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2 Variational regularization with oversmoothing

penalty term in Banach spaces

Robert Plato* Bernd Hofmann†

Dedicated to our distinguished colleague M. Thamban Nair on the occa-
sion of his 65th birthday

Abstract

In the present work, we discuss variational regularization for ill-posed nonlin-

ear problems with focus on an oversmoothing penalty term. This means in our

model that the searched-for solution of the considered nonlinear operator equa-

tion does not belong to the domain of definition of the penalty functional. In the

past years, such variational regularization has been investigated comprehensively

in Hilbert scales. Our present study tries to continue and to extend those investi-

gations to Banach scales. This new study includes convergence rates results for

a priori choices of the regularization parameter, both for Hölder-type smoothness

and low order-type smoothness. The necessary tools for low order smoothness in

the Banach space setting are provided.

1 Introduction

The subject of this paper are nonlinear operator equations of the form

F (u) = f † , (1)

where F : X ⊃ D(F ) → Y is a nonlinear operator between infinite-dimensional

Banach spaces X and Y with norms ‖ · ‖. We suppose that the right-hand side f † ∈ Y
is approximately given as f δ ∈ Y satisfying the deterministic noise model

‖f δ − f † ‖ ≤ δ, (2)

with the noise level δ ≥ 0. Throughout the paper, it is assumed that the considered

equation (1) has a solution u† ∈ D(F ) and is, at least at u†, locally ill-posed in the

sense of [14, Def. 3].

For finding stable approximations to the solution u† ∈ D(F ) of equation (1), we

exploit a variant of variational regularization with regularization parameter α > 0,

where the regularized solutions uδ
α are minimizers of the extremal problem

T δ
α(u) := ‖F (u)− f δ ‖r + α‖u− u‖r1 → min subject to u ∈ D(F ), (3)
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with some exponent r > 0 being fixed. In addition, u ∈ X1 occurring in the penalty

term of the Tikhonov functional T δ
α denotes an initial guess. In this context, ‖ · ‖1 is a

norm on a densely defined subspace X1 of X , which is stronger than the original norm

‖ · ‖ in X . Note that we restrict our consideration here to identical exponents for the

misfit term and the penalty functional. This restriction is actually only for technical

reasons.

Precisely, we define the stronger norm ‖ · ‖1 by ‖u‖1 = ‖G−1u‖, u ∈ R(G),
where the generator G : X → X with range R(G) is a bounded linear operator, which

is one-to-one and has an unbounded inverse G−1. Further conditions on the operator

G are given in Section 2.1 below.

In the present work, we discuss the nonlinear Tikhonov-type regularization (3)

with focus on an oversmoothing penalty term. This means in our model that we have

u† 6∈ X1, or in other words ‖u†‖1 = +∞, which is an expression of ‘non-smoothness’

of the solution u† with respect to the reference Banach space X1. Variational regular-

ization of the form (3) with r = 2 and oversmoothing penalty for nonlinear ill-posed

operator equations (1) has been investigated comprehensively in the past four years in

Hilbert scales, and we refer to [12, 15] as well as further to the papers [7, 9, 10, 13]. For

related results on linear problems, see, e.g., [22] and more recently [6, 21]. Our present

study continues and extends, along the lines of [15], the investigations on nonlinear

problems to Banach scales. This new study includes a fundamental error estimate, cf.

(12) below, and convergence results as well as convergence rates results for a priori

choices of the regularization parameter, both for Hölder-type smoothness and low or-

der smoothness. The necessary tools for low order smoothness in the Banach space

setting are provided. In addition, a relaxed nonlinearity and smoothing condition on

the operator F is considered that turns out to be useful for maximum norms.

Banach space results for the discrepancy principle in a pure equation form have

already been proven for the oversmoothing case in the recent paper [4]. In parallel, such

results have been developed for oversmoothing subcases to variants of ℓ1-regularization

and sparsity promoting wavelet regularization in [20, Sec. 5] and [19, Chap. 5].

The outline of the remainder is as follows: in Section 2 we summarize prerequisites

and assumptions for the main results in the sense of error estimates and convergence

rates for the regularized solutions. These main results will then be presented in Sec-

tion 3. An illustrative example to illuminate the general theory is given in Section 4.

The final Section 5 contains the proofs of the main results, which in particular need the

adapted construction of ‘smooth’ auxiliary elements that approximate the ‘non-smooth’

solution sufficiently well.

2 Prerequisites and assumptions

In this section, some preparations are carried out. We introduce a scale of Banach

spaces generated by an operator of positive type, introduce the logarithm of a positive

operator and formulate the basic assumptions for this paper. Moreover, we discuss

well-posedness and stability assertions for the variant of variational regularization un-

der consideration.
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2.1 Non-negative type operators, fractional powers, and regular-

ization operators

Let X be a Banach space and G : X → X be a bounded linear operator of non-negative

type, i.e.,

G+ βI : X → X one-to-one and onto, ‖(G+ βI)−1 ‖ ≤
κ∗

β
, β > 0, (4)

for some finite constant κ∗ > 0. Fractionals powers of non-negative type operators

may be defined as follows [1, 2]:

(a) For 0 < p < 1, the fractional power Gp : X → X is defined by

Gpu :=
sinπp

π

∫ ∞

0
sp−1(G+ sI)−1Guds for u ∈ X . (5)

(b) For arbitrary values p > 0, the bounded linear operator Gp : X → X is defined

by

Gp := Gp−⌊p⌋G⌊p⌋.

