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Curious ill-posedness phenomena in the composition of

non-compact linear operators
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Abstract

We consider the composition of operators with non-closed range in Hilbert spaces and

how the nature of ill-posedness is affected by their composition. Specifically, we study the

Hausdorff-, Cesàro-, integration operator, and their adjoints, as well as some combinations of

those. For the composition of the Hausdorff- and the Cesàro-operator, we give estimates of

the decay of the corresponding singular values. As a curiosity, this provides also an example

of two practically relevant non-compact operators, for which their composition is compact.

1 Introduction

Let X ,Y, and Z denote infinite-dimensional real Hilbert spaces. In this note, we consider com-
posite operators T , which are factorized as

T : X T1−−−−→ Z T2−−−−→ Y ,

where T1 : X → Z, T2 : Z → Y and consequently T = T2 ◦ T1 : X → Y are bounded and injective
linear operators with non-closed range, which means that zero belongs to the spectrum of the
operators T1, T2, and T . So the composite equation

T x = T2 (T1 x) = y (x ∈ X , y ∈ Y) , (1)

but also the outer equation
T2 z = y (z ∈ Z, y ∈ Y) (2)

and the inner equation
T1 x = z (x ∈ X , z ∈ Z) (3)

represent ill-posed linear operator equations and can serve as models for inverse problems charac-
terized by forward operators T1, T2, and T with non-closed dense ranges R(T ) ⊂ Y, R(T1) ⊂ Z,
and R(T2) ⊂ Y, respectively. This implies that the corresponding adjoint operators T ∗, T ∗

1 , and
T ∗

2 are also bounded and injective linear operators.
In this context, we recall the paper [17], where Nashed distinguished for such operator equations

ill-posedness of type I when the forward operator is non-compact and, as alternative, ill-posedness
of type II when the forward operator is compact. Unfortunately, only for type II the strength and

degree of ill-posedness caused by the forward operator can be simply expressed by the decay rate
of the associated singular values of this operator; see Definitions 1 and 2 below. For discussions
about the degree of ill-posedness of equations (1) with non-compact operators that are ill-posed
of type I in the sense of Nashed, we refer to the articles [9, 10, 16]. Here, however, we assume in
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the sequel that the composite operator T : X → Y in (1) is compact and possesses the singular
system

{σi(T ) > 0, ui ∈ X , vi ∈ Y }∞i=1 ,

with decreasingly ordered singular values

‖T ‖L(X,Y) = σ1(T ) ≥ σ2(T ) ≥ . . . ≥ σi(T ) ≥ σi+1(T ) ≥ . . .

tending to zero as i → ∞ and complete orthonormal systems {ui}∞i=1 in X and {vi}∞i=1 in Y
obeying Tui = σi(T ) vi as well as T

∗vi = σi(T )ui, for all i ∈ N.

Definition 1 (Mild, moderate, and severe ill-posedness). Let the bounded and injective linear
operator T : X → Y be compact. Then we call the operator equation (1)

• mildly ill-posed whenever the decay rate of σi(T ) → 0, as i → ∞, is slower than any
polynomial rate.

• moderately ill-posed whenever the decay rate of σi(T ) → 0, as i → ∞, is polynomial.

• severely ill-posed whenever the decay rate of σi(T ) → 0, as i → ∞, is higher than any
polynomial rate.

Along the lines of [12] (see also [10]), one can define in more detail an interval and a degree of
ill-posedness as follows.

Definition 2 (Interval and degree of ill-posedness). We call, for an ill-posed operator equations
(1) with compact forward operator T , the well-defined interval of the form

[κ, κ] =

[

lim inf
i→∞

− log(σi(T ))

log(i)
, lim sup

i→∞

− log(σi(T ))

log(i)

]

⊂ [0,∞] (4)

as interval of ill-posedness. If κ and κ from [0,∞] are both finite positive, then we have moderate

ill-posedness, and if they even coincide as κ = κ = κ, then we call the equation ill-posed of degree

κ > 0. Severe ill-posedness occurs if the interval degenerates as κ = κ = ∞, and vice versa mild

ill-posedness is characterized by a degeneration as κ = κ = 0.

