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Introduction

Let X denote a separable real Hilbert space with
norm || - || and inner product (-, -).

For a monotone operator F: D(F) C X — X, i.e,
(F(x)— F(X),x —x) >0 forall x,x € D(F), (Mon)

we consider the (possibly nonlinear) operator equation

F(x) =y (xeD(F)C X, yeX) ()

with solution xt € D(F) and exact right-hand side y = F(x').
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The goal is to find approximations to x* with good properties
based on noisy data y° ¢ X such that

ly = y°ll <6, (Noise)
with noise level § > 0.

If solving equation (*x) is the model for an inverse problem,
i.e., the forward operator F is ‘smoothing’, then
a least squares approach

|F(x) — y°||> — min, subjectto x e D(F).

is not always successful, even if xT is the unique solution to
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We recall the following concept from > H./SCHERZER IP 1994.

Definition

The equation (xx) is called locally well-posed at the solution
point x* € D(F) if there is a ball B(x") with radius r > 0 and
center xT such that for each sequence {x}>,; C B(x") N D(F)
the convergence of images kILmOO | F(xk) — F(x")| = 0 implies

the convergence of the preimages klim Ixx — xt|| = 0.
—00

Otherwise it is called locally ill-posed at x.

If (++) is @ model of an inverse problem, then due to

local ill-posedness it makes sense to exploit a

singularly perturbed auxiliary problem to equation (xx),
which in general proves to be locally well-posed.
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Singularly perturbed auxiliary problems

In addition to the most popular Tikhonov regularization for
general ‘smoothing’ forward operators F, where regularized
solutions x? are minimizers of

|F(x)=y°|2+|x—X||> — min,  subjectto x e D(F), (Tik)

we have the simpler Lavrentiev regularization for monotone
operators F, where x? solves the singularly perturbed operator
equation

F(X)+a(x —Xx)=y°. (Lav)
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Conditional stability

Instability arising from ill-posedness can also be overcome by
having conditional stability estimates of the form

Ix—xT|| < o(|F(x)—F(x")||) forall xeD(F)NQ (CSE)

for an index function ¢ and an appropriate set Q O {x'},
where ¢ : [0,00) — [0, 00) is an index function if it is continuous
and strictly increasing with ¢(0) = 0.

Often Q depends on properties of x' and is not known a priori.
Consequently, (CSE) is not directly applicable for finding stable
approximate solutions to (xx). Thus, additional tools are
needed.

> CHENG/YAMAMOTO IP 2000 > H./YAMAMOTO IP 2010
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Verification of CSE-tools for ¢ concave and Q = B,(x")

Under ||x — xT|| < o(||F(x) — F(xN)|) forall x € D(F)n By(x")
solution xT is unique in B.(x"), (xx) is locally well-posed at

.I.
xT.

Tikhonov regularization for general forward operators F:

X)) = argmin {||F(x) — y°|2 + ||lx = X|?} for a(6) = c4?
Xx€D(F)

yields with ||x§(5) —X|? < % + ||xt — x||? and triangle inequality

x5y — XTI < /2 + 2]xt — x| = /1 + 2)x1 — X]| aswell as
IF(x25)) — FOMII < (2everxt i) 8. For r> \/TEJr 2||xt — x|

we arrive at (cse) ||xg(6) —xT|| < <p(||F(x§(5)) — F(xM)])). Hence:

X = XTI < (2+ Velxt = x1) ¢(6).
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Verification of CSE-tools for ¢ concave and Q = B.(x")

Lavrentiev regularization for monotone F and D(F) = X:

F(Xs) + a5 —X)=y°  for a(6)=co
yields with [|x0 ;) — X[l < 2 + |x" — X|| and

IF(x05)) — FONI < allxt =X +6 = (c|IxT —X|| +1) 4.
For r> 1+ |xt —X| we arrive at

ese) [|X3 ) = X1 < @(IF(x25)) = F(xT)]), which implies

IX25) — XTIl < 2 max(1, ¢||x" = X]) ¢ (9).

Using regularization under conditional stability
is like putting into the hole Q while playing golf!
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Standing assumptions

@ F: X — X, D(F) =X (X separable real Hilbert space).
@ F is a monotone and hemicontinuous operator.

Then F is even maximally monotone and we have a
weak-to-norm sequential closedness as

Xpn— X and F(xp) > 20 = F(X)= 2.

