) existiert ein f € C*[a,b] mit f|4p) € [f] und

| fllckap < Kl mman)
fiir eine von f unabhdngige Konstante K > 0.
Beweis. Der nicht ganz einfache Beweis entfallt. O

Bemerkung. Der Begriff der Einbettung wird in der Literatur selten exakt definiert und oft
missverstandlich verwendet. Deshalb: Ein normierter linearer Raum (U, || «||¢7) heifst eingebet-
tet in einen normierten linearen Raum (V/ ||+|y/), wenn es eine injektive, lineare Abbildung
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8 LP-Raume und Ausblick auf Sobolevraume

E : U — V gibt. U heilt stetig eingebettet in V, wenn E stetig ist (dies ist dquivalent zur
Beschranktheit von E), d.h. wenn eine Konstante K > 0 mit

|Eully < Kllu|ly fir allew e U

existiert. Im Falle einer stetigen Einbettung schreiben wir auch U < V (oft wird verwirren-
derweise auch ,,C* statt ,,<—* geschrieben).
Bemerkung. Wir betrachten Satz 8.13 fiir den Spezialfall m = 1 und k& = 0. Es gilt also
Hl(a,b) = Cla,b], d.h. zu f € H'(a,b) existiert ein f € Cla,b] mit f(z) = f(z) fiir fast
alle z € (a,b) und

b b 3
max |f(z)| < K /f2 du+/(f’)2du

z€[a,b]
a

Wir kénnen die Konstante K > 0 sogar konkret angeben: Dazu nehmen wir ohne Beschréan-

kung der Allgemeinheit f(x) = f(x) fur alle z € (a,b) an (Représentant geeignet wéahlen).
Zunéachst kann man

f@) = fla)+ [ £du

fir z € (a,b) zeigen. Daraus folgt unter Benutzung der in Satz 5.9 formulierten Ungleichung

/fdu SE/\f\du

E

die Abschétzung

xT x

ﬂMéWM+/f@SV@H/fM¢@U@H ﬂmmu/ﬂw

a a

<|f(@)]+ Vb —allfllL2(ap)-
Des Weiteren gilt (wegen (c & d)? < 2¢? + 2d?)
T 2 T 2
f@P < (1) - [£aun] <2p@pez| [
a ) a

<2f(x)2+2 /umlmL < 2f(2)? + 200 — )| /220
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und Integration iiber (a, b) liefert

(b—a)f(a)* < 2lIfZ2p) +200 = a)* 1 F 720y

Wir erhalten also

2
(max |f‘<m>|) = sup F(@) < (F@) + VB a2

z€[a,b] z€(a,b)

4
< 2f(a)* +2(b — )| /' 72(ap) < meH%?(a,b) +400 = )| f 1 72(0p) + 200 = )l 7200

4
< ma { 60— ) 1B

d.h.
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9 Integration in Produktraumen

Wir verzichten in diesem Kapitel auf die Beweise und bitten den Leser, diese bei Bedarf aus
den entsprechenden Kapiteln zu Produkmafen und dem Satz von Fubini aus den empfohle-
nen Lehrbiichern zu entnehmen.

Definition 9.1. Seien (X1, M) und (X2, M2) zwei messbare Réume. Als Produkt-o-Algebra
M ® Ms bezeichnen wir die durch das Mengensystem

Ml XMQ Z:{Al XA2:A1€M1, AQGMQ}
in X7 x X5 erzeugte o-Algebra.

Lemma 9.2. Das Mengensystem M1 x My aus Definition 9.1 ist ein Semiring und
R(M; x Ma) ist eine Algebra.

Lemma 9.3. Seien (X1, M1, 1) und (Xo, Mo, p2) zwei Mafraume mit o-endlichen Maflen.
Dann ist die auf M1 x My durch

(p(Al X Ag) = ,u,l(Al) ILLQ(AQ) f’li?" Al x Ay € M1 x My

definierte Mengenfunktion nichtnegativ, additiv und subvolladditiv mit o(0) = 0, falls wir
0-00 =00-0 =0 setzen. Diese kann eindeutig zu einem Maf p: M; @ Mg — R auf der
o-Algebra My ® May fortgesetzt werden.