2 A selection of injective linear operators with non-closed

range

To investigate the ill-posedness behaviour of composite operators T = T2 ◦ T1 in the equation
(1), we present a selection of bounded and injective compact and non-compact operators with
non-closed range that can be exploited for T1 and T2 and for which also the adjoint operators are
injective. We start with the simple integration operator J : L2(0, 1) → L2(0, 1) and its adjoint
operator J∗ : L2(0, 1) → L2(0, 1) defined as

[J x](s) :=

∫ s

0

x(t) dt (0 ≤ s ≤ 1, x ∈ L2(0, 1)) , (5)

and

[J∗x](t) :=

∫ 1

t

x(s) ds (0 ≤ t ≤ 1, x ∈ L2(0, 1)) , (6)

respectively. Both operators are compact and so is the self-adjoint specific diagonal operator

D : ℓ2 → ℓ2, which appears here as

[Dy]j :=
yj
j

(j = 1, 2, . . . , y ∈ ℓ2). (7)
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It is well-known for J and J∗ and evident forD that the degree of ill-posedness is one. The singular
system of J and J∗ can be written down in an explicit manner, where we have σi(J) ≍ i−1 for
i → ∞ as singular value asymptotics. The singular system of D is of the form {i−1, e(i), e(i)}∞i=1,
where e(i) denotes the i-th unit vector in ℓ2.

The Cesàro operator C : L2(0, 1) → L2(0, 1) and its adjoint operator C∗ : L2(0, 1) → L2(0, 1),
which attain the form

[C x](s) :=
1

s

∫ s

0

x(t) dt (0 ≤ s ≤ 1, x ∈ L2(0, 1)) (8)

and

[C∗x](t) :=

∫ 1

t

x(s)

s
ds (0 ≤ t ≤ 1, x ∈ L2(0, 1)) , (9)

respectively, are non-compact operators with non-closed range; see [1, 15]. A further interesting
non-compact operator with non-closed range connecting the spaces L2(0, 1) and ℓ2 is the Hausdorff
moment operator A : L2(0, 1) → ℓ2 defined as

[Ax]j :=

∫ 1

0

x(t) tj−1dt (j = 1, 2, . . . , x ∈ L2(0, 1)) , (10)

with the corresponding adjoint operator A∗ : ℓ2 → L2(0, 1) of the form

[A∗y](t) :=

∞
∑

j=1

yj t
j−1 (0 ≤ t ≤ 1, y ∈ ℓ2), (11)

and we refer for details to [5] (see also [4, 6, 11]).
For the last four non-compact operators, a degree or interval of ill-posedness in the sense of

Definition 2 does not make sense. But if those operators occur as T1 or T2 in a composition
T = T2 ◦ T1, where T is compact, then they can substantially influence the degree of ill-posedness
for T . This is also the case for non-compact multiplication operators M : L2(0, 1) → L2(0, 1) with
non-closed range

[M x](t) := m(t)x(t) (0 ≤ t ≤ 1, x ∈ L2(0, 1)) , (12)

for which the multiplier functions m ∈ L∞(0, 1) possess essential zeros in (0, 1). We refer in this
context also to the papers [8, 13].

3 Can a non-compact operator in composition destroy the

degree of ill-posedness of a compact operator?

In the past years, equations (1) with compact composite operators T = T2 ◦ T1 have been studied
under the assumption that T1 is compact and T2 is a non-compact operator with non-closed
range. It had been an open question whether the non-compact operator T2 can amend the degree
of ill-posedness of the compact operator T1 in the composition T .

