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Abstract: This paper analyzes the inverse problem of deautoconvolution in the multi-
dimensional case with respect to solution uniqueness and ill-posedness. Deautoconvo-
lution means here the reconstruction of a real-valued L2-function with support in the
n-dimensional unit cube [0, 1]n from observations of its autoconvolution either in the
full data case (i.e. on [0, 2]n) or in the limited data case (i.e. on [0, 1]n). Based on
multi-dimensional variants of the Titchmarsh convolution theorem due to Lions and
Mikusiński, we prove in the full data case a twofoldness assertion, and in the limited
data case uniqueness of non-negative solutions for which the origin belongs to the sup-
port. The latter assumption is also shown to be necessary for any uniqueness statement
in the limited data case. A glimpse of rate results for regularized solutions completes
the paper.
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1 Introduction

Motivated by applications to spectroscopy, to the structure of solid surfaces and to nano-structures
(see, e.g., [2, 8, 16, 30]) the inverse problem of deautoconvolution, which means that a function
x with compact support is to be reconstructed from its autoconvolution y = x ∗ x, has been
considered for the one-dimensional case extensively in the literature of the past decades. Ill-
posedness, uniqueness and ambiguity as well as regularization of the deautoconvolution problem
for a real-valued function with compact support had been first analyzed in [18]. Subsequent
studies in this direction can be found in [3, 5, 6, 7, 9, 13, 14, 25]. After the turn of the millennium,
the one-dimensional deautoconvolution problem for a complex-valued function with compact real
support became of interest for modern methods of ultrashort laser pulse characterization, and we
refer in this context to the article [17] as well as to the further mathematical studies in [1, 4, 15].
The object of research in this article is to present an ensemble of results for the deautoconvolution
problem in the multi-dimensional case in an L2-setting. We are going to extend, with respect to
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the reconstruction of real functions with n real variables, assertions on uniqueness, ambiguity and
ill-posedness that previously had been proven in the one-dimensional case. We also complement
and generalize findings of our recent paper [10], where such results have been stated for the two-
dimensional case. Our focus is on the reconstruction of a square integrable real function x = x(t)
with t = (t1, t2, ..., tn)T ∈ Rn of n ≥ 2 variables with support in the unit n-cube [0, 1]n from its
autoconvolution [x ∗ x](s) = y(s) with s = (s1, s2, ..., sn)T ∈ Rn. In this context, the elements x
and y both can be considered as tempered distributions with compact support, where supp(·) is
regarded as the essential support with respect to the Lebesgue measure λ in Rn. Precisely, we
consider x as an element of the real Hilbert space L2(Rn) with supp(x) ⊆ [0, 1]n. For short, in
such a case we write x ∈ L2([0, 1]n) by taking into account that x(t) is assumed to be zero for
t ∈ Rn\[0, 1]n. It is well-know that, for the convolution of two functions f and g with f, g ∈ L2(Rn)
and compact supports, it holds that f ∗ g ∈ L2(Rn) as well as

supp(f ∗ g) ⊆ supp(f) + supp(g) . (1.1)

Here, we use the arithmetic sum A+B of two subsets A and B of Rn defined as

A+B = {a+ b ∈ Rn : a ∈ A, b ∈ B}.

As a consequence of (1.1) we have for x ∈ L2(Rn) with supp(x) ⊆ [0, 1]n that y = x ∗ x ∈ L2(Rn)
with supp(x ∗ x) ⊆ [0, 2]n, or in other words that y ∈ L2([0, 2]n).
The simplest application of our deautoconvolution problem in n dimensions is the recovery of the
square integrable density function x of an n-dimensional random variable X with support in the
unit n-cube [0, 1]n from observations of the density function y = x∗x of the n-dimensional random
variable Y := X1 + X2, where X,X1 and X2 are assumed to be of i.i.d. type. Then by definition
the function x obeys the conditions x(t) ≥ 0 a.e. on [0, 1]n and

∫
Rn x(t) dt =

∫
[0,1]n

x(t) dt = 1.