Bemerkung. Das Maf pu aus Lemma 9.3 wird als Produktmafl bezeichnet (Schreibweise:
= p1 ® ug). Die Fortsetzbarkeit von ¢ zu einem Mafs auf der o-Algebra M; ® My ist eine
unmittelbare Folgerung aus den Ergebnissen von Kapitel 3 rund um den Fortsetzungssatz
von Hahn.

Beispiel 9.4. Seien X; := R", Xy := R, M; := L(R"), Mo := L(R™) sowie p; und puo
die entsprechenden Lebesgue-Make. Dann kann man X; x Xy = R sowie M1 ® My =
L(R™™) zeigen und pq ® pg ist das Lebesgue-Mak in R,

Definition 9.5. Seien X; und X5 nichtleere Mengen. Fir A C X; x Xs, 1 € X7 und
o € X9 heifien die Mengen

Ay(z1) i={x2 € Xo: (z1,22) € A} C Xy und Aj(xe) :=={z1 € X1:(x1,22) € A} C X,

Schnitte von A.
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Lemma 9.6. Seien (X1, M1) und (X2, M) messbare Riume. Fir A € My ® My sowie
x1 € X1 und o € Xy gelten fiir die Schnitte von A die Beziehungen As(x1) € Ms und
Al(afg) € M;.

Lemma 9.7. Ist f : X1 x X - R messbar beziiglich der o-Algebra My ® My, so sind fir
z1 € X1 und xo € Xo auch f(x1,¢): Xo — R sowie f(e,x2) : X1 — R messbar.

Lemma 9.8. Seien (X1, My, u1) und (Xa, Ma, ua) Mafiraume mit o-endlichen Maflen. De-
finieren wir fir A € Mi ® Mg Funktionen n4 : X1 — R und &4 : Xo — R mittels der
Vorschriften

na(wi) == p2(Az(z1))  und  Lalwe) := pi(Ai(z2)),

so sind diese Funktionen messbar und es gilt

/fAdMQ Z/nAdﬂl-
X2

X1

Wichtig sind fiir messbare Funktionen f(x1,z2) € R zweier Verdnderlicher z; € X; und
xo € X9 Fragen der Existenz von Doppelintegral und iterierten Integralen und deren Zu-
sammenhénge. Der folgende Satz liefert dabei entscheidende Aussagen.

Satz 9.9 (Satz von Fubini). Seien (Xi, My, u1) und (Xo, Ma, po) zwei Mafrdume mit
o-endlichen MafSen. Falls f € L(X1 X Xo, 1 @ p2) gilt, d.h. f summierbar auf dem Produkt-
raum im Sinne des Produktmajfes ist, so gelten die beiden folgenden Aussagen:

(i) Esist f(e,x2) € L(X1,p1) fir fast alle xo € Xo und f(x1,+) € L(X2, u2) fir fast alle
T, € Xq1. Mit

Fi(x2) ::/f(-,xg)dul bzw. Fy(x1) ::/f(xl,-)duz
X1 X2

qilt F € ﬁ(XQ,y,g) und Fy € £(X1,M1)-

/ fd(u1®u2)=/F1du2=/F2dﬂ1

X1xXo Xo X1

(i) Wir haben Gleichheit

zwischen den drei auftretenden Lebesque-Integralen.

Bemerkung. Durch dem Satz 9.9 von Fubini wird gezeigt, dass unter den formulierten Vor-
aussetzungen aus der Existenz des Doppelintegrals ( [ Xy % XQ) die Existenz der iterierten In-
tegrale ([ X S X und [ X S X1) folgt. Die Umkehrung gilt jedoch nicht, d.h. aus der Existenz
der iterierten Integrale kann man nicht auf das Doppelintegral schlieffen. Sehr wohl gibt es
aber eine Umkehrung im schwécheren Sinne, wenn man statt der Funktion deren Betrag im
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Integranden der iterierten Integrale stehen hat. Man kann némlich Folgendes zeigen:

Ist f: X1 x X2 — R messbar und gilt |f(s,22)] € £(X1, 1) fiir fast alle 2o € X5 sowie
Fy € L(Xo, pg) fir Fy(z2) := le |f(e,z2)|dp1, so bekommt man f € L(X] X Xo, 1 ® p2)
und Doppelintegral und iteriertes Integral stimmen iiberein. Analoges gilt bei Vertauschung
der Indizes 1 und 2.
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10 Der Satz von Radon-Nikodym

Auch im Sinne einer Vorabinformation vor der Stochastik-Vorlesung wollen wir abschliefsend
kurz absolut stetige Mafe und den Satz von Radon-Nikodym streifen.