We moreover use the notation G0 = I .

In what follows, we shall need the interpolation inequality for fractional powers of op-

erators, see, e.g., [17] or [8, Proposition 6.6.4]: for each pair of real numbers

0 < p < q, there exists some finite constant c = c(p, q) > 0 such that

‖Gpu‖ ≤ c‖Gqu‖p/q‖u‖1−p/q for u ∈ X . (6)

For 0 < p < 1 = q, the value of the constant can be chosen as follows, c = 2(κ∗ + 1),
cf., e.g., [25, Corollary 1.1.19]. Throughout the paper, we assume that the operator G
is one-to-one and that the inverse G−1 is an unbounded operator. Then for each p > 0,

the fractional power Gp is also one-to-one, and we use the notation G−p = (Gp)−1.

We do not assume that the operator G has dense range in X .

The scale of normed spaces {Xτ}τ∈R, generated by G, is given by the formulas

Xτ = R(Gτ ) for τ > 0, Xτ = X for τ ≤ 0,

‖u‖τ := ‖G−τu‖ for τ ∈ R, u ∈ Xτ . (7)

For τ < 0, topological completion of the spaces Xτ = X with respect to the norm

‖ · ‖τ is not needed in our setting. We note that (Gp)p≥0 defines a C0-semigroup on

R(G), which in particular means that Gpu → u for p ↓ 0 is valid for any u ∈ R(G)
(cf. [8, Proposition 3.1.15]). Finally, we note that

R(Gτ2) ⊂ R(Gτ1) ⊂ R(G) for all 0 < τ1 < τ2 < ∞. (8)

2.2 The logarithm logG

For the consideration of low order smoothness, we need to introduce the logarithm of

G. For selfadjoint operators in Hilbert spaces this can be done by spectral analysis,
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and we refer in this context for example to [16, 18]. In Banach spaces, logG may

be defined as the infinitesimal generator of the C0-semigroup (Gp)p≥0 considered on

R(G):

(logG)u = lim
p↓0

1
p (G

pu− u), u ∈ D(logG),

where

D(logG) = { u ∈ X : lim
p↓0

1
p (G

pu− u) exists },

cf., e.g., [23] or [8, Proposition 3.5.3]. Low order smoothness of an element u ∈ X by

definition then means u ∈ D(logG). Note that we obviously have D(logG) ⊂ R(G).
In addition, R(Gp) ⊂ D(logG) is valid for arbitrarily small p > 0, which follows

from [23, Satz 1]. Summarizing the above notes, we have a chain of subsets of X as

R(Gp) ⊂ D(logG) ⊂ R(G) for all p > 0. (9)

This means that also in the Banach space setting, any Hölder-type smoothness is stronger

than low order smoothness.

2.3 Main assumptions

In the following assumption, we briefly summarize the structural properties of the op-

erator F and of its domain D(F ), in particular with respect to the solution u† of the

operator equation (3).

Assumption 1. (a) The operator F : X ⊃ D(F ) → Y is continuous with respect to

the norm topologies of the spaces X and Y .

(b) The domain of definition D(F ) ⊂ X is a closed subset of X .

(c) Let D := D(F ) ∩X1 6= ∅.

(d) Let the solution u† ∈ D(F ) to equation (1) with right-hand side f † be an interior

point of the domain D(F ).

(e) Let the data f δ ∈ Y satisfy the noise model (2), and let the initial guess u satisfy

u ∈ X1.

(f) Let a > 0, and let there exist finite constants 0 < ca ≤ Ca and c0, c1 > 0 such

that the following holds:

• For each u ∈ D satisfying ‖u− u† ‖−a ≤ c0, we have

‖F (u)− f † ‖ ≤ Ca‖u− u† ‖−a. (10)

• For each u ∈ D satisfying ‖F (u)− f † ‖ ≤ c1, we have

ca‖u− u† ‖−a ≤ ‖F (u)− f † ‖. (11)

(g) The operator G : X → X is compact.
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(h) The Banach space X has a separable predual space X̃ with X̃ ∗ = X . Moreover,

the operator G has a bounded preadjoint operator G̃ : X̃ → X̃ , i.e., G̃∗ = G.

Remark 2. Items (g) and (h) are needed for the proof our version of well-posedness

(existence and stability of regularized solutions in the norm of X ) in the sense of Theo-

rem 4 below. Note that the preadjoint operator G̃ is necessarily also compact, see, e.g.,

[31].

Remark 3. From the inequality (11) of item (f) in Assumption 1, we have for u† ∈ X1

that u† is the uniquely determined solution to equation (1) in the set D. For u† /∈ X1,

there is no solution at all to (1) in D. But in both cases, alternative solutions u∗ /∈ X1

with u∗ ∈ D(F ) and Fu∗ = f † cannot be excluded in general. However, there is an

exception if u∗ is an interior point of D(F ). Then a solution u∗ ∈ R(G) to equation (1)

with right-hand side f † satisfies with u = u∗ the inequality (11). This is a consequence

of the continuity of F from item (a) of Assumption 1.