The first studies in [3, 13, 14] investigated the case T = M ◦ J : L2(0, 1) → L2(0, 1) with
multiplication operators T2 := M : L2(0, 1) → L2(0, 1) from (12) and the simple integration
operator T1 := J : L2(0, 1) → L2(0, 1) from (5). Indeed, all these studies indicated the asymptotics
σi(T ) ≍ i−1 as i → ∞, even for multiplier functions m with strong (exponential-type) zeros that
occur in inverse problems of option pricing; see [7]. This means that along the lines of those
studies the non-compact multiplication operator M does not destroy the degree of ill-posedness
one of the compact operator J in such composition.

However, the situation changed when for T1 := J the multiplication operator M as T2 was
replaced with the non-compact Hausdorff moment operator T2 := A : L2(0, 1) → ℓ2 from (10).
In the article [11], the assertion of the following proposition could be shown in the context of
Corollary 2 and Theorem 3 ibid.
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Proposition 1. The operator T = A ◦ J : L2(0, 1) → ℓ2 with A : L2(0, 1) → ℓ2 from (10) and
J : L2(0, 1) → L2(0, 1) from (5) obeys for some positive constants C and C the inequalities

exp(−C i) ≤ σi(T ) ≤
C

i3/2
(13)

for sufficiently large indices i ∈ N.

As a consequence of Proposition 1, the interval of ill-posedness for the composition A ◦ J
is a subset of the interval [ 32 ,∞]. This was the first example in the literature to demonstrate
with respect to T1 := J the degree-destroying potential of a non-compact operator T2 in such
a composition. Unfortunately, by now it could not be cleared if T = A ◦ J really leads to an
exponentially (severely) ill-posed problem or whether it leads to a moderate ill-posed problem. So
it was exciting to replace the Hausdorff moment operator A as T2 with the non-compact Cesàro
operator T2 := C : L2(0, 1) → L2(0, 1) from (8) in the composition T = C ◦J . The recent paper [2]
has proven that we have, for such T , the asymptotics σi(T ) ≍ i−2 as i → ∞, which means that
the degree of ill-posedness is two for T = C ◦J . Hence, C increases in that composition the degree
of ill-posedness of J just by one. Taking into account that J2 = M ◦ T with the multiplication
operator M : L2(0, 1) → L2(0, 1) and the multiplier function m(t) = t, one can see again that
such multiplication operator does not amend the degree of ill-posedness, because the asymptotics
σi(J

2) ≍ i−2, as i → ∞, is well-known; see for example [18].

4 The curious case that the composition of two non-compact

operators is compact

It was surprising for the authors that also two non-compact operators T1 and T2 with non-closed
range can generate a compact operator by composition, T = T2 ◦ T1. Indeed, let T1 := C∗ :
L2(0, 1) → L2(0, 1) from (9) and T2 := A : L2(0, 1) → ℓ2 from (10). Then we have such a situation
as the next proposition indicates.

Proposition 2. The operator T : L2(0, 1) → ℓ2 defined as T := A ◦ C∗ with the non-compact
operators A from (10) and C∗ from (9) is compact and even a Hilbert-Schmidt operator.

Proof. We have that
T = A ◦ C∗ = D ◦A ,

with the compact diagonal operator D : ℓ2 → ℓ2 from (7). This can be seen by inspection of the
j-th component of Tx, which can be written as

[A(C∗x)]j =

∫ 1

0

(
∫ 1

t

x(s)

s
ds

)

tj−1 dt .

Integration by parts yields moreover

[A(C∗x)]j =
1

j

∫ 1

0

x(t) tj−1 dt =
1

j
[Ax]j = [D(Ax)]j .

Since D is a compact operator, this property carries over to the composition T = D ◦ A of D
with the bounded linear operator A. In the same manner, the Hilbert-Schmidt operator D with

the Hilbert-Schmidt norm ‖D‖HS =
√

∑

∞

i=1
1
i2 < ∞ leads to a Hilbert-Schmidt property of T by

favour of the inequality ‖T ‖HS ≤ ‖D‖HS ‖A‖L(L2(0,1),ℓ2).