The inverse problem of deautoconvolution is equivalent to the solution of a quadratic-type operator
equation

F (x) = y (1.2)

with the nonlinear Volterra integral operator F : D(F ) ⊆ X → Y mapping between the real
Hilbert spaces X := L2([0, 1]n) and Y with norms ‖ · ‖X and ‖ · ‖Y , respectively, and having the
domain D(F ). Here, the nonlinear operator F possesses the convolution integral form

[F (x)](s) := [x ∗ x](s) =

∫
Rn

x(s− t)x(t)dt (s, t ∈ Rn) . (1.3)

To ease the notation in the sequel, we will make use of the following abbreviations of n-dimensional
cuboids and cubes. If s, t ∈ Rn are given, we denote by

[s, t]
n

:= [s1, t1]× ...× [sn, tn]

the corresponding n-cuboids spanned by s and t. Clearly, if sj > tj for some j ∈ {1, ..., n}, then
[s, t] = ∅. Note that - with a slight abuse of this notation - for s, t ∈ R we also write [s, t]

n
for the

n-cube of the form [s, t]× ...× [s, t].
In this paper, we will distinguish two data situations. First we consider the full data case with
X := L2([0, 1]n), Y := L2([0, 2]n) and forward operator F as

[F (x)](s) :=

∫
[max(s−1,0),min(s,1)]n

x(s− t)x(t) dt , (1.4)

where y(s) = [F (x)](s) is observable for all s ∈ [0, 2]n, which implies due to (1.1) that all relevant
information about x ∗ x is available, but in practice based on noisy data yδ ∈ Y with noise level
δ > 0 and deterministic noise model

‖y − yδ‖Y ≤ δ. (1.5)
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Secondly, we are treating again with noise model (1.5) the limited data case with
X = Y := L2([0, 1]n) and forward operator F as

[F (x)](s) :=

∫
[0,s]n

x(s− t)x(t) dt . (1.6)

Here, y(s) = [F (x)](s) is only available for s on the unit n-cube [0, 1]n. Since here the scope of
the data is only 1/2n compared to the full data case, the chances of accurately recovering x from
noisy observations of y are decreasing more and more in the limited data case as n gets larger. In
contrast to the full data case, where we assume in the sequel that D(F ) = X = L2([0, 1]n), we
focus in the limited data case also on the domain D(F ) = D+ defined as

D+ := {x ∈ X = L2([0, 1]n) : x ≥ 0 a.e. on [0, 1]n} . (1.7)

This set D+ collects the non-negative functions from L2([0, 1]n) and contains as a subset the square
integrable density functions with support in the unit n-cube.
It is well known that, in an L2-setting, the nonlinear autoconvolution operator F is weakly sequen-
tially continuous and non-compact, but possesses everywhere a compact Fréchet derivative of linear
convolution type. This is true for F : X = L2([0, 1]n)→ Y in both data cases Y = L2([0, 2]n) and
Y = L2([0, 1]n), where the Fréchet derivative F ′(x) : X → Y for all x ∈ X attains the form

F ′(x)h = 2x ∗ h (h ∈ X). (1.8)

With this Fréchet derivative, the operator F satisfies the nonlinearity condition

‖F (x̃)− F (x)− F ′(x)(x̃− x)‖Y = ‖F (x̃− x)‖Y ≤ ‖x̃− x‖2X (x̃, x ∈ X) (1.9)