2.4 Existence and stability of regularized solutions

Recall that, for α > 0, minimizers of the Tikhonov functional T δ
α introduced in (3) are

denoted by uδ
α, i.e., we have

T δ
α(u

δ
α) = min

u∈D(F )
T δ
α(u).

Evidently, by definition of the penalty term, uδ
α ∈ D holds.

The extremal problem (3) for finding regularized solutions uδ
α ∈ D is well-posed in

a sense specified in the following Theorem 4. Precisely, both existence of minimizers

and stability with respect to data perturbations can be guaranteed for all α > 0 and all

f δ ∈ Y .

Theorem 4. Let Assumption 1 be satisfied. Then the following holds:

(a) For all α > 0 and all f δ ∈ Y there exists a minimizer uδ
α of the Tikhonov func-

tional T δ
α, which belongs to the set D.

(b) For α > 0, each minimizing sequence of T δ
α over D has a subsequence that

converges in the norm of X to a minimizer uδ
α ∈ D of the Tikhonov functional.

(c) For α > 0, the regularized solutions uδ
α are stable in the norm of X with respect

to small perturbations in the data f δ ∈ Y .

The proofs of the above theorem and of the majority of subsequent results in Sec-

tion 3 are postponed to Section 5. Here we only note that the proof of Theorem 4,

more or less, rely on standard techniques and results related with the regularization

of ill-posed minimization. A special feature of the theorem, however, is stability with

respect to the given norm on the space X , not only with respect to the corresponding

weak topology. This is due to the fact that the norm in the penalty term is generated by

an unbounded operator which has a compact inverse.

Remark 5. We note that the minimizer of the Tikhonov functional may be non-unique

for nonlinear forward operators F , because T δ
α can be a non-convex functional as a
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consequence of a non-convex misfit term ‖F (u) − f δ‖r. This is, for example, the

case when F (u) := u ⋆ u represents the autoconvolution operator with X = Y =
D(F ) := L2(0, 1) (cf., e.g., [3]). Then we have for u = 0 that T δ

α(u) = T δ
α(−u),

which illustrates the non-uniqueness phenomenon.

It belongs to the main goals of this study to verify error estimates and derive conver-

gence rates results for the variant (3) of variational regularization with oversmoothing

penalty, where u† 6∈ X1.

3 Error estimate and a priori parameter choices

We start with an error estimate result that provides the basis for the analysis of the

regularizing properties, including convergence rates under a priori parameter choices.

In what follows, we use the notation

κ :=
1

r(a+ 1)
.

Theorem 6. Let Assumption 1 be satisfied. Then there exist finite positive constants

K1, α0 and δ0 such that for 0 < α ≤ α0 and 0 < δ ≤ δ0, an error estimate for the

regularized solutions as

‖uδ
α − u† ‖ ≤ f1(α) +K1

δ

ακa
(12)

holds, where f1(α) for 0 < α ≤ α0 is some bounded function satisfying:

• (No explicit smoothness) If u† ∈ R(G), then f1(α) → 0 as α → 0.

• (Hölder smoothness) If u† ∈ Xp for some 0 < p ≤ 1, then f1(α) = O(ακp) as

α → 0.

• (Low order smoothness) If u† ∈ D(logG), then f1(α) = O((log 1
α )

−1) as α → 0.

Theorem 6 allows us to derive regularizing properties of variational regularization

with oversmoothing penalty. This will be the topic of subsequent considerations aimed

at obtaining convergence and rates results for appropriate a priori parameter choices,

which culminate in Theorem 7. For evaluating the strength of smoothness for the three

different occurring situations in Theorem 6 (no explicit smoothness, Hölder smooth-

ness and low order smoothness) we recall the chain (9) of range conditions.

The following main theorem is a direct consequence of Theorem 6, because its

proof is immediately based on the error estimate (12) with the respective properties of

the function f1(α).

Theorem 7. Let Assumption 1 be satisfied.

• (No explicit smoothness) Let u† ∈ R(G). Then for any a priori parameter choice

α∗ = α(δ) satisfying α∗ → 0 and δ
ακa

∗

→ 0 as δ → 0, we have

‖uδ
α∗

− u† ‖ → 0 as δ → 0.

6



• (Hölder smoothness) Let u† ∈ Xp for some 0 < p ≤ 1. Then for any a priori

parameter choice satisfying α∗ = α(δ) ∼ δ1/(κ(p+a)) we have

‖uδ
α∗

− u† ‖ = O(δp/(p+a)) as δ → 0.

• (Low order smoothness) Let u† ∈ D(logG). Then for any a priori parameter choice

satisfying α∗ = α(δ) ∼ δ, we have

‖uδ
α∗

− u† ‖ = O((log 1
δ )

−1) as δ → 0.

4 An illustrative example

In what follows, we present an example with specific Banach spaces and nonlinear

forward operator, which shows that the general mathematical framework developed in

this paper is applicable. The considered basis space is X = L∞(0, 1) with the essential

supremum norm ‖ · ‖ = ‖ · ‖∞ possessing a separable predual space X̃ = L1(0, 1).
The generator G of the scale of normed spaces is given by

[Gu](x) =

∫ x

0

u(ξ) dξ (0 ≤ x ≤ 1, u ∈ L∞(0, 1)).

