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Introduction

Mathematical description of nonlinear inverse problems

Let X, Y be infinite dimensional Banach spaces with norms
|- llx, |l - |y, dual spaces X*, Y* and dual pairings (-, -) x=x x-
Moreover we denote by 7x, Ty topologies in X, Y which are
weaker than the norm topology.

F :D(F) € X — Y forward operator with domain D(F).

We must treat the operator equation

F(x) =y (xeD(F)CX,yeY) ()

with solution x € D(F) and exact right-hand side y = F(x'),
which is in most cases ill-posed and nonlinear.
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Tikhonov-type regularization

For the stable approximate solution of (x*) we consider with
convex and stabilizing functional R : D(R) € X :— R

and for noisy data y? assuming a deterministic noise model
ly=ylly <o

variational regularization (Tikhonov-type regularization)

1 .
T2(x) == 5 IF(x) = y°|I% + a R(x) — min,

subject to x € D := D(F) N D(R), with exponents 1 < p < oo,

regularization parameters o > 0 and minimizers x € D(F).
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Functional analysis for regularization in Banach spaces

Assumption 1
@ X, Y are Banach spaces and D(F) is a convex subset of X.

@ F is weak-to-weak 7x-7y-sequentially continuous and
D(F) is x-weakly closed, hence F weak-to-weak closed.

@ R is convex and 7x-weakly lower semi-continuous.

@ D=D(F) N D(R) # 0.

@ R is stabilizing, which means that for every ¢ > 0 the
sublevel sets

MR(c) :={x e D(F): R(x) < c},

are Tx-weakly sequentially pre-compact in the sense that
every sequence {xx} in M*(c) has a subsequence,
which is 7x-convergent in X to some element from X.

B. Hofmann Variational regularization of nonlinear inverse problems in Banach spaces



Stabilizing functionals and coercivity

a): For a reflexive Banach space X choose
weak convergence — as 7x-convergence.

If sup |x||x < oo forall ¢ > 0,then R is stabilizing
xeMR(c)

since the closed unit ball in X is weakly sequentially

pre-compact.

b): For a non-reflexive Banach space X = Z*
with predual separable Banach space Z choose
weak* convergence —* as tx-convergence.

If sup |x||x < oo forall ¢ > 0,then R is stabilizing
xeMR(c)

since the closed unit ball in X is weak* sequentially

pre-compact (sequential Banach-Alaoglu theorem).
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An element xT € D is called an R-minimizing solution to (xx)
if
R(xT) =min{R(x) : x € D, F(x) =y}.

‘R-minimizing solutions always exist under Assumption 1 and
attainability, i.e. if, for given y € Y, (xx) has a solution x € D.

Results on existence, stability and convergence

of R-minimizing solutions x' and regularized solutions x°

for arbitrary o > 0 can be found in

> H./KALTENBACHER/P./SCHERZER 2007, > POSCHL 2008.
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We introduce a general non-negative error measure E£(x, x')
applied to any approximate solution x for evaluating its quality.

The standard case is the norm error

E(x,x") = Ix = xTllx

but in (reflexive) Banach space regularization we often exploit

E(x,x") := BE(x, x7),

the Bregman distance (cf. > BURGER/OSHER 2004) at
xT € D(R) C X and ¢t € oR(xT) € X* for R with subdifferential
OR defined as

Bg(xa XT) = R(X) - R(XT) - <€T7 X — XT>X*><X'

Dp(R) := {x € D(R) : IR(x) # 0} is called Bregman domain.
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Partially we also need:

Assumption 2
Let F, R, X, Y and D satisfy Assumption 1.

@ There exists an R-minimizing solution x which is an
element of the Bregman domain Dg(R).

@ There is a bounded linear operator F'(xT) : X — Y such

that we have for the one-sided directional derivative at x'
and for every x € D the equality

Jim. 17 (F(xT +t(x — x1)) — F(xT)) = F'(xH)(x — x).