such that the degree of nonlinearity of F in the sense of [23, Def. 1] is (0, 0, 2). Note that a degree
of nonlinearity (c1, 0, 0) with 0 < c1 ≤ 1 of tangential cone condition-type has even not been
shown for F in the one-dimensional situation of n = 1.
For any function x ∈ L2([0, 1]n) the autoconvolution products F (x) = x ∗ x and F (−x) = (−x) ∗
(−x) coincide for both data cases. However, it is of interest whether for y = x∗x the elements x and
−x are the only solutions of equation (1.2) with
F : L2([0, 1]n) → L2([0, 2]n) from (1.4) in the full data case or not. In the limited data case,
for F : D+ ⊂ L2([0, 1]n) → L2([0, 1]n), it is of interest whether the solution x is under non-
negativity constraints even uniquely determined. Based on different versions of the Titchmarsh
convolution theorem some answers to both questions are given in Section 3 below. Before that,
we recall in Section 2 some basic assertions on convolution in form of three lemmas and the defini-
tional concept of local ill-posedness for nonlinear operator equations. In Section 4, it will be shown
that the n-dimensional deautoconvolution problem leads in both data cases to operator equations
(1.2), which are locally ill-posed everywhere. This requires the use of some kind of regularization
in order to construct stable approximate solutions. Even though a detailed study on regularization
of the problem is beyond the scope of this manuscript, we briefly report on some error norms and
rate results for regularized solutions occurring in a numerical case study in Section 5. There, we
restrict ourselves for simplicity to the classical variant of quadratic Tikhonov regularization for
nonlinear operator equations along the lines of the seminal paper [12] and best possible regular-
ization parameters. For a more detailed numerical study in the two-dimensional case we refer to
[10].

2 Preliminaries

Unfortunately, the formula (1.1) concerning the support of the convolution function f ∗ g is an
inclusion and not an equation. However, for n = 1 and functions f, g ∈ L2(R) with compact sup-
ports, which are not identically zero a.e., one can formulate an equation for the minima (smallest
values) of the supports as

min supp(f ∗ g) = min supp(f) + min supp(g) , (2.1)
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which is a consequence of the Titchmarsh convolution theorem from [31]. Based on (2.1) it
could be shown in [18, Theorem 1] that the one-dimensional deautoconvolution problem has a
uniquely determined solution in the limited data case under non-negativity constraints. By the
same argument it could be shown in [17, Theorem 4.2] that x and −x are the only solutions in the
full data case of the one-dimensional deautoconvolution problem. An extension of those uniqueness
and twofoldness results to the n-dimensional deautoconvolution problem require extensions of
Titchmarsh’s theorem to the multi-dimensional case, and we recall two versions of such extension
by the following two lemmas.
The first lemma goes back to Lions (cf. [26, 27]) and replaces min supp(f), the support minimum
occurring in (2.1) for n = 1, with the convex support occurring in Lemma 1 for general n ∈ N.
Here, conv supp(f) denotes the convex hull of supp(f), i.e., the smallest closed convex set outside
which the function f vanishes a.e. on Rn.

Lemma 1. Let the functions f, g ∈ L2(Rn) with n ∈ N have compact supports supp(f) and
supp(g). Then we have for the convolution that f ∗ g ∈ L2(Rn) and that the equation

conv supp(f ∗ g) = conv supp(f) + conv supp(g) (2.2)

holds true. In the special case that supp(f ∗ g) = ∅, i.e., the function f ∗ g vanishes a.e. on Rn,
then we have that at least one of the sets supp(f) or supp(g) is the empty set, which means that
the underlying function f or g vanishes a.e. on Rn.

Lemma 1 will allow us to prove the twofoldness assertion for the full data case of the multi-
dimensional deautoconvolution problem in Theorem 1 below.

We also present an extension of the Titchmarsh convolution theorem to the multi-dimensional
case by using Mikusiński’s n-hyperpyramid technique adapted to our situation as Lemma 2, and
we refer in this context to [28, Theorem VIII] .

Lemma 2. Let us introduce for γ ≥ 0 the n-hyperpyramids

∆(γ) := {(t1, t2, ..., tn)T ∈ Rn : 0 ≤ t1, 0 ≤ t2, ... , 0 ≤ tn, t1 + t2 + ...+ tn ≤ γ}

in Rn . For functions f, g ∈ L2(Rn) with compact supports supp(f) and supp(g) covered by [0,∞)n,
we conclude from

[f ∗ g](s) =

∫
Rn

f(s− t) g(t) dt = 0 a.e. for s ∈ ∆(γ) (γ ≥ 0)

that there are numbers γ1, γ2 ≥ 0 with γ1 + γ2 ≥ γ such that

f(t) = 0 a.e. for t ∈ ∆(γ1) and g(t) = 0 a.e. for t ∈ ∆(γ2) .