Definition 10.1. Seien (X, M) ein messbarer Raum sowie p und v zwei o-endliche Mafse in
X. Das Maf v heifst absolut stetig beziiglich p (Schreibweise: v < ), wenn fiir jedes A € M

WA =0 = v(A)=0

gilt, d.h. p-Nullmengen sind auch stets v-Nullmengen.
Bemerkung. Die Relation ,,<“ ist reflexiv und transitiv, aber nicht symmetrisch.

Satz 10.2. Fir endliche zum messbaren Raum (X, M) gehdrende Mafie p und v gilt v < p
genau dann, wenn fir alle € > 0 ein § = §(g) > 0 ewistiert, sodass fir alle A € M die
Beziehung j1(A) < 6 die Ungleichung v(A) < € nach sich zieht.

Beweis. Wir nehmen an, dass die e-6-Bedingung verletzt ist. Dann findet man ein € > 0
und fir n = 1,2, ... Mengen A,, € M mit pu(A4,) < 27" und v(4,,) > . Die Betrachtung der

Werte p(A) und v(A) fiir die Menge A = (1,5, (Uizn Ai) liefert einen Widerspruch. O

Bemerkung. Das obige Lemma begriindet die Bezeichnung absolut stetig, denn eine analo-
ge e-0-Bedingung findet man im Zusammenhang mit der absoluten Stetigkeit einer reellen
Funktion z(t), t € [a,b]. Eine solche Funktion heift absolut stetig, wenn wenn fiir alle
e > 0ein § = §(e) > 0 existiert, sodass fiir paarweise disjunkte offene Teilintervalle von
(@i, bi), i =1,2,....k, von [a, b] mit Zle(bi—ai) < 0 die Ungleichung Zle |x(bi)—z(a;)| < e
gilt. Absolut stetige Funktionen sind iibrigens gleichméfig stetig, damit auch stetig und sie
sind stets von beschrénkter Variation, gehoren also zu BV [a, b]. Sie besitzen fast tiberall eine
Ableitung, die mit der verallgemeinerten Ableitung iibereinstimmt und zu L'(a,b) gehort.
Diese Funktionen gehdren also zum Sobolevraum W'1!(a,b). Lipschitz-stetige Funktionen
sind stets auch absolut stetig.

Wir betrachten nun speziell integraldefinierte Mafe:

Definition 10.3. Sei (X, M, u) ein Mafraum und sei f € £(X, ). Dann heift die durch

pp(A) == /fdu
A

gegebene Mengenfunktion pyp : M — R unbestimmtes Integral von f.
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Lemma 10.4. Ist (X, M, u) ein Maffraum und gilt f € L(X, ) sowie f > 0, so ist auch
pyr ein Mafs und es gilt pp < .

Beweis. Nach Satz 5.6 ist die Mengenfunktion py volladditiv und damit wegen der Nicht-
negativitat auch ein Mak. Die Eigenschaft py < p folgt aus der Definition der absoluten
Stetigkeit von Mafen unmittelbar mit der Definition des unbestimmten Integrals. O

Von zentraler Bedeutung in der Maftheorie, speziell in Hinblick auf die Wahrscheinlich-
keitsrechnung, ist der folgende Satz von Radon-Nikodym.

Satz 10.5 (Satz von Radon-Nikodym). Seien p und v o-endliche Mafle auf dem messbaren
Raum (X, M) mit v < u. Dann existiert eine bis auf p-dquivalente Funktionen eindeutig
bestimmte nichtnegative Funktion f € L(X, u) mit

v(A) = /fd,u fir alle A € M.
A

Definition 10.6. Die Funktion f aus Satz 10.5 heift Radon-Nikodym-Ableitung von v be-
ziiglich p (Schreibweise: f = S—Z).

Bemerkung. In der Wahrscheinlichkeitstheorie heifst fiir ein Wahrscheinlichkeitsmaf v die
Funktion S—Z Wahrscheinlichkeitsdichte beziiglich des Mafes .