Under the standing assumptions there occur well-posed and
ill-posed situations. The best situation of global well-posedness
is characterized by strong monotonicity

(F(x) — F(X),x = X) > C||x — X||? forall x,x e X,
with some constant C > 0, which implies the coercivity

condition
(F(x). %) _

x|l =00 [|X]]
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Under the standing assumptions F : X — X is surjective due
to the Browder-Minty theorem if the coercivity condition holds.
If, moreover, F is strongly monotone, then F is bijective and
F~—': X — X is Lipschitz continuous as

~ L 1 ) ) .
IF~'(y)—F 1(y)\léglly—yll forall y,yeX. (Lip)

There are classes of ill-posed inverse problems with monotone
F occurring in natural sciences and engineering, where (Lip)
fails. Then we have operator equations (xx) of the first kind,
but the associated equations of the second kind

G(x)=y with G(x) .= F(x) + ax

satisfy (Lip) with C =« foralla > 0.

This motivates Lavrentiev regularization (Lav) for
stabilizing (xx).
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Example (> B. KALTENBACHER)

As an ill-posed example we consider the identification of the
source term q in the elliptic boundary value problem

—Au+&u)=qing
u=0o0nd9dg

from measurements of uin G, where £ : R — R is some
Lipschitz continuously differentiable monotonically increasing
function and G C R® a smooth domain.

Then the corresponding nonlinear forward operator
F:X:=L2(G) — H3(G) C L3(G),
mapping q — u, is monotone and hemicontinuous.
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Proposition
Under our assumptions let, for given y € X, the solution set

L={xeX: F(x)=y}

to equation (xx) be nonempty. Then L is closed and convex,
and consequently there is a uniquely determined x-minimum
norm solution X}, € L to (++) such that

Ixthn — XI| = min{||x — x|| : x' € L}.

Moreover, the Lavrentiev-regularized solution xg e Xis
uniquely determined, which means that
F(xX2) + a(xd

-

)=y (Lav)

has a unique solution x? forall x € X, y° € X and a > 0,
where x? depends continuously on y?°.
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For any x' € L the following three basic inequalities are valid:

5
2 < s 5
e e e e L

o
6 —
e =Xt < Il =Xl + =,

IF(xa) = FOI < aflxt = x| +4.

Lavrentiev regularization is always helpful if bijectivity of F
and hence Lipschitz property of F~! fails, for example because
coercivity fails or well-posedness occurs only in a local sense.
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This is the case if F is locally strongly monotone
(F(x) = F(x"),x = xTy > C|lx — xT||2  forall x e By(x"),
with C > 0 and r > 0, or if F is locally uniformly monotone
(F(x) = F(xY),x = x"y > ¢(Ix = xT|])  forall x e B/(x")

with some index function ¢ and r > 0.

B. Hofmann Lavrentiev regularization in Hilbert space



Let local uniform monotonicity of F in B;(x") hold with an index
function ¢ of the form ((t) = 6(t) t, t > 0, such that ¢ is also an
index function. Then we have a conditional stability estimate

Ix=xT|| <o " (|F(x)-F(x"|) forall xe B.(x"), (CSE)

and the operator equation (xx) is locally well-posed at the
solution point x'.

In the special case ((t) = C t? of strong monotonicity we find

Ix — xt| < 15 IF(x) — F(x)|| forall x e B/(x). (CSE)

v
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One dimensional example

For X := R with || x]|| := |x| we consider (xx) with the continuous
monotone operator F : R — R defined for exponents « > 0 as

—1 if —co<x< -1

—(—x)F if -1<x<0
X" if 0<x<1 ’
1 if 1<x<o

F(x):=

which, however, is not bijective and not coercive.

Then we have local ill-posedness at xT if xt < —1 or xT > 1.
At xt = 0 we have local well-posedness for all k > 0 due to a
local uniform monotonicity condition with ¢(t) = t**' such that

Ix — xt|| < ||[F(x) = F(x")||'/* forall x e By(0). (CSE)

Lavrentiev regularization allows for linear convergence if xk = 1,
Holder convergence rates for x > 1, and there even occurs a
superlinear convergence rate at x' = 0if 0 < k < 1.
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Convergence, rates and variational source conditions

If (x+) is locally ill-posed at x', then a(5) ~ § is not
appropriate for Lavrentiev regularization, and the decay of «(0)
as 0 — 0 has to be slower in order to ensure convergence.

We have for the bias ||x, — xT|| with F(x,) + a(x, — X) = y:

Proposition

|

lim |xo —xT||=0 ifandonlyif  xT=x,,
a—0
5yt 4 8
%6 = X' < X = XT[[ 4+ —.
(6
Consequently, an a priori choice «(4) satisfying

a(é) -0 and L—>O as 6—0

a(d)

yields convergence lim ||} ;) — Xphall = 0.
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Under nonlinearity conditions on F Holder convergence rates
X — T o( p+1) as 60,
occur for 0 < p < 1 with A:= F'(x1) and a(6) ~ 65 with the
power-type source condition
xt—x=APw, we X,

where the fractional powers AP of the monotone linear
operator A are defined by a Dunford integral as

/sp A+ sl 1Avds, veX.
0

sm

AP

See, e.g., > TAUTENHAHN 2002.
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Let us consider a variational source condition adapted to the
monotonicity structure:

Variational source condition (VSC-Lav)

We assume to have a constant0 < 8 < 1 and an index function
o such that for all x € M

(x' =%, x" —x) < BlIx" — x| + ((F(x) = F(x), x — x7)).

