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Introduction

Let X denote a separable real Hilbert space with
norm ‖ · ‖ and inner product 〈·, ·〉.

For a monotone operator F : D(F ) ⊆ X → X , i.e.,

〈F (x)− F (x̃), x − x̃〉 ≥ 0 for all x , x̃ ∈ D(F ), (Mon)

we consider the (possibly nonlinear) operator equation

F (x) = y (x ∈ D(F ) ⊆ X , y ∈ X ) (∗∗)

with solution x† ∈ D(F ) and exact right-hand side y = F (x†).
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The goal is to find approximations to x† with good properties
based on noisy data yδ ∈ X such that

‖y − yδ‖ ≤ δ, (Noise)

with noise level δ > 0.

If solving equation (∗∗) is the model for an inverse problem,
i.e., the forward operator F is ‘smoothing’, then
a least squares approach

‖F (x)− yδ‖2 → min, subject to x ∈ D(F ).

is not always successful, even if x† is the unique solution to
(∗∗).
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We recall the following concept from B H./SCHERZER IP 1994.

Definition
The equation (∗∗) is called locally well-posed at the solution
point x† ∈ D(F ) if there is a ball Br (x†) with radius r > 0 and
center x† such that for each sequence {xk}∞k=1 ⊂ Br (x†)∩D(F )
the convergence of images lim

k→∞
‖F (xk )− F (x†)‖ = 0 implies

the convergence of the preimages lim
k→∞

‖xk − x†‖ = 0.

Otherwise it is called locally ill-posed at x†.

If (∗∗) is a model of an inverse problem, then due to
local ill-posedness it makes sense to exploit a
singularly perturbed auxiliary problem to equation (∗∗),
which in general proves to be locally well-posed.
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Singularly perturbed auxiliary problems

In addition to the most popular Tikhonov regularization for
general ‘smoothing’ forward operators F , where regularized
solutions xδα are minimizers of

‖F (x)−yδ‖2+‖x−x̄‖2 → min, subject to x ∈ D(F ) , (Tik)

we have the simpler Lavrentiev regularization for monotone
operators F , where xδα solves the singularly perturbed operator
equation

F (x) + α(x − x̄) = yδ . (Lav)
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Conditional stability

Instability arising from ill-posedness can also be overcome by
having conditional stability estimates of the form

‖x−x†‖ ≤ ϕ(‖F (x)−F (x†)‖) for all x ∈ D(F )∩Q (CSE)

for an index function ϕ and an appropriate set Q ⊃ {x†},
where ϕ : [0,∞)→ [0,∞) is an index function if it is continuous
and strictly increasing with ϕ(0) = 0.

Often Q depends on properties of x† and is not known a priori.
Consequently, (CSE) is not directly applicable for finding stable
approximate solutions to (∗∗). Thus, additional tools are
needed.

B CHENG/YAMAMOTO IP 2000 B H./YAMAMOTO IP 2010
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Verification of CSE-tools for ϕ concave and Q = Br (x†)

Under ‖x − x†‖ ≤ ϕ(‖F (x)−F (x†)‖) for all x ∈ D(F )∩Br (x†)
solution x† is unique in Br (x†), (∗∗) is locally well-posed at
x†.

Tikhonov regularization for general forward operators F :

xδα(δ) = arg min
x∈D(F )

{
‖F (x)− yδ‖2 + ‖x − x̄‖2

}
for α(δ) = c δ2

yields with ‖xδα(δ) − x̄‖2 ≤ δ2

α + ‖x† − x̄‖2 and triangle inequality

‖xδα(δ) − x†‖ ≤
√

δ2

α + 2‖x† − x̄‖ =
√

1
c + 2‖x† − x̄‖ as well as

‖F (xδα(δ))− F (x†)‖ ≤ (2+
√

c ‖x†−x̄‖) δ. For r >
√

1
c + 2‖x† − x̄‖

we arrive at (CSE) ‖xδα(δ) − x†‖ ≤ ϕ(‖F (xδα(δ))− F (x†)‖). Hence:

‖xδα(δ) − x†‖ ≤
(

2 +
√

c ‖x† − x̄‖
)
ϕ(δ).
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Verification of CSE-tools for ϕ concave and Q = Br (x†)

Lavrentiev regularization for monotone F and D(F ) = X :

F (xδα(δ)) + α(xδα(δ) − x̄) = yδ for α(δ) = c δ

yields with ‖xδα(δ) − x̄‖ ≤ δ
α + ‖x† − x̄‖ and

‖F (xδα(δ))− F (x†)‖ ≤ α ‖x† − x̄‖+ δ = (c ‖x† − x̄‖+ 1) δ.