Wir werden vor dem Beweis einige Begriffsstrukturen und Hilfseigenschaften diskutieren,
wobei zuerst wir von der Wahrscheinlichkeitssituation p(X) = 1 ausgehen.

Definition 10.7. Sei (X, M) ein messbarer Raum mit den Mafen p und v. Wir sagen, dass
das Maf p das Maf v dominiert, wenn gilt
0<v(A) <u(A) VAeM.

Offenbar gilt in diesem Falle v < p.

Definition 10.8. Wir nennen die P = {A;, Ag, ..., Ai} eine (endliche) Zerlegung von X,
wenn P aus paarweise disjunkten Elementen aus M besteht, deren Vereinigung X liefert.
Wir nennen eine Zerlegung P’ von X eine Verfeinerung von P, wenn jedes Element aus P
als disjunkte Vereinigung von Elementen aus P’ dargestellt werden kann.

Der folgende Satz ist eine simplifizierte Version des Satzes von Radon-Nikodym, dessen
Beweis unten angegeben wird. Fiir das Update dieses Beweises CAPINSKI/KOPP hin zum
eigentlichen Satz 10.5 sei auf Kapitel 7 in CAPINSKI/KOPP verwiesen.

Satz 10.9. Sei u(X) = 1 und gelte 0 < v(A) < pu(A) VA € M. Dann ezistiert eine
nichtnegative messbare Funktion [ auf X mit

v(A) = /fdu fiir alle A € M.
A
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Beweis. In Schritt 1 definieren wir Treppenfunktionen ¢p fiir Mengen in einer (endlichen)
Zerlegung P and vergleichen die Funktionen ¢p, und ¢p,, wenn Ps eine Verfeinerung von P;
ist. Dies erlaubt uns zu zeigen, dass die die Integrale | x gp% dp nichtfallend sind, wenn wir zu
zunehmenden Verfeinerungen kommen. Da die Integrale beschrénkt sind durch p(X) = 1,
existiert ¢ = sup | % go% dp als endliche reelle Zahl. In Schritt 2 konstruieren wir dann die
gewiinschte Funktion f mit Hilfe von Grenzwertargumenten, die frither bewiesene Konver-
genzsétze nutzen. In Schritt 3 schlieklich zeigen wir, dass f die gewiinschten Eigenschaften
besitzt.

Schritt 1: Konstruktion geeigneter Treppenfunktionen. Sei nun 0 < v(A) < u(A) VA e M
und P = {4, Ag, ..., A} eine (endliche) Zerlegung von X mit Elementen A; € M. Wir
definieren nun die Treppenfunktionen ¢p : X — R mittels der Vorschrift

op(x) =c¢ = v(Ay) (x € A;, u(4;) > 0), ep(x) =0 (sonst).

Die Treppenfunktion hat die folgenden Eigenschaften:

(i) Es gilt 0 < pp(x) <1 fiir alle z € X.

(ii) Wenn A = {J, ; A4; fiir eine Indexteilmenge J C {1,2, ..., k}, dann gilt v(A4) = J4opdp.
Daher ist v(X) = [y op dp.

(iii) P9 sei nun Verfeinerung von P; und 1, 2 die entsprechenden Treppenfunktionen. Dann
gilt fir alle A € Py : [, ordp=v(A) = [, 02dp, [, o102du= [, ¢5dpu.

(iv) Folglich gilt [y (¢3 — ¢?)dp = [y (¢2 — ¢1)? dpw und damit

/s@%duz/ w%du+/(w2—m)2du2/ et dp.
X X X X

Diese Funktionen sind nichtfallend, wenn wir die Zerlegung verfeinern.

Schritt 2: Ubergang zum Grenzwert und Konstruktion der Funktion f. Wie im Schritt 1
gezeigt wurde, wachsen die Integrale [ x cp% dp hochstens, wenn die Zerlegung verfeinert
wird. Wegen (i) haben wir auferdem ein endliches Supremum 0 < ¢ = sup [y go% dp <1
iber alle Zerlegungen.