Below we give some properties of G:

• The operator G : L∞(0, 1) → L∞(0, 1) is of non-negative type with constant

κ∗ = 2, see, e.g., [25].

• G has a trivial nullspace and a non-dense range

R(G) = W 1,∞
0 (0, 1) := { u ∈ W 1,∞(0, 1) : u(0) = 0 },

with

R(G) = C0[0, 1] := { u ∈ C[0, 1] : u(0) = 0 }.

• G is a compact operator, which follows immediately from the Arzelá–Ascoli theo-

rem.

• G has a compact preadjoint operator G̃ : L1(0, 1) → L1(0, 1), which is character-

ized by

[G̃v](x) =

∫ 1

x

v(ξ) dξ (0 ≤ x ≤ 1, v ∈ L1(0, 1)).

The nonlinear forward operator of this example is F : L∞(0, 1) → L∞(0, 1) given by

[F (u)](x) = exp((Gu)(x)) (0 ≤ x ≤ 1, u ∈ L∞(0, 1)).

This operatorF is Fréchet differentiable on its domain of definitionD(F ) = L∞(0, 1),
with [F ′(u)]h = [F (u)] · Gh. Now consider some function u† ∈ L∞(0, 1) which is

assumed to be fixed throughout this section. We then have

c1 ≤ Fu† ≤ c2 on [0, 1], with c1 := exp(−‖Gu† ‖∞) > 0, c2 := exp(‖Gu† ‖∞),
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so that

c1|Gh| ≤ |F ′(u†)h| ≤ c2|Gh| on [0, 1] (h ∈ L∞(0, 1)). (13)

For any u ∈ L∞(0, 1), we denote by ∆ = ∆(u) and θ = θ(u) the following functions:

∆ := Fu− Fu† ∈ L∞(0, 1), θ := G(u− u†) ∈ L∞(0, 1).

Thus, ‖u− u† ‖−1 = ‖θ‖∞, and we refer to (7) for the definition of ‖ · ‖−1.

Below we show that the basic estimates (10) and (11) are satisfied for that example

with a = 1. As a preparation, we note that

|∆− F ′(u†)(u− u†)| ≤ |θ| |∆| on [0, 1], (14)

and refer in this context to [10, Sect. 4.4]. In this reference. the same F is analyzed as

an operator mapping in L2(0, 1), where moreover its relation to a parameter estimation

problem for an initial value problem of a first order ordinary differential equation is

outlined.

(a) We first show that (10) holds. Even more general we show that it holds for any

u ∈ L∞(0, 1) sufficiently close to u†, not only for u ∈ X1. From (13) we have that

|∆− F ′(u†)(u − u†)| ≥ |∆| − |F ′(u†)(u− u†)| ≥ |∆| − c2|θ| on [0, 1],

and (14) then implies the estimate

|∆| − c2|θ| ≤ |θ| |∆| on [0, 1].

For any u ∈ L∞(0, 1) satisfying ‖θ‖∞ ≤ τ < 1, we thus have |∆| ≤ τ |∆| + c2|θ|
and therefore (1− τ)|∆| ≤ c2|θ| on [0, 1]. This finally yields

1−τ
c2

‖∆‖∞ ≤ ‖θ‖∞ for ‖θ‖∞ ≤ τ (0 < τ < 1),

from which the first required nonlinearity condition (10) follows immediately.

(b) We next show that (11) holds, in fact for any u ∈ L∞(0, 1) sufficiently close to u†.

From (13) we have

|∆− F ′(u†)(u − u†)| ≥ |F ′(u†)(u− u†)| − |∆| ≥ c1|θ| − |∆| on [0, 1],

and (14) then implies that

c1|θ| ≤ |∆|+ |θ| |∆| on [0, 1].

For any 0 < ε < c1 and u ∈ L∞(0, 1) satisfying ‖∆‖∞ ≤ c1 − ε, we thus have

c1|θ| ≤ |∆|+ (c1 − ε)|θ| and therefore ε|θ| ≤ |∆| on [0, 1]. This provides us with the

estimate ε‖θ‖∞ ≤ ‖∆‖∞, which is valid for ‖∆‖∞ ≤ c1 − ε (0 < ε < c1). This,

however, yields directly the second required nonlinearity condition (11).
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5 Constructions and verifications

5.1 Proof of Theorem 4

The assertions of this theorem follow, in principle, from standard results on existence

and stability of Tikhonov-regularized solutions, which had been presented for example

in [11, Sect. 3] and in the monographs [27, Section 4.1.1], [26, Chapter 3.2], [28,

Chapter 2.6], and [29, 30]. Some more details on the applicability of the results in the

given references will be given below. We only note that, due to the compactness of the

operator G, we may consider strong topologies. For convenience of the reader, below

we present a detailed proof. We start with the properties of the involved mappings and

sets.

(i) By assumption, the set D(F ) is a closed subset of X .

(ii) Also by assumption, the operator F : X ⊃ D → Y is continuous with respect to

the norms on X and Y . This implies that the misfit functional u ∈ D 7→ ‖F (u)−f δ ‖r

is continuous on X with respect to the norm topology.