Remark 1. We note that of course the same fact can also be formulated for the adjoint operator
T ∗ = C ◦A∗ : ℓ2 → L2(0, 1), where C from (8) and A∗ from (11) are again non-compact operators
with non-closed range, but T ∗ = A∗ ◦D is compact.
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Along the lines of the proof of [11, Theorem 3] one can prove the following theorem.

Theorem 1. For the composition T = D ◦ A = A ◦ C∗ : L2(0, 1) → ℓ2 with the operators
A : L2(0, 1) → ℓ2 from (10), D : ℓ2 → ℓ2 from (7) and C∗ : L2(0, 1) → L2(0, 1) from (9), there
exists a positive constant C such that

σi(T ) ≤
C

i3/2
(i = 1, 2, . . .), (14)

and the degree of ill-posedness of T is at least 3/2.

Proof. A main tool for the proof is the system {Lj}∞j=1 of shifted Legendre polynomials which rep-

resent a complete orthonormal system in the Hilbert space L2(0, 1). This system is the result of the
Gram-Schmidt orthonormalization process of the system {tj−1}∞j=1 of monomials. Consequently,
we have

span(1, t, . . . , tj−1) = span(L1, L2, . . . , Lj).

Hence, we have for m ≥ 2 that Lm ⊥ tj−1, for all 1 ≤ j < m. As has been proven by [11,
Proposition 3], we have for the Hilbert-Schmidt operator T = D ◦A

∞
∑

i=n+1

σ2
i (T ) ≤ ‖T (I −Qn)‖2HS ,

where Qn denotes the projection onto span(L1, ..., Ln). From that we derive here the estimates

∞
∑

i=n+1

σ2
i (T ) ≤

∞
∑

i=n+1

‖T (I −Qn)Li‖2ℓ2 =

∞
∑

i=n+1

‖T Li‖2ℓ2 =

∞
∑

i=n+1

∞
∑

j=1

〈D(ALi), e
(j)〉2ℓ2 . (15)

By exploiting the system of normalized functions

hj(s) :=
√

2j + 1 sj ∈ L2(0, 1) (j = 0, 1, 2, . . . ),

we can rewrite the terms of the form 〈D(ALi), e
(j)〉2ℓ2 in (15) as

〈D(ALi), e
(j)〉ℓ2 =

1

j2
〈ALi, e

(j)〉ℓ2 =
1

j2

(
∫ 1

0

hj−1(s)Li(s) ds√
2j − 1

)2

=
1

j2(2j − 1)
〈hj−1, Li〉2L2(0,1) .

Taking into account ‖hj‖L2(0,1) = 1 and the orthogonality relations between hj and Li we derive
now from (15) the estimate

∞
∑

i=n+1

σ2
i (T ) ≤

∞
∑

j=n+2

1

j2(2j − 1)

∞
∑

i=n+1

〈hj−1, Li〉2L2(0,1) =

∞
∑

j=n+2

1

j2(2j − 1)
‖(I −Qn)hj−1‖2L2(0,1) ,

and with ‖(I −Qn)hj−1‖L2(0,1) ≤ 1, we can further estimate as

∞
∑

i=n+1

σ2
i (T ) ≤

∞
∑

j=n+2

1

j2(2j − 1)
≤ C1 n

−2

for some constant C1 > 0. We recall now from [11, Lemma 4] the fact that an estimate

∞
∑

i=n+1

σ2
i (T ) ≤ C1 n

−2γ (n ∈ N), for γ > 0 and C1 > 0 ,

implies the existence of a constant C2 > 0 such that σ2
i (T ) ≤ C2 i

−(2γ+1) (i ∈ N). Applying this
fact with γ = 1 yields the inequality (14), which completes the proof.
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Remark 2. The singular system of the compact operator D : ℓ2 → ℓ2 mentioned above indicates
the asymptotics σi(D) ≍ i−1 as i → ∞. From Theorem 1, however, we see that there is some
constant K > 0 such that

σi(D ◦A)/σi(D) ≤ K

i1/2
(i = 1, 2, . . .).