For r > 1
c + ‖x† − x̄‖ we arrive at

(CSE) ‖xδα(δ) − x†‖ ≤ ϕ(‖F (xδα(δ))− F (x†)‖), which implies

‖xδα(δ) − x†‖ ≤ 2 max(1, c ‖x† − x̄‖)ϕ(δ).

Using regularization under conditional stability
is like putting into the hole Q while playing golf!
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Standing assumptions
F : X → X , D(F ) = X (X separable real Hilbert space).
F is a monotone and hemicontinuous operator.

Then F is even maximally monotone and we have a
weak-to-norm sequential closedness as

xn ⇀ x̃ and F (xn)→ z0 ⇒ F (x̃) = z0.

Under the standing assumptions there occur well-posed and
ill-posed situations. The best situation of global well-posedness
is characterized by strong monotonicity

〈F (x)− F (x̃), x − x̃〉 ≥ C ‖x − x̃‖2 for all x , x̃ ∈ X ,

with some constant C > 0, which implies the coercivity
condition

lim
‖x‖→∞

〈F (x), x〉
‖x‖

=∞.
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Under the standing assumptions F : X → X is surjective due
to the Browder-Minty theorem if the coercivity condition holds.
If, moreover, F is strongly monotone, then F is bijective and
F−1 : X → X is Lipschitz continuous as

‖F−1(y)− F−1(ỹ)‖ ≤ 1
C
‖y − ỹ‖ for all y , ỹ ∈ X . (Lip)

There are classes of ill-posed inverse problems with monotone
F occurring in natural sciences and engineering, where (Lip)
fails. Then we have operator equations (∗∗) of the first kind,
but the associated equations of the second kind

G(x) = y with G(x) := F (x) + αx

satisfy (Lip) with C = α for all α > 0 .
This motivates Lavrentiev regularization (Lav) for
stabilizing (∗∗).
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Example ( B B. KALTENBACHER)

As an ill-posed example we consider the identification of the
source term q in the elliptic boundary value problem

−∆u + ξ(u) = q in G
u = 0 on ∂G

from measurements of u in G, where ξ : R→ R is some
Lipschitz continuously differentiable monotonically increasing
function and G ⊆ R3 a smooth domain.

Then the corresponding nonlinear forward operator
F : X := L2(G)→ H2(G) ⊆ L2(G),
mapping q 7→ u, is monotone and hemicontinuous.
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Proposition
Under our assumptions let, for given y ∈ X , the solution set

L := {x ∈ X : F (x) = y}

to equation (∗∗) be nonempty. Then L is closed and convex,
and consequently there is a uniquely determined x̄-minimum
norm solution x†mn ∈ L to (∗∗) such that

‖x†mn − x̄‖ = min{‖x† − x̄‖ : x† ∈ L}.

Moreover, the Lavrentiev-regularized solution xδα ∈ X is
uniquely determined, which means that

F (xδα) + α(xδα − x̄) = yδ (Lav)

has a unique solution xδα for all x̄ ∈ X , yδ ∈ X and α > 0,
where xδα depends continuously on yδ.
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For any x† ∈ L the following three basic inequalities are valid:

‖xδα − x†‖2 ≤ 〈x† − x̄ , x† − xδα〉+
δ

α
‖xδα − x†‖ ,

‖xδα − x†‖ ≤ ‖x† − x̄‖+
δ

α
,

‖F (xδα)− F (x†)‖ ≤ α‖x† − x̄‖+ δ .

Lavrentiev regularization is always helpful if bijectivity of F
and hence Lipschitz property of F−1 fails, for example because
coercivity fails or well-posedness occurs only in a local sense.
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This is the case if F is locally strongly monotone

〈F (x)− F (x†), x − x†〉 ≥ C ‖x − x†‖2 for all x ∈ Br (x†),

with C > 0 and r > 0, or if F is locally uniformly monotone

〈F (x)− F (x†), x − x†〉 ≥ ζ(‖x − x†‖) for all x ∈ Br (x†)

with some index function ζ and r > 0.