Lemma 2 will be used in Theorem 3 below to prove that for the limited data case of the multi-
dimensional deautoconvolution problem under non-negativity constraints the solution is uniquely
determined.

As an inverse problem the operator equation (1.2) with forward operator (1.4) mapping from
the real Hilbert space X = L2([0, 1]n) to the Hilbert space Y = L2([0, 2]n) in the full data case
of multi-dimensional deautoconvolution tends to be ill-posed. A probably stronger ill-posedenss
phenomenon is to be expected for the limited data case under non-negativity constraints where
F : D(F ) ⊂ X = L2([0, 1]n)→ Y = L2([0, 1]n) and D(F ) = D+ characterize the forward operator.
For a precise theoretical verification of the ill-posedness phenomenon we adopt the concept of local
ill-posedness for nonlinear operator equations, and we recall this concept by the following definition
(cf., e.g., [24, Def. 1.1]).

Definition 1. An operator equation F (x) = y with nonlinear forward operator
F : D(F ) ⊆ X → Y mapping between the Hilbert spaces X and Y with domain D(F ) is called
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locally ill-posed at a solution point x† ∈ D(F ) if there exist, for all closed balls Br(x†) with radius

r > 0 and center x†, sequences {xk} ⊂ Br(x†) ∩ D(F ) that satisfy the condition

‖F (xk)− F (x†)‖Y → 0 , but ‖xk − x†‖X 6→ 0 , as k →∞ .

Otherwise, the operator equation is called locally well-posed at x†.

For n = 1, local ill-posedness everywhere on the non-negativity domain

D(F ) = {x ∈ X = L2([0, 1]) : x ≥ 0 a.e. on [0, 1]}

was proven for the deautoconvolution problem in the limited data case in [18, Lemma 6]. We will
extend this result to the multi-dimensional situation below in Theorem 4.
Local ill-posedness everywhere on L2([0, 1]) could also be shown for the full data case of deauto-
convolution and n = 1 in [14, Prop. 2.3] by perturbing the solution with an appropriate sequence of
square integrable real functions, which is weakly convergent in L2([0, 1]). By considering such se-
quences as ‘rank one perturbations’ we can also show local ill-posedness everywhere on L2([0, 1]n)
in the multi-dimensional situation of deautoconvolution with full data. For preparation we present
here the following lemma, the proof of which is an immediate consequence of Lebesgue’s dominated
convergence theorem.

Lemma 3. Let {hk}∞k=1 ⊂ L2([0, 1]) be a sequence of real functions of one real variable, which is
weakly convergent to zero, i.e. hk ⇀ 0 in L2([0, 1]) as k → ∞. Then we have for arbitrary real
functions f of n real variables with f ∈ L2([0, 1]n) that the sequence {fk = f+hk}∞k=1 ⊂ L2([0, 1]n)
defined as

fk(t1, t2, ..., tn) := f(t1, t2, ..., tn) + hk(t1) ((t1, t2, ..., tn)T ∈ Rn, k ∈ N)

is weakly convergent to f , i.e. fk ⇀ f in L2([0, 1]n) as k → ∞. In this context, we have that
‖fk − f‖L2([0,1]n) = ‖hk‖L2(0,1) for all k ∈ N.

3 New assertions on twofoldness and uniqueness for the
multi-dimensional deautoconvolution problem

3.1 Results for the full data case

Definition 2. For given y ∈ L2([0, 2]n), we call x† ∈ L2([0, 1]n) a solution to the operator equation
(1.2) with F : L2([0, 1]n) → L2([0, 2]n) according to (1.4) in the full data case if it satisfies the
condition

[x† ∗ x†](s) = y(s) a.e. for s ∈ [0, 2]n . (3.1)

Lemma 1 allows us to prove the following theorem on solution twofoldness in the full data case of
multi-dimensional deautoconvolution.

Theorem 1. If, for given y ∈ L2([0, 2]n), the function x† ∈ L2([0, 1]n) is a solution in the full
data case in the sense of Definition 2, then x† and −x† are the only solutions in this sense.