Wir betrachten nun eine Folge von Zerlegungen {P,};>; mit [, go%n dp > ¢ — 47", Dabei
bezeichnen wir mit Q,, die kleinste gemeinsame Verfeinerung der Zerlegungen Py, ..., P.
Dann verfeinert Q,,4+1 die Zerlegung Q,,, weil Q. aus allen Schnitten A1 N A2 N ... N Ag mit
A; € P; (i < k) besteht. Folglich ist Q,, eine disjunkte Vereinigung von Mengen aus Q1.
Folglich gelten die Ungleichungen:

6—4_"</ch%nd,ug/XQOQQnd,ug/Xc,pQQan,ugc.

Wegen (iv) haben wir dann

/)((SDQ"+1 - SOQn)2 d'u - /)((SDQQnﬂLl - SDan) d,U/ < 4_n'
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Die Cauchy-Schwarzsche Ungleichung liefert dann fiir all n € N

/)‘( ’SOQ”A*l - ¢Q7l‘ d/’[’ < 2_71.

Nach CApPINskI/KoOPP, S.95 kann man eine Variante des Lemmas von Beppo Levi wie

o0

folgt formulieren: Wenn Y [|fi|dp endlich ist, dann konvergiert die Reihe > 72, fi(x)
k=1E

fast iiberall auf £ und man kann die Grenzwertbildung von Reihe und Integral wie folgt

vertauschen: - -
[ fan=3" [ nean
% k=1

k=17,

Mit diesem Lemma gilt wegen der Endlichkeit von >°>° [y 90,1 — v, |du, dass die
Reihe > 1 (¢0,,, — o, ) fast liberall konvergiert, sodass mit Q; = P; die Grenzfunktion

o0

n=1

p-fast iberall definiert ist, auf den verbleibenden Nullmengen wird sie zu Null gesetzt.

Schritt 3: Nach Voraussetzung und Konstruktion ist 0 < f(z) < 1 Vz € X und f messbar.
Wir miissen noch zeigen, dass gilt

v(A) = /fd,u fiir alle A € M.
A

Wir fixieren A € M und definieren als R,, die kleinste gemeinsame Verfeinerung von 9,
und {4, A}. Da A eine endliche disjunkte Vereinigung von Mengen aus R,, ist, haben wir
v(A) = [, ¢r, du aus Schritt 1 (ii). Aus Schritt 2 erhalten wir

c—4‘"</902gndu§/s03zndu§c
X X

und wir kénnen wie oben schliefen dass [y (¢r, —¢0,)*du < 47" gilt und mit der Cauchy-
Schwarzschen Ungleichung

‘/A(cpnn - wgn)du‘ < /A loR, — pg,|dp <27

Fiir alle A € M und n = 1,2, ... haben wir dann also

V(A)Z/sovzn du=/(¢m—<pgn)du+/ v, du.
A A A

Das erste Integral auf der rechten Seite konvergiert fiir n — oo gegen Null, wihrend das
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10 Der Satz von Radon-Nikodym

zweite Integral nach dem Satz von Lebesgue iiber die dominante Konvergenz gegen [ 4 fdu
konvergiert. Also gilt v(A) = [, f du wie verlangt. O

Satz 10.10 (Kettenregel fiir Radon-Nikodym-Ableitungen). Seien p und v o-endliche Mafe

auf dem messbaren Raum (X, M) mit v < p und sei f := g—”. Dann gilt fir g € L(X,v)

und A € M '
Joav=[aran.
A A

Beweis. Kann wieder mit Hilfe von Treppenfunktionen und unter Verwendung von Grenz-
wersétzen fiir Integrale gefithrt werden. O

Beispiel 10.11. In der Stochastik betrachtet man Wahrscheinlichkeitsmafe v der Zufalls-
groken Z definiert als P(Z € A) = v(A) mit A € L(R), X =R und v(X) = 1, wobei der
Mafraum (X, L(R),v) die o-Algebra der entsprechenden Lebesgue-messbaren Mengen auf
R als zweite Komponente enthélt. FEine solche Zufallsgrofse bzw. deren Verteilung heifit ab-
solut stetig, wenn v absolut stetig beziiglich des Lebesguemafses A ist, also v < A gilt. Dann
existieren Dichtefunktionen g : R — [0,00) mit [ g(¢) dt = 1 (Radon-Nikodym-Ableitungen
des Wahrscheinlichkeitsmafses beziiglich \).
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