B. Hofmann Lavrentiev regularization in Hilbert space 20



Proposition
Let local uniform monotonicity of F in Br (x†) hold with an index
function ζ of the form ζ(t) = θ(t) t , t > 0, such that θ is also an
index function. Then we have a conditional stability estimate

‖x−x†‖ ≤ θ−1(‖F (x)−F (x†)‖) for all x ∈ Br (x†), (CSE)

and the operator equation (∗∗) is locally well-posed at the
solution point x†.
In the special case ζ(t) = C t2 of strong monotonicity we find

‖x − x†‖ ≤ 1
C
‖F (x)− F (x†)‖ for all x ∈ Br (x†). (CSE)
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One dimensional example
For X := R with ‖x‖ := |x | we consider (∗∗) with the continuous
monotone operator F : R→ R defined for exponents κ > 0 as

F (x) :=


−1 if −∞ < x < −1

−(−x)κ if −1 ≤ x ≤ 0
xκ if 0 < x ≤ 1
1 if 1 < x <∞

,

which, however, is not bijective and not coercive.

Then we have local ill-posedness at x† if x† ≤ −1 or x† ≥ 1.
At x† = 0 we have local well-posedness for all κ > 0 due to a
local uniform monotonicity condition with ζ(t) = tκ+1 such that

‖x − x†‖ ≤ ‖F (x)− F (x†)‖1/κ for all x ∈ B1(0). (CSE)

Lavrentiev regularization allows for linear convergence if κ = 1,
Hölder convergence rates for κ > 1, and there even occurs a
superlinear convergence rate at x† = 0 if 0 < κ < 1.
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Convergence, rates and variational source conditions

If (∗∗) is locally ill-posed at x†, then α(δ) ∼ δ is not
appropriate for Lavrentiev regularization, and the decay of α(δ)
as δ → 0 has to be slower in order to ensure convergence.
We have for the bias ‖xα − x†‖ with F (xα) + α(xα − x̄) = y :

Proposition

lim
α→0
‖xα − x†‖ = 0 if and only if x† = x†mn,

‖xδα − x†‖ ≤ ‖xα − x†‖+
δ

α
.

Consequently, an a priori choice α(δ) satisfying

α(δ)→ 0 and
δ

α(δ)
→ 0 as δ → 0

yields convergence lim
δ→0
‖xδα(δ) − x†mn‖ = 0.
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Under nonlinearity conditions on F Hölder convergence rates

‖xδα − x†‖=O
(
δ

p
p+1

)
as δ → 0,

occur for 0 < p ≤ 1 with A := F ′(x†) and α(δ) ∼ δ
1

p+1 with the
power-type source condition

x† − x̄ = A p w , w ∈ X ,

where the fractional powers A p of the monotone linear
operator A are defined by a Dunford integral as

A pv :=
sin(pπ)

π

∞∫
0

sp−1(A + sI)−1Av ds, v ∈ X .

See, e.g., B TAUTENHAHN 2002.
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Let us consider a variational source condition adapted to the
monotonicity structure:

Variational source condition (VSC-Lav)

We assume to have a constant 0 ≤ β < 1 and an index function
ϕ such that for all x ∈M

〈x† − x̄ , x† − x〉 ≤ β‖x† − x‖2 + ϕ(〈F (x)− F (x†), x − x†〉).

Here, ϕ must be an index function with limt→+0
ϕ(t)√

t
≥ c > 0.

The next theorem is proved by the general Young inequality

ab ≤
∫ a

0
f (t) dt +

∫ b

0
f−1(t) dt

for a,b ≥ 0 and an index function f .
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Theorem
Let under the standing assumptions (VSC − Lav) be satisfied
for the x̄-minimum-norm solution x† = x†mn of (∗∗) withM such
that for the choice of α > 0 all regularized solutions xδα from
(Lav) belong toM for sufficiently small δ > 0. Then one has
the estimate

‖xδα − x†‖2 ≤ 1
(1− β)2

δ2

α2 +
2

1− β
Ψ(α),

for such δ > 0, where Ψ(α) is introduced as follows:
Let f be an index function such that its antiderivative
f̃ (s) :=

∫ s
0 f (t)dt satisfies the condition f̃ (ϕ(s)) ≤ s for s > 0

and let G(α) ≥
∫ α

0 f−1(τ)dτ . Then we set Ψ(α) := G(α)
α .
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Theorem cont.
Moreover, for the a priori choice

α(δ) ∼ Θ−1(δ2)

with Θ(α) := α2Ψ(α), which satisfies

α(δ)→ 0 and
δ

α(δ)
→ 0 as δ → 0,

this yields the convergence rate

‖xδα(δ) − x†‖ = O
(

δ

Θ−1(δ2)

)
= O

(√
Ψ(Θ−1(δ2))

)
.

The best possible rate occurs for ϕ(t) ∼
√

t and Ψ(t) ∼ t as

‖xδα(δ) − x†‖ = O(δ
1
3 ) if α(δ) ∼ δ

2
3 .
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Logarithmic type variational source conditions

We consider (VSC − Lav) with

ϕ(t) =
1
− ln t

, f (t) = e−
1
t ≤ 1

t2 e−
1
t = ϕ−1′(t), f−1(t) =

1
− ln t

,

G(α) = α
1
− lnα

≥
∫ α

0

1
− ln t

dt , Θ(t) ∼ t2 1
− ln t

, for α, t ∈ (0,1).