Consequently, as for the composition A◦J (see Proposition 1) also here for D◦A the non-compact
operator A has the power to increase the decay rate of the singular values of the respective compact
operators by an exponent of at least 1/2.

As in Proposition 1 (cf. [11, Corollary 3.6]) for the composition A ◦ J , one can also here verify
for the composition D ◦A lower bounds of exponential type for the singular values. We make this
explicit by the following theorem.

Theorem 2. Consider the operator T = A ◦ C∗ = D ◦ A from Theorem 1. Then we have the
lower bound

C0

i
exp(−2i) ≤ σi(T ) (i = 1, 2, . . .) , (16)

with some constant C0 > 0.

Proof. Consider the operator TT ∗ : ℓ2 → ℓ2. Since AA∗ is the infinite Hilbert matrix H, we
observe that

TT ∗ = DHD

with D the diagonal operator D = diag((1i )i) from (7). Let PN : ℓ2 → ℓ2 be the projection onto
the first N components and let HN = PNHPN be the first n× n-segment of the Hilbert matrix.
Then the estimate

σN (PNTT ∗PN ) ≤ ‖PN‖2σN (TT ∗) = σN (TT ∗)

holds. On the other hand, PN commutes with D. Now let DN = PNDPN be the N ×N -segment
of D, which means that Dn = diag((1/i)i=1,N ). Under such setting we consequently have

PNTT ∗PN = DNHNDN .

It is well-known from [21] that there is a constant C > 0 in the context of an estimate from above
for the norm of the inverse of the finite Hilbert matrix HN as

‖H−1
N ‖ ≤ C exp(4N).

This gives

σN (PNTT ∗PN ) =
1

‖(DNHNDN)−1‖RN
→RN

=
1

‖D−1
N H−1

N D−1
N ‖RN

→RN

≥ 1

‖D−1
N ‖2‖H−1

N ‖RN
→RN

≥ 1

N2C exp(4N)

and yields the claimed result (16) by taking into account that σN (T )2 = σN (TT ∗).

Remark 3. Table 1 gives an overview of known estimates for the singular values of the composition
of certain operators. By inspecting the estimates (13) as well as (14) and (16), it is a really
challenging question whether the compositions A ◦ J and D ◦A may lead to moderately ill-posed
problems, although the character of the Hausdorff moment operator A seems to be severely ill-
posed as the paper [19] indicates. If the answer is yes, then the moderate decay of the singular
values of J and D has the power to stop in such compositions the severe ill-posedness character
of A expressed by an exponential decay of the corresponding multiplier function in the spectral
decomposition of AA∗ (infinite Hilbert matrix).
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◦ A C M

J e−Ci . σi . i−
3
2 σi ∼ i−2 σi ∼ i−1

C∗ i−1e−2i . σi . i−
3
2

Table 1: Overview of known bounds for the singular values of compositions of certain operators.

By the above example of a compactification of two non-compact operators by composition, the
following issue is raised that seems to be trivial only at first glimpse: When A is a non-compact
operator between Hilbert spaces, is the selfadjoint operator A∗A also non-compact? Clearly, A is
non-compact if and only if A∗ is (by Schauder’s theorem), however, as we have seen this does not
necessarily imply non-compactness of the composition. Using polar decomposition, the following
lemma can be shown:

Lemma 1. Let A : H1 → H2 be a bounded linear operator between Hilbert spaces H1, H2. Then

A is compact ⇔ A∗ is compact ⇔ A∗A is compact. (17)

Proof. As mentioned, the first equivalence is Schauder’s theorem (see, e.g. [20, Thm 4.19]), and
since compact operators form an ideal, we only have to show that if A∗A is compact, then A∗ is
compact. Compactness of A∗A implies compactness of the square root

√
A∗A, as can be shown

by a spectral decomposition. Now the polar decomposition A∗ =
√
A∗AP , e.g., [20, Thm 12.35],

with a bounded (unitary) operator P implies compactness of A∗.
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