Proof. Let x† ∈ L2([0, 1]n) be a solution in the full data case in the sense of Definition 2 and
consider an arbitrary function h ∈ L2([0, 1]n) such that x† + h is also a solution in the full data
case in the sense of Definition 2. This means that [x† ∗ x†](s) = [(x† + h) ∗ (x† + h)](s) a.e. for
s ∈ [0, 2]n, which implies that [(x† + h) ∗ (x† + h) − x† ∗ x†](s) = [h ∗ (2x† + h)](s) = 0 a.e. for
s ∈ [0, 2]n. By setting f := h and g := 2x† + h we can apply Lemma 1. Taking into account
that supp(h ∗ (2x† + h)) ⊆ [0, 2]n, we then have [h ∗ (2x† + h)](s) = 0 a.e. for s ∈ Rn, or in
other words supp(h ∗ (2x† + h)) = ∅ and consequently conv supp(h ∗ (2x† + h)) = ∅. This implies,
due to equation (2.2), that either supp(h) = ∅ or supp(2x† + h) = ∅ is true. On the one hand,
supp(h) = ∅ leads to the solution x† itself, whereas on the other hand supp(2x† + h) = ∅ leads to
[2x†+h](t) = 0 a.e. for t ∈ [0, 1]n and thus with h = −2x† to the second solution −x†. Alternative
solutions are therefore excluded. This proves the theorem.
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3.2 Results for the limited data case

Definition 3. For given y ∈ L2([0, 1]n), we call x† ∈ L2([0, 1]n) a solution to the operator equation
(1.2) with F : L2([0, 1]n)→ L2([0, 1]n) according to (1.6) in the limited data case if it satisfies the
condition

[x† ∗ x†](s) = y(s) a.e. for s ∈ [0, 1]n . (3.2)

If moreover such solution satisfies the condition x† ∈ D+ with D+ from (1.7), then we call it a
non-negative solution in the limited data case.

For solutions x† in the limited data case in the sense of Definition 3 it is important whether the
condition 0 ∈ supp(x†) or its counterpart 0 /∈ supp(x†) is fulfilled. In this context, 0 ∈ supp(x†)
means that for any ball Br(0) around the origin with arbitrary small radius r > 0 there exists a
set Mr ⊂ Br(0) ∩ [0, 1]n with Lebesgue measure λ(Mr) > 0 such that x†(t) 6= 0 a.e. for t ∈ Mr.
Vice versa, for 0 /∈ supp(x†) we have some sufficiently small radius r > 0 such that x†(t) = 0 a.e.
for t ∈ Br(0) ∩ [0, 1]n.

In a first step we generalize by Theorem 2 those aspects that had been fixed for n = 1 in [18,
Theorem 1] concerning the strong non-injectivity of the autoconvolution operator in the limited
data case to the multi-dimensional situation with arbitrary n ∈ N.

Theorem 2. If, for given y ∈ L2([0, 1]n), the function x† ∈ L2([0, 1]n) is a solution in the limited
data case in the sense of Definition 3 that fulfills the condition

0 /∈ supp(x†) , (3.3)

then there exist infinitely many other solutions x̂† ∈ L2([0, 1]n) in this sense.

Proof. Under the condition (3.3) there is some 0 < ε < 1/2 such that x†(t) = 0 a.e. for t ∈ [0, ε]n.
Now there exist infinitely many h ∈ L2([0, 1]n) such that

h(t) = 0 a.e. for t ∈ [0, 1]n \ [1− ε, 1]n . (3.4)

For any such h we have

[(2x† + h) ∗ h](s) =

∫
[0,s]n

(2x† + h)(s− t)h(t) dt =

∫
[1−ε,s]n

(2x† + h)(s− t)h(t) dt.

But for s ∈ [0, 1]n and t ∈ [1− ε, s]n, we have component-wise that

0 ≤ si − ti ≤ 1− ti ≤ ε < 1− ε

due to ε < 1
2 , so that (2x† + h)(s− ·) = 0 a.e. for [1− ε, s]n. Therefore

[(2x† + h) ∗ h](s) = 0 a.e. for s ∈ [0, 1]n,

which implies

[
(
x† + h

)
∗
(
x† + h

)
](s) = x† ∗ x†(s) + [(2x† + h) ∗ h](s) = y(s) a.e. for s ∈ [0, 1]n .