Here, ¢ must be an index function with lim;_, o \(/) >c>0.

The next theorem is proved by the general Young inequality

ab < /af(t)dt+/bf‘(t)dt
0 0

for a, b > 0 and an index function f.
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Theorem

Let under the standing assumptions (VSC — Lav) be satisfied
for the X-minimum-norm solution xt = x},,, of (xx) with M such
that for the choice of a > 0 all regularized solutions x2 from
(Lav) belong to M for sufficiently small § > 0. Then one has
the estimate

1 62 2
S _ 2 0 &
for such 6 > 0, where W(«) is introduced as follows:
Let f be an index function such that its antiderivative
f(s) : fo (t)dt satisfies the condition f(p(s)) < sfors >0
and let G() > [¢* f~(7)d7. Then we set W(a) := ﬂ.

V(a),
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Theorem cont.
Moreover, for the a priori choice

a(6) ~ ©71(62)

with ©(a) := a?W¥(«), which satisfies

J
a(d) -0 and m—m as d—0,

this yields the convergence rate

I = 1l = 0 (g=rzzy ) = 0 (Vote1).

The best possible rate occurs for ¢(t) ~ v/t and W(t) ~ t as

xS s — XTI = O@3)  if o(8) ~ 45,
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Logarithmic type variational source conditions

We consider (VSC — Lav) with

1
2

o(t) = ft)=e 1 <

R , 1
G(o) O‘_ma—/o et O(f) ~ R fora,te (0,1)

This yields the logarithmic rate O (N/W(@—1 (52))).

Since the a priori choice () ~ ©~1(42) cannot be determined
explicitly in this logarithmic case, a more convenient choice is
a(6) ~ /& which implies

1
b x=0 —— | .
X2 = 'l ( _m(5)>
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Haolder type variational source conditions

For exponents . € (O, %], we consider (VSC — Lav) with

()=t ()= t7, 1(t)=(ut)",

H(s)=s¥. Gla)=(1-puT™ra™s, )~ tir.
According to the theorem this yields the Hélder rate

2(1—p)

X35y — X"l = 067 7)  if a(d)~d 2w .

Note that O (52?) ) (5751) for = 522, 0<p<

=
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For linear forward operators F := A € L(X, X) we outline
situations of relations to the variational source conditions:

Selfadjoint A: First let A= A*, x' = APw, X := 0 and
0<p<3.
(xT,x) = (w,APx) < |lw| |APx|
_ 1 _
<[l llx]"2PI A2 x (2P = [jwl| [|x||" 2P (Ax, x)P
based on the interpolation inequality. By using Young’s ineq
ab < £ + 2 with a= |x||'"-2, b= ||w|| (Ax, X)P, £ = 135 and

= 1+2p thls yields the variational source condition

(xtx) < (; - p) x| + (; +p) IW]| 7 (Ax, X) 5 vx € X

with exponent 0 < p = 2§ﬁ1 < 1 , hence the Holder rate
(1 u)
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Non-selfadjoint A: Secondly, we consider for X = L?(0, 1), the
linear integration operator

[Ax](s) := /Osx(t) dt, 0<s<1,

which is monotone, but not selfadjoint, i.e. A # A*. We have

2
(AX, X) = % (/1 x(t) dt) >0,
0

and for x = 1, with xT ¢ R(A) and x ¢ R(A*),

(xt x) = /1 x()dt < V2(Ax,x)2  VxeX,
0

thus the convergence rate for the Lavrentiev regularization

X8 — xt|| = 0(5%) for a ~ §5.
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Lavrentiev regularization for linear operator equations

Let A: X — X be a bounded linear monotone operator. For
Ax =y (*)
the linear Lavrentiev regularization acts as

X0 = (At al)”' (¥ + ax).

The linear equation (x) is locally well-posed everywhere iff A

is continuously invertible, i.e. there is K > 0 such that
[(A+al) <K <oo forall a>0,

where K = ||A~"|| holds true, but () is locally ill-posed

everywhere iff V'(A) # {0} or R(A) # R(A). Then we have
[(A+al)~'|=1/a forall o >0.
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Theorem (> PLATO 2016)
For the maximal best possible error

E+(6) = sup inf || x0 — x1|
yoeX: y=yli<s *>0

of Lavrentiev regularization to the linear equation () we have
Exi(0)=0(0) as d—0
in the well-posed case, but
E.(0)=o0(Vs) as 6—0 implies x' —x=0

in the ill-posed case.
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