The operator F'(x) has Gateaux derivative like properties,
and there is an adjoint operator F’(x")* : Y* — X*
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Example: Standard situation in Hilbert spaces

X, Y Hilbert spaces,

R(x):=|x — X|%,  x'is called x-minimum norm solution

1 -
To(x) =5 IFO) =I5 + e lx = XIIx
D(R) =Dp(R) = X, since OR(x) is singleton
=R (x") =2(x" - x)

R 2
BE (x,x) = |x — xT|}%.
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Example: Regularization with differential operators

X, Y Hilbert spaces, p:=2
R(x) := ||Sx||% with unbounded s.a. operator S : D(S) ¢ X — X

1
T206) = S IF() = VI + alISxI

D(R) = X Hilbert space with stronger norm [x[I% == [|Sx]x
¢h=R/(x") = 28%x1

BE (x, x1) = |S(x — x")|% with Dg(R) = D(S?)
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Example: Power-type penalties in Banach spaces

]
X,Y Banach spaces, R(x):= g X1 %

1 «o
T(x) = P IF(x) = y°II5 + q Ix(I%  (p,g>1)

D(R) =Dp(R) = X, since R(x) is differentiable with

&= R/(xT) = Jg(x") with Jg: X — X* duality mapping

1 1
B (x,x") = g IX11% — 7 IXPIS = (Jg(xT), x = xT) xeex.
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Factors influencing the error and link conditions

We search for convergence rates

E(xS,x") = O(p(6)) as 6—0
with index functions .
We call a function ¢ : (0, 00) — (0, c0) index function if
it is continuous and strictly increasing with tIiT—O o(t) =0.
—
Rate results require

@ Appropriate choices of the regularization parameter
a priori as a« = «(d) and
a posteriori as a = (4, y°).

@ The appropriate interplay of all model components.
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The attainability of convergence rates will depend on the
interplay of the following four relevant ingredients, as these are:

(i) the smoothness of the solution x',
(i) the nonlinearity structure of the forward operator F,
(iii) properties of the penalty R,

(iv) and the character of the error measure E(x, x').

Link conditions are necessary for combining the four factors.

In Hilbert spaces solution smoothness can be expressed by
variable Hilbert scales and general source conditions
(see > PEREVERZYEV, MATHE, HEGLAND).

Variational regularization of nonlinear inverse problems in Banach spaces
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Rates based on variational source conditions

Now we are back to Banach spaces X and Y from the
introduction. For expressing solution smoothness we use
variational source conditions (variational inequalities) in a
form developed independently by FLEMMING and GRASMAIR
2010-11

Assumption 3 (variational source condition - VSC)

We assume to have a constant0 < 8 < 1, and a concave
index function ¢ such that

BE(x,x") < R(x)-R(x"+o(|F(x)—F(x")|ly) forall x € M.

The set M of the validity of (VSC) must be large enough such
that it contains x' and all regularized solutions x° under
consideration for 0 < 6 < dmax. This is for example the case if
M = MR(R(xT) + c) for some ¢ > 0.
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Namely, for any fixed parameter choice
e = i (0) or a, = (Y9, 6) satisfying

P
a, — 0 and Z*%O as 0—0 (+)

we have convergence for both
R(xS) — R(x") and |[F(x2)-F(x")|ly -0 as & —0. (++)

Moreover if 5, — 0 then the regularized solutions x3" converge
(in the sense of subsequences) with respect to the (weaker)
topology 7x of X to R-minimizing solutions x'.
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On a posteriori choices o = . (y?, 0): discrepancy principles

A strong discrepancy principle was used in the literature for
Banach spaces and (VI) (> RAMLAU ET AL.): For two
constants 1 < 7y < 7 < oo the regularization parameter «, has
to satisfy the condition

716 < [IF(x2,) = ¥'lly < 726.

Duality gaps may destroy its applicability. To avoid this we
suggest to use of the sequential discrepancy principle (SDP)
for which the variational inequality (VSC) is also strong enough
to ensure convergence rates.
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Here we restrict the selection of the regularization parameter to
a discrete exponential grid. Precisely, we select0 < g < 1,
choose a parameter «g > 0 large enough and consider the set

Ag = {aj: aj::qjao, j:1,2,...}.