This yields the claim.

Now we are ready to formulate and to prove with the following theorem a main new result of
this paper, which extends the solution uniqueness assertion for the limited data case under non-
negativity constraints published for n = 1 in [18, Theorem 1] to the multi-dimensional situation
with arbitrary n ∈ N. The proof of this theorem is based on Mikusiński’s n-hyperpyramid tech-
nique introduced above by Lemma 2.
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Theorem 3. If, for given y ∈ L2([0, 1]n), the function x† ∈ L2([0, 1]n) is a non-negative solution
in the limited data case in the sense of Definition 3 that fulfills the condition

0 ∈ supp(x†) , (3.5)

then x† is the uniquely determined non-negative solution in this case.

Proof. First we will show that under the condition (3.5) the non-negative solution x†(t) is uniquely
determined a.e. for t ∈ ∆(1). Namely, supposed that there exists a function h ∈ L2([0, 1]n) with
x† + h ≥ 0 satisfying the equation

[(x† + h) ∗ (x† + h)](s) = y(s) a.e. for s ∈ [0, 1]n , (3.6)

we would have that
[h ∗ (2x† + h)](s) = 0 a.e. for s ∈ [0, 1]n. (3.7)

Because of [0, 1]n ⊃ ∆(1), Lemma 2 applies with f := h, g := 2x† + h and γ = 1. Obviously, we
have γ2 = 0 due to the fact that [2x† + h](t) ≥ x†(t) a.e. for t ∈ [0, 1]n, which implies together
with condition (3.5) that 0 ∈ supp(2x† + h). Then we find as a consequence of γ1 + γ2 ≥ γ that
γ1 ≥ 1 must hold, which yields h(t) = 0 a.e. for t ∈ ∆(1).
In a second step of the proof we show that also perturbations h ∈ L2([0, 1]n) with x† + h ≥ 0
and supp(h) ⊆ [0, 1]n \∆(1) are only possible if h is the zero function almost everywhere on
[0, 1]n∩∆(2). Now assume, for such function h, that it obeys the condition (3.6) and consequently
(3.7). From (3.7) we derive that

[(−2x†) ∗ h](s) = [h ∗ h](s) a.e. for s ∈ [0, 1]n , (3.8)

which allows us to apply Lemma 2 with f := −2x†, g := h, f ∗ g = h ∗h and the associated values
γ1, γ2 and γ, respectively. Evidently, we have

supp(h ∗ h) ⊆ 2supp(h) ⊆ [0, 2]n \∆(2)

and thus γ = 2. This yields γ2 = 2 and hence h = 0 a.e. on [0, 1]n ∩ ∆(2), because γ1 = 0
as a consequence of condition (3.5). Now, for n = 2 the proof is complete, because of [0, 1]2 ⊂
[0, 1]2 ∩∆(2). For n > 2, however we must repeat the second step in an analog manner m times
until 2m ≥ n such that h = 0 a.e. on [0, 1]n ∩∆(2m) ⊇ [0, 1]n ∩∆(n) = [0, 1]n. Then the proof is
complete.

4 Ill-posedness phenomena

For nonlinear inverse problems modelled by operator equations (1.2) in Hilbert spaces, the charac-
ter and strength of ill-posedness may be a local property and may depend on nonlinearity condi-
tions of the forward operator F , see for discussions and examples of the articles [20, 22, 23]. There-
fore, the concept of local ill-posedness at a solution point x† (see Definition 1 above) applies for
(1.2) with the autoconvolution operator F from (1.3). It could be proven for the one-dimensional
situation that the deautoconvolution problem is locally ill-posed everywhere on D(F ) = L2([0, 1])
for the full data case (cf. [14, Prop. 2.3]) and on D(F ) = D+ ⊂ L2([0, 1]) with D+ from (1.7) with
n = 1 for the limited data case (cf. [18, Lemma 6]). The following two theorems extend the results
to the multi-dimensional situation for arbitrary n ∈ N.