(iii) We now consider the stabilizing functional Ω : X → [0,∞] given by

Ω(u) =

{
‖u− u‖r1, if u ∈ X1,
∞ otherwise.

We next verify that, for all nonnegative constants C, the sublevel sets

SC := { u ∈ X : Ω(u) ≤ C } ⊂ X1

are precompact in X with respect to norm. For this purpose let {un}
∞
n=1 ⊂ SC and

denote vn := G−1(un−u). Since the considered spaceX has a separable predual space

X̃ , we may apply the Banach–Alaoglu theorem. Thus there is a subsequence {vnk
}∞k=1

of the in X bounded sequence {vn}
∞
n=1, which is weakly* convergent to some element

v0 ∈ X . Since G is the compact adjoint operator of a bounded linear operator G̃ in the

predual space X̃ , we obtain the norm convergenceGvnk
= unk

−u → u0 := Gv0 ∈ X
as k → ∞, cf. Gatica [5, Lemma 2.5]. Hence, we have unk

→ u+u0 ∈ X as k → ∞.

This shows that SC is indeed precompact.

(iv) We next show that each sublevel set SC is closed in X and that the stabilizing

functional Ω is lower semicontinuous on SC , both with respect to the norm topology

of X . For this, let {un}
∞
n=1 ⊂ SC and u ∈ X with un → u as n → ∞. This implies

that G−1un has a weak* convergent subsequence, i.e., G−1unk
⇀∗ v ∈ X as k → ∞

for some v ∈ X . Thus we obtain strong convergence unk
→ Gv ∈ X as k → ∞.

Uniqueness of limits now implies u = Gv, i.e., u ∈ X1 = R(G). A subsequence

reasoning shows that G−1un ⇀∗ G−1u ∈ X as n → ∞, and thus, cf. [31, Theorem 9

of Chapter V], ‖u − u‖1 ≤ lim infn→∞ ‖un − u‖1. This completes the proof of the

statement of item (iv).

We are now in a position to verify the statements (a)–(c) of Theorem 4.

(a) This follows from part (b).

9



(b) Let {un}
∞
n=1 ⊂ D be a minimizing sequence for the Tikhonov functional, i.e.,

T δ
α(un) → T δ

α,∗ := inf
u∈D

T δ
α(u).

This implies

lim sup
n→∞

Ω(un) ≤
1

α
lim
n→∞

T δ
α(un) =

1

α
T δ
α,∗,

and thus supn Ω(un) < ∞. From the compactness of the sublevel sets of Ω and the

closedness of D(F ), norm convergence of some subsequence in D follows, i.e., for

some uδ ∈ D and some subsequence {unk
}∞k=1, we have strong convergence unk

→
uδ as k → ∞. The lower semicontinuity of Ω and the continuity of F then imply

‖uδ − u‖1 ≤ lim inf
k→∞

‖unk
− u‖1, ‖F (uδ)− f δ ‖ = lim

k→∞
‖F (unk

)− f δ ‖,

and then

T δ
α(u

δ) ≤ lim
k→∞

‖F (unk
)− f δ ‖r + lim inf

k→∞
‖unk

− u‖r1

≤ lim inf
k→∞

{
‖F (unk

)− f δ ‖r + ‖unk
− u‖r1

}
= lim inf

k→∞
T δ
α(unk

) = T δ
α,∗

follows which in fact means T δ
α(u

δ) = T δ
α,∗. This completes the proof of part (b) of

the theorem.

(c) For the verification of stability, consider perturbations of the Tikhonov functional

of the following form,

T n
α (u) = ‖F (u)− fn ‖

r + α‖u− u‖r1, u ∈ D (n = 1, 2, . . .),

where {fn} ⊂ Y with ‖fn − f δ ‖ → 0 as n → ∞. Let un ∈ D be a minimizer

of the Tikhonov functional T n
α (n = 1, 2, . . .) which exists according to part (a) of

this theorem. In what follows, we show that {un} is a minimizing sequence for the

original Tikhonov functional T δ
α. Stability then follows immediately from part (b) of

the theorem.

Let uδ ∈ D be a minimizer of T δ
α, and let

hn := ‖fn − f δ ‖min{r,1}, n = 1, 2, . . . .

Utilizing those notations, we have

T δ
α(un) = ‖F (un)− f δ ‖r + α‖un − u‖r1

≤ (‖F (un)− fn ‖+ ‖fn − f δ ‖)r + α‖un − u‖r1

≤ ‖F (un)− fn ‖
r +Khn + α‖un − u‖r1 = T n

α (un) +Khn (15)

≤ T n
α (u

δ) +Khn = ‖F (uδ)− fn ‖
r + α‖uδ − u‖r1 +Khn

→ ‖F (uδ)− f δ ‖r + α‖uδ − u‖r1 = T δ
α(u

δ) as n → ∞,

10



where K ≥ 0 in (15) denotes some finite constant. We note that this inequality (15)

follows from the identity

(x+ h)r = xr +O(hmin{r,1}) as h ↓ 0

which holds uniformly in x ≥ 0 (on bounded intervals, if r ≥ 1). Note that ‖F (un)−
fn ‖

r ≤ T n
α (un) ≤ T n

α (û) for any û ∈ D, so that lim supn ‖F (un) − fn ‖
r ≤

lim supn T
n
α (û) = T δ

α(û), which implies that the sequence {‖F (un)−fn ‖}n is indeed

bounded.