Definition

For prescribed = > 1 we say that the regularization parameter
a, € Ag is chosen according to the sequential discrepancy
principle (SDP) if

IFOE) = Vo lly <76 < IF () = Pl
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In > ANZENGRUBER, H.,MATHE 2013 we have proven:

Proposition
For a.. > 0 from (SDP) we have

yo)

a, — 0 and i——>0 as d—0 (+)

whenever the exact penalization veto is satisfied.

| \

Definition

We say that the exact penalization veto is satisfied if, with the
exception of singular cases, for arbitrary a > 0 an R-minimizing
solution x' cannot be a minimizer of

TO(x) = :—) IF(x) = y|| + aR(x) — min.

N

The veto is often failed in the case p = 1.
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Convergence rates for a natural a priori parameter choice
and for the sequential discrepancy principle

Theorem © HorFMANN/MATHE 2012

Suppose that x' obeys (VSC) for some concave index
function ¢ and some set M.

(i) Forp > 1let a, = ax(d) > 0 be selected according to the a
priori parameter choice o, := %.

(i) For prescribed 7 > 1 let a, = (4, ¥°) > 0 be chosen
according to the sequential discrepancy principle (SDP).

Provided that xJ_ € M forall 0 < § < §max and some dmax > 0
we have for both parameter choices (i) and (ii) the convergence
rates

E(xa,, x") = 0((8)), IIF(xs.) = F(x)lly = 0(8), and

Qs )

IR(X2,) — R(x)| = O(p(6))  as §—0.

B. Hofmann Variational regularization of nonlinear inverse problems in Banach spaces



e When do variational inequalities occur?

B. Hofmann ional regularization of nonlinear inverse problems in Banach spaces



When do variational inequalities occur?

. The benchmark case

Here we assume that x' € Dg(R) and the subdifferential
¢ e X* fulfills the benchmark source condition

¢ = F(x"*vear(x!), forsomeveVY* (%)
Such information allows us to bound for all x € X

<§T7XT _X>X*><X
= (F'ON) v, xT = x)xenx = (v, FF(xXD)(XT = X)) yery
< [Vlly=[IF' () (x = xP)l v

After adding the term R(x) — R(x*) on both sides this yields
that

BE (x, x") < RO)=R)+|V]ly- | F (xN)(x=xT)lly, x € M := D(R).
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The special case of Hilbert space regularization

X Hilbert space, R(x) =[x — X[,  BE(x,x") = |Ix — xT||%.

This implies that

le=x¥i% < [Ix=XI5—IxT=%IZ+IvIv- IF (<) (x=xD)lly, x € X,

Y*
and for a bounded linear operator F := A: X — Y we have
(VSQ)

with M = X, E(x,x") =[x — xT||%, 3 =1and ¢(t) = ||v|

In this Hilbert space setting for linear ill-posed problems
solution smoothness can always be expressed by variational
inequalities (VSC) with general index functions ¢.

y= L.
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Also in Banach spaces we obtain for bounded linear operators
such variational inequalities (VSC) with g =1,
E(x,x") = B(x,x") and ¢(t) = [|v]y-t, t > 0on M = X.

If the mapping F is nonlinear then we may use certain
structure of nonlinearity to bound

I F'(xT)(x — x|y in terms of |F(xT) — F(x)]|y-
Provided that
IF (<D (x = xNly < o(IF(x) = F(xDlly), xeM, (&)

holds for some concave index function o on some set
M C D(F), then we derive (VSC) on M with

B =1, E(x,x") = BE(x,x') and (t) = [[vly-o(t), t > 0.
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An alternative structural condition is given in the form
IFO)=FOxX)=F (XN (x=xDlly < nBE(x,x), xeM, (&&)

again for some set M C D(F) (cf. > RESMERITA, SCHERZER).
This allows us to bound

IF (M= XDy < nBE(x, x1) + IF(x) = F(x)lly, x e M

and further as (VSC) under the smallness condition

vy <1 (3%)

with 0 < 8 =1—17l|v]y- <1, E(x,x") = BE(x,x") and
o(t) = ||v]|y-t, t > 0on M.
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Il. Violation of the benchmark

If the source condition ($) is violated then we may use the
method of approximate source conditions to derive
variational using the distance function

det (R) = inf{||¢" —€llx- : €= F'(x")'v, ve Y*, |vly- <R},

which is nonincreasing, continuous and concace for all R > 0
and should obey the limit condition

di+(R)—0 as R — oo

As mentioned in BOT/HOFMANN 2010 this is the case when
F'(xTy=*: X** — Y** is injective.
Additionally this approach presumes g-coercivity

BE(x,x") > cqllx = xT[|§  forall xeM, g>2,¢4>0.