Theorem 4. For the limited data case of deautoconvolution, the operator equation (1.2) with
X = Y = L2([0, 1]n) and forward operator F : D+ ⊂ X → Y from (1.6) with non-negativity
domain D+ from (1.7) is locally ill-posed everywhere on D(F ) = D+.
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Proof. Let x† ∈ D+ be a non-negative solution in the limited data case in the sense of Definition 3.
To show local ill-posedness at x† we introduce for fixed r > 0 the sequence {hk}∞k=3 ⊂ L2([0, 1]n)
of perturbations of the form

hk(t) :=

 kn/2 r for t ∈ [1− 1
k , 1]n

0 for t ∈ [0, 1]n \ [1− 1
k , 1]n

with xk := x† + hk ∈ D+, ‖hk‖L2([0,1]n) = r and consequently xk ∈ Br(x†) ∩ D+ for all k ≥ 3. To
complete the proof of the theorem we still need to show that the norm
‖F (xk) − F (x†)‖L2([0,1]n) tends for all r > 0 to zero as k tends to infinity. Owing to

F (xk)− F (x†) = 2x† ∗ hk + hk ∗ hk and ‖hk ∗ hk‖L2([0,1]n) = 0 , this rewrites as

‖x† ∗ hk‖L2([0,1]n) → 0 as k →∞ .

Evidently, for s = (s1, s2, ..., sn)T , t = (t1, t2, ..., tn)T ∈ Rn, the non-negative values

[x† ∗ hk](s) =

∫
[0,s]n

hk(s− t)x†(t) dt

can be different from zero only for s ∈ [1− 1
k , 1]n. Using the Cauchy-Schwarz inequality and taking

into account that x† ∈ D+ we have for those s ∈ [1− 1
k , 1]n the estimate

[x† ∗ hk](s) = kn/2 r

∫
[0,s−(1− 1

k )]
n

x†(t) dt

≤ r ‖x†‖L2([0,1]n).

This, however, yields

‖x† ∗ hk‖L2([0,1]n) ≤ r ‖x†‖L2([0,1]n)

 ∫
[1− 1

k ,1]
n

1 ds


1/2

=
r ‖x†‖L2([0,1]n)

kn/2

tending for all r > 0 to zero as k tends to infinity. This completes the proof of the theorem.

Theorem 5. For the full data case of deautoconvolution, the operator equation (1.2) with X =
L2([0, 1]n), Y = L2([0, 2]n) and forward operator F : X → Y from (1.4) is locally ill-posed
everywhere on D(F ) = X.

Proof. Let x† ∈ L2([0, 1]n) be a solution in the full data case in the sense of Definition 2. For
showing local ill-posedness at x† we fix r > 0 arbitrary and introduce the sequence {hk}∞k=1 ⊂
L2([0, 1]) of functions of one real variable of the form

hk(t) :=
√

2 r sin(k2t2) (t ∈ [0, 1], k ∈ N). (4.1)

For finding properties of hk and F (hk) = hk ∗ hk one needs to use the Fresnel integrals

S(s) :=

∫ s

0

sin(t2)dt and C(s) :=

∫ s

0

cos(t2)dt.

For s ∈ [0,∞) the range of both continuous functions is covered by the interval [0, 1]. One easily
finds that 0.5 r < ‖hk‖L2([0,1]) < r = limk→∞ ‖hk‖L2([0,1]) and that the weak convergence hk ⇀ 0
in L2([0, 1]) as k →∞ takes place. The latter is a consequence of the fact that, for all 0 ≤ s ≤ 1,

0 ≤
∫ s

0

hk(t)dt =

√
π r S(k

√
2/π)s)

k
≤
√
π r

k
→ 0 as k →∞.
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Now we consider the perturbed functions xk := x† + hk ∈ L2([0, 1]n) defined as

xk(t1, t2, ..., tn) := x†(t1, t2, ..., tn) + hk(t1) ((t1, t2, ..., tn)T ∈ Rn, k ∈ N),

with xk ∈ Br(x†) and ‖xk − x†‖L2([0,1]n) = ‖hk‖L2([0,1]) 6→ 0 as k → ∞. To complete the proof,
we still have to show that

‖F (xk)− F (x†)‖L2([0,2]n) → 0 as k →∞ .