We can summarize the above estimate to

lim sup
n→∞

T δ
α(un) ≤ lim

n→∞
T n
α (u

δ) = T δ
α(u

δ),

i.e., {un} is a minimizing sequence for the Tikhonov functional T δ
α. This completes

the proof of the theorem.

Remark 8. From the four items (i)–(iv), the statements (a)–(c) of Theorem 4 basically

follow from standard results on the existence and stability of Tikhonov-regularized

solutions given in the references presented in front of the theorem.

• For example, parts (a) and (c) are results of Theorems 3.22 and 3.23 in [26], re-

spectively, if Assumption 3.13 in that reference is considered for norm topologies. The

required convexity of the penalty functional is not needed in our setting. In addition,

also the requirement ”exponent ≥ 1” in Assumption 3.13 in [26] may be dropped by

noting that Lemma 3.20 in [26] holds for exponents < 1, if the constant there is re-

placed by 1. Part (b) then is an easy consequence of (c).

• Alternatively, parts (a) and (b) follow directly from [29, Lemma 1], cf. also [30,

Lemma 1], if one considers the set D as basic space, equipped with the norm conver-

gence of the space X . Part (c) then is an immediate consequence of (b).

5.2 Introduction of auxiliary elements

For the auxiliary elements introduced below, we consider linear bounded regularization

operators associated with G,

Rβ : X → X for β > 0 (16)

and its companion operators

Sβ := I −RβG for β > 0. (17)

We assume that the following conditions are satisfied:

‖Rβ ‖ ≤ c∗
β for β > 0, (18)

‖SβG
p ‖ ≤ cpβ

p for β > 0, (0 ≤ p ≤ p0) (19)

RβG = GRβ for β > 0 (20)

where 0 < p0 < ∞ is a finite number to be specified later, and c∗ and cp denote finite

constants. We assume that cp is bounded as a function of p.
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Example 9. An example is given by Lavrentiev’s m-times iterated method with an

integer m ≥ 1. Here, for f ∈ X and v0 = 0 ∈ X , the element Rβf is given by

(G+ βI)vn = βvn−1 + f for n = 1, 2, . . . ,m, Rβf := vm.

The operator Rβ can be written in the form

Rβ = β−1
m∑

j=1

βj(G+ βI)−j ,

and the companion operator is given by Sβ = βm(G + βI)−m. For m = 1, this gives

Lavrentiev’s classical regularization method, Rβ = (G + βI)−1. For this method,

the conditions (18)–(20) are satisfied with p0 = m. In fact, for integer 0 ≤ p ≤ m,

estimate (19) holds with constant cp = (κ∗ + 1)m, see [25, Lemma 1.1.8]. From this

intermediate result and the interpolation inequality (6), inequality (19) then follows for

non-integer values 0 < p < m, with constant cp = 2(κ∗ + 1)m+1. △

We are now in a position to introduce auxiliary elements which provide an essential

tool for the analysis of the regularization properties of Tikhonov regularization consid-

ered in our setting. They are defined as follows,

ûβ := u+RβG(u† − u) = u† − Sβ(u
† − u) for β > 0, (21)

where G is the generator of the scale of normed spaces introduced in Section 2.1, and

Rβ , β > 0, is an arbitrary family of regularizing operators as in (16) satisfying the

conditions (18)–(20) with saturation

p0 ≥ 1 + a,

and Sβ , β > 0, denotes the corresponding companion operators, cf. (17). In addition,

the solution u† of the operator equation (1) and the corresponding initial guess u are as

introduced above. The basic properties of the auxiliary elements (21) are summarized

in Lemma 13 below.

We now state another property of regularization operators which is also needed

below.

Lemma 10. Let Rβ , β > 0, be an arbitrary family of regularizing operators as in (16)

satisfying the conditions (18)–(20). Then there exist some finite constant c > 0, so that

for each 0 < p ≤ 1 we have

‖RβG
p ‖ ≤ cβp−1 for β > 0.

Proof. Since RβG
p = GpRβ , for κ1 = 2(κ∗ + 1) we have

‖RβG
pw‖ = ‖GpRβw‖ ≤ κ1‖GRβw‖p‖Rβw‖1−p

≤ κ1(c0 + 1)pc1−p
∗ ‖w‖βp−1, w ∈ X ,

where the first inequality follows from the interpolation inequality (6). For the meaning

of the constants c0 and c∗, we refer to (18) and (19), respectively.

12



5.3 Auxiliary results for logG

Lemma 11. For each u ∈ D(logG) and each 0 ≤ p < p0, we have

‖SβG
pu‖ = O(βp(log 1

β )
−1) as β → 0.