Such assumption is for example fulfilled if R(x) := ||x||}, and
X is a g-convex Banach space.
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Then, for R > 0 one can find vg € Y* and ug € X* such that
&= (FON) vatug  with  [vally- = R, [lugllx < der(R).
and we can estimate for all R > 0 and x € M as

(€1, x = xT) x e x = —((F'(x")" vg + ug, x — xT) =1 x
= —(vg, F'(x") (X = X)) ys sy + (Ug, XT — X) x+ x
< R|F'(x)(x = x")|ly 4+ det (R) [|x — xT]|x .

Adding again the difference R(x) — R(x") gives for x € M

BE (x. x") < RO)=R(X)+RIIF (x") (x=x") |y +e: (R) [ x—x"|x.
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Using Young’s inequality and the g-coercivity, for the linear case
F'(x") = A, we equilibrate the second and the third term,
depending of R and d;:(R), respectively, by means of the
auxiliary continuous and strictly decreasing function

(det(R))T 11
O(R) = gy L4l
(7) R q g

By setting R := ¢~ (||A(x — x")||y) and introducing the index

function

*

q
()= |da(@' )] (t>0)
we get again a variational inequality (VSC):

BBE (x.xT) < R(x) = R(x") + K¢(JA(x = xD]ly), xeM.
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No common source conditions but variational
inequalities in ¢!-regularization

when the sparsity assumption fails

> BURGER/FLEMMING/H. 2012/2013 and > BoT/H. 2013
Under a sparsity expectation we consider for X = ¢! = (¢o)*

with the weak*-topology as 7x in £' and F : D(F) C ¢! — Y
¢'-regularized solutions x° as minimizers of

1 .
Ta(x) = 5 IFX) Yl +alxlg — min.

We are searching for convergence rates with respect to the
¢'-norm minimizing solution xt.

Benchmark source conditions and approximate source
conditions are not applicable.
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The situation of ¢'-regularization under consideration

Assumption 4

(a) xT e £, but the sparsity assumption fails, i.e. x ¢ (0;
(b) F'(x")ex — Oforall k € N;

(c) ex = (F'(x"))*fx for some f, € Y* and all k € N.
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Theorem
Under the nonlinearity condition

IF (M= xDly < o(IIF(x) = F(xT)lly) (&)

valid for all x € M := Ml (¢), some concave index function o
and some ¢ > ||xt|| we have a variational inequality

Ix =Xl < X[l = [1xll 1 +(1F(x) = F(xT)lv)  forall x € M

with the concave index function

FURET DS |xkr+(§jufkuw>

k=n+1
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Example: Holder rates

Consider a polynomial decay and growth o(t) < K3 t*, t > 0,

o0 n
Sl <k Y ldly- < Ken?,
k=n+1 k=1

with exponents 0 < k < 1, u,v > 0 and corresponding
constants Ki, Ko, K3 > 0. Then by setting n=* ~ n”t* and

hence n ~ t7+= we obtain the Hdlder convergence rates

x5 — x|, =0 (5urv as §—0
Qs V4

whenever the regularization parameter ., = a(6, y°) is chosen
according to the (SDP). The best possible rate arises from the
limit case x = 1 expressing the tangential cone condition.
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Example: exponentially decaying solution components

In contrast to the last example we consider now an exponential
decay of the solution components

0 n
Soxil<Kiexp(=n"), D lflly- < Kan,
k=n+1 k=1

with exponents ~, v > 0 and corresponding constants
Ki, K> > 0. For simplicity let o(t) < Kz t, only.
By setting n” ~ log(1/t) and hence exp (—n”) ~ t the rate

X3, — xT||p = O (5 (Iog (%)) 7) as 0—0

holds for a, from (SDP). The factor (log (%))% prevents
X, = xTlp =0(5) as 50,

the rate which occurs for sparse solutions xt e ¢9.
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