This yields the logarithmic rate O
(√

Ψ(Θ−1(δ2))
)

.

Since the a priori choice α(δ) ∼ Θ−1(δ2) cannot be determined
explicitly in this logarithmic case, a more convenient choice is
α(δ) ∼

√
δ which implies

‖xδα(δ) − x†‖ = O

(
1√
− ln(δ)

)
.
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Hölder type variational source conditions

For exponents µ ∈ (0, 1
2 ], we consider (VSC − Lav) with

ϕ(t) = tµ, f (t) =
1
µ

t
1−µ
µ , f−1(t) = (µt)

µ
1−µ ,

f̃ (s) = s
1
µ , G(α) = (1− µ)µ

µ
1−µα

1
1−µ , Φ(t) ∼ t

2−µ
1−µ .

According to the theorem this yields the Hölder rate

‖xδα(δ) − x†‖ = O(δ
µ

2−µ ) if α(δ) ∼ δ
2(1−µ)

2−µ .

Note that O
(
δ

µ
2−µ

)
= O

(
δ

p
p+1

)
for µ := 2p

2p+1 , 0 < p ≤ 1
2 .
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For linear forward operators F := A ∈ L(X ,X ) we outline
situations of relations to the variational source conditions:
Selfadjoint A: First let A = A∗, x† = A pw , x̄ := 0 and
0 < p ≤ 1

2 .

〈x†, x〉 = 〈w ,A px〉 ≤ ‖w‖ ‖A px‖

≤ ‖w‖ ‖x‖1−2p‖A
1
2 x‖2p = ‖w‖ ‖x‖1−2p〈Ax , x〉p

based on the interpolation inequality. By using Young’s ineq.
ab ≤ aξ

ξ + bη

η with a = ‖x‖1−2p, b = ‖w‖ 〈Ax , x〉p, ξ = 2
1−2p and

η = 2
1+2p this yields the variational source condition

〈x†, x〉 ≤
(

1
2
− p

)
‖x‖2 +

(
1
2

+ p
)
‖w‖

2
2p+1 〈Ax , x〉

2p
2p+1 ∀x ∈ X

with exponent 0 < µ = 2p
2p+1 ≤

1
2 , hence the Hölder rate

‖xδα(δ) − x†‖ = O(δ
µ

2−µ ) = O(δ
p

p+1 ) if α(δ) ∼ δ
2(1−µ)

2−µ = δ
1

p+1 .
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Non-selfadjoint A: Secondly, we consider for X = L2(0,1), the
linear integration operator

[Ax ](s) :=

∫ s

0
x(t) dt , 0 ≤ s ≤ 1,

which is monotone, but not selfadjoint, i.e. A 6= A∗. We have

〈Ax , x〉 =
1
2

(∫ 1

0
x(t) dt

)2

≥ 0,

and for x† ≡ 1, with x† /∈ R(A) and x† /∈ R(A∗),

〈x†, x〉 =

∫ 1

0
x(t) dt ≤

√
2〈Ax , x〉

1
2 ∀x ∈ X ,

thus the convergence rate for the Lavrentiev regularization

‖xδα − x†‖ = O
(
δ

1
3

)
for α ∼ δ

2
3 .
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Lavrentiev regularization for linear operator equations

Let A : X → X be a bounded linear monotone operator. For

A x = y (∗)

the linear Lavrentiev regularization acts as

xδα = (A + αI)−1(yδ + αx̄).

Proposition
The linear equation (∗) is locally well-posed everywhere iff A
is continuously invertible, i.e. there is K > 0 such that

‖(A + αI)−1‖ ≤ K <∞ for all α > 0,
where K = ‖A−1‖ holds true, but (∗) is locally ill-posed
everywhere iff N (A) 6= {0} or R(A) 6= R(A). Then we have

‖(A + αI)−1‖ = 1/α for all α > 0.
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Theorem (B PLATO 2016)
For the maximal best possible error

Ex†(δ) := sup
yδ∈X : ‖y−yδ‖≤δ

inf
α>0
‖xδα − x†‖

of Lavrentiev regularization to the linear equation (∗) we have

Ex†(δ) = O(δ) as δ → 0

in the well-posed case, but

Ex†(δ) = o(
√
δ) as δ → 0 implies x† − x̄ = 0

in the ill-posed case.
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