Proof. There holds ‖Gq ‖ ≤ Ceωq for q ≥ 0, where ω > 0 and C > 0 denote

suitable constants, and ‖ · ‖ denotes the norm of operators on R(G). This follows, e.g.,

from the fact that (Gq)q≥0 defines a C0-semigroup on R(G). Thus each real λ > ω

belongs to the resolvent set of the operator logG : R(G) ⊃ D(logG) → R(G),
i.e., (λI − logG)−1 : R(G) → R(G) exists and defines a bounded operator, cf. [24,

Theorem 5.3, Chapter 1]. Since

R((λI − logG)−1) = D(λI − logG) = D(logG),

we can represent u as

u = (λI − logG)−1w

with some w ∈ R(G). Since (cf. [24, proof of Theorem 5.3, Chapter 1])

u = (λI − logG)−1w =

∫ ∞

0

e−λqGqw dq,

we have

SβG
pu =

∫ ∞

0

e−λqSβG
p+qw dq = y1 + y2,

with

y1 =

∫ p0−p

0

e−λqSβG
p+qw dq, y2 =

∫ ∞

p0−p

e−λqSβG
p+qw dq.

The element y1 can be estimated as follows for β < 1:

‖y1 ‖ ≤ c‖w‖

∫ p0−p

0

βp+q dq = c‖w‖βp 1

log β
βq

∣∣q=p0−p

q=0

= c‖w‖βp 1

| log β|
(1− βp0−p) ≤ c‖w‖βp 1

| logβ|
.

The element y2 can be written as follows,

y2 =

∫ ∞

p0−p

e−λqSβG
p0Gq−(p0−p)w dq,

and thus we can estimate as follows:

‖y2 ‖ ≤ c1‖w‖

∫ ∞

p0−p

e−λqβp0eω(q−(p0−p)) dq

≤ c2‖w‖e−ω(p0−p)βp0

∫ ∞

p0−p

e−(λ−ω)q dq = O(βp0) as β → 0.

This completes the proof.

13



Lemma 12. For each u ∈ D(logG), we have

‖Rβu‖ = O(
1

β log 1
β

) as β → 0.

Proof. Follows similar to Lemma 11, by making use of Lemma 10.

5.4 Properties of auxiliary elements

In this section, we present the basic properties of the auxiliary elements, which are

needed to verify our convergence results.

Lemma 13. Consider the auxiliary elements from (21) with regularization operators

Rβ , β > 0, with saturation p0 ≥ 1 + a. Let the three function gi(β) (i = 1, 2, 3) be

given by the following identities:

‖ ûβ − u† ‖ = g1(β), (22)

‖ ûβ − u† ‖−a = g2(β)β
a, (23)

‖ ûβ − u‖1 = g3(β)β
−1, (24)

for β > 0, respectively. Those functions gi(β) (i = 1, 2, 3) are bounded and have the

following properties:

• (No explicit smoothness) If u† ∈ R(G), then we have gi(β) → 0 as β → 0
(i = 1, 2, 3).

• (Hölder smoothness) If u† ∈ Xp for some 0 < p ≤ 1, then gi(β) = O(βp) as

β → 0 (i = 1, 2, 3),

• (Low order smoothness) If u† ∈ D(logG), then gi(β) = O((log 1
β )

−1) as β → 0
(i = 1, 2, 3).

Proof. By definition, those three functions g1, g2 and g3 under consideration can be

written as follows,

g1(β) = ‖Sβ(u
† − u)‖,

g2(β) = β−a‖GaSβ(u
† − u)‖,

g3(β) = β‖Rβ(u
† − u)‖,

and, according to conditions (18)–(20), thus are bounded.

• We consider Hölder smoothness first. Since u†, u ∈ Xp holds, we have u† −
u = Gpw for some w ∈ X . The statements are now easily obtained from (19) and

Lemma 10.

• We have u†−u ∈ D(logG) and the statements now follow easily from Lemmas 11

and 12.
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• The convergence statement under any missing smoothness assumption is based on

the uniform boundedness principle by taking into account formula (19) and Lemma 10.

To apply this principle, we consider the parametric family of linear operatorsSβ : X →
X and in this context the associated limiting process β → 0 of the parameter. Then we

have uniform boundedness ‖Sβ‖ ≤ c0 for all β > 0 and convergence ‖Sβz‖ → 0 as

β → 0 for all z from the range R(G), which is dense in R(G). This yields g1(β) =
‖Sβ(u

† − ū)‖ → 0 as β → 0 and also the analog assertions for g2 and g3 as required.

5.5 Proof of Theorem 6

This section is devoted to the proof of Theorem 6. We start with a preparatory lemma.

Lemma 14. Let Assumption 1 be satisfied. There exists some α0 > 0 such that for

0 < α ≤ α0 and each δ > 0, we have

max{‖F (uδ
α)− f δ ‖, α1/r‖uδ

α − u‖1} ≤ f2(α)α
κa + erδ.

Here, f2(α) is a bounded function satisfying the following:

• (No explicit smoothness) If u† ∈ R(G), then f2(α) → 0 as α → 0.

• (Hölder smoothness) If u† ∈ Xp for some 0 < p ≤ 1, then f2(α) = O(ακp) as

α → 0.

• (Low order smoothness) If u† ∈ D(logG), then f2(α) = O((log 1
α )

−1) as α → 0.

In addition, the constant er is defined as follows:

er =

{
1, if r ≥ 1,
2−1+1/r otherwise.

Proof. We consider auxiliary elements of the form (21), with saturation p0 ≥ 1 + a.

We choose

β = β(α) = ακ. (25)

For α > 0 small enough, say 0 < α ≤ α0, we have ûβ ∈ D because of Lemma 13 and

u† is an interior point of D(F ). Thus we have

(‖F (uδ
α)− f δ ‖r + α‖uδ

α − u‖r1)
1/r ≤ (‖F (ûβ)− f δ ‖r + α‖ ûβ − u‖r1)

1/r

≤ er(‖F (ûβ)− f δ ‖+ α1/r‖ ûβ − u‖1)

≤ er(‖F (ûβ)− f † ‖+ α1/r‖ ûβ − u‖1 + δ).

The first term on the right-hand side of the latter estimate can be written as

‖F (ûβ)− f † ‖ ≤ Ca‖ ûβ − u† ‖−a ≤ Cag2(β)β
a = Cag2(α

κ)ακa
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for α small enough, say α ≤ α0. This is a consequence of estimate (10) and represen-

tation (23) of Lemma 13. The second term on the right-hand side of the latter estimate

attains the form

α1/r‖ ûβ − u‖1 ≤ α1/rg3(β)β
−1 = g3(α

κ)ακa,

based on (24) of Lemma 13. This yields the function

f2(α) := er(Cag2(α
κ) + g3(α

κ)) for α ≤ α0.

The asymptotical behaviors of the function f2 stated in the lemma are immediate con-

sequences of Lemma 13. This completes the proof of the lemma.

Corollary 15. Let Assumption 1 be satisfied. There exist finite positive constants α0, δ0
and K2 such that for 0 < α ≤ α0 and each 0 ≤ δ ≤ δ0, we have

‖uδ
α − u† ‖−a ≤ f3(α)α

κ +K2δ.

Here f3(α), 0 < α ≤ α0, is a bounded function which satisfies the following:

• (No explicit smoothness) If u† ∈ R(G), then f3(α) → 0 as α → 0.

• (Hölder smoothness) If u† ∈ Xp for some 0 < p ≤ 1, then f3(α) = O(ακp) as

α → 0.

• (Low order smoothness) If u† ∈ D(logG), then f3(α) = O((log 1
α )

−1) as α → 0.

Proof. Let α and δ be small enough, say 0 < α ≤ α0 and 0 < δ ≤ δ0. From estimate

(11) and Lemma 14, it then follows

ca‖u
δ
α − u† ‖−a ≤ ‖F (uδ

α)− f † ‖ ≤ ‖F (uδ
α)− f δ ‖+ δ ≤ f2(α)α

κa + (1 + er)δ.

The assertion of the corollary now follows by setting f3(α) :=
f2(α)
ca

and K2 := 1+er
ca

.

Proof of Theorem 6. The error ‖uδ
α − u† ‖ is now estimated by the following series of

error estimates. Using β = β(α) from (25) in combination with (22) from Lemma 13,

we obtain

‖uδ
α − u† ‖ ≤ ‖uδ

α − ûβ ‖+ ‖ ûβ − u† ‖ = ‖uδ
α − ûβ ‖+ g1(α

κ), (26)

and below we consider the term ‖uδ
α − ûβ ‖ in more detail. From the interpolation

inequality (6) it follows

‖uδ
α − ûβ ‖ ≤ c3‖u

δ
α − ûβ ‖

1/(a+1)
−a ‖uδ

α − ûβ ‖
a/(a+1)
1 . (27)

Both terms on the right-hand side of the estimate (27) can be estimated by using Corol-

lary 15 and Lemma 13 in the following manner. Precisely, we find with

f4(α) := f3(α) + g2(α
κ), f5(α) := f2(α) + g1(α

κ)
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the estimates

‖uδ
α − ûβ ‖−a ≤ ‖uδ

α − u† ‖−a + ‖ ûβ − u† ‖−a ≤ f4(α)α
κa +K2δ,

‖uδ
α − ûβ ‖1 ≤ ‖uδ

α − u‖1 + ‖ ûβ − u‖1 ≤ α−1/r (f5(α)α
κa + δ) .

Thus we can continue estimating (27). Introducing f6(α) := max{f4(α), f5(α)} and

K3 := max{K2, 1}, K1 = c3K3, we obtain

‖uδ
α − ûβ ‖ ≤ c3 (f4(α)α

κa +K2δ)
1/(a+1)

(
α−1/r (f5(α)α

κa + δ)
)a/(a+1)

≤ c3 (f6(α)α
κa +K3δ)

1/(a+1)
(
α−1/r (f6(α)α

κa +K3δ)
)a/(a+1)

= c3α
−κa (f6(α)α

κa +K3δ) = c3f6(α) +K1
δ

ακa
.

From the latter estimate and (26), the theorem now immediately follows by considering

f1(α) := g1(α
κ) + c3f6(α) there.
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Berlin, Heidelberg, 2006.

[9] B. Hofmann and C. Hofmann. The impact of the discrepancy principle on the

Tikhonov-regularized solutions with oversmoothing penalties. mathematics -

www.mdpi.com/journal/mathematics, 8(3):331 (16pp), 2020.
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