Since F (xk) − F (x†) = F ′(x†)(xk − x†) + F (xk − x†) and xk − x† ⇀ 0 as k → ∞, we have
limk→∞ ‖F (xk)− F (x†)‖L2([0,2]n) ≤ limk→∞ ‖F (xk − x†)‖L2([0,2]n) ≤ limk→∞ ‖hk ∗ hk‖L2([0,2]) by

taking into account Lemma 3 and that F ′(x†) is a compact operator. To complete the proof
we finally show that limk→∞ ‖hk ∗ hk‖L2([0,2]) = 0. Owing to the properties of Fresnel integrals

mentioned above, this is a consequence of |[hk ∗ hk](ξ)| ≤ C̄
k for ξ ∈ [0, 2] with a uniform constant

C̄ > 0, which follows from the two formulas

s∫
0

sin(k2(s− t)2) sin(k2t2)dt =
√
πks(S(ks/

√
π) sin(k2s2/2)−C(ks/

√
π) cos(k2s2/2))+sin(k2s2)

2k2s

valid for 0 ≤ s ≤ 1, and

1∫
s−1

sin(k2(s− t)2) sin(k2t2)dt =
√
πks(S(k(2−s)/

√
π) sin(k2s2/2)−C(k(2−s)/

√
π) cos(k2s2/2))+sin(k2s(2−s))

2k2s

valid for 1 < s ≤ 2.

We are going to illustrate with Figure 1 the ill-posedness phenomenon for the full data case of
deautoconvolution along the lines of the ideas of the proof of Theorem 5. For this purpose we
exploit as an example solution the function

x†(t1, t2) =

[
2

3
(t1 + 1)

]
·
[

π

2 + π

(
cos

((
t2 −

1

2

)
π

)
+ 1

)]
,

which characterizes a factorable probability density function of a two-dimensional random vector
with two uncorrelated one-dimensional components. For the sequence introduced in (4.1) we use

the function hk(t) =
√

2
8 sin(k2t2), which leads to the perturbed solution xk(t1, t2) = x†(t1, t2) +

hk(t1) that converges weakly in L2([0, 1]2) to x† as k → ∞, but not in norm as the pictures of
xk−x† on the left in Figure 1 for k = 5, 10 and 20 clearly show. However, the pictures on the right
indicate convincingly the norm convergence of yk = xk ∗ xk to y = x† ∗ x† in the space L2([0, 2]2).

5 A glimpse of rate results for regularized solutions

The goal of this concluding section is to mention some unexpected behavior of regularized solutions
occurring in a brief case study on deautoconvolution, where in a setting analogous to [12] and [11,
Sect. 10.2] the regularized solutions

xδα ∈ arg min
x∈D(F )

[
‖F (x)− yδ‖2Y + α‖x− x̄‖2X

]
(5.1)

are minimizers of the Tikhonov functional. For both operators (1.4) and (1.6) under consideration,
the element yδ ∈ Y denotes the available data satisfying (1.5), x̄ ∈ X is a reference element (initial
guess), and α > 0 is a regularization parameter. Our study is reduced to the case that best possible
regularization parameters α = αopt in the sense of

αopt(δ) = min
α>0
‖xδα − x†‖X (5.2)
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Figure 1: Development of differences xk − x† and yk − y for increasing k
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are evaluated. From the three density functions of one real variable with supports in [0, 1],

x1(t1) =
2(t1 + 1)

3
, x2(t2) =

π

2 + π

(
cos((t2 −

1

2
)π) + 1

)
, x3(t3) =

{
5
4 0 ≤ t1 < 1

2
t1

1
2 ≤ t1 ≤ 1

,

we assemble two solutions x† for the two- and three-dimensional situation of deautoconvolution as

x†(t1, t2) = x1(t1)x2(t2) for n = 2

and
x†(t1, t2, t3) = x1(t1)x2(t2)x3(t3) for n = 3,

which are density functions with supports [0, 1]n. To the discretization level with a uniform
meshwidth of 1

50 in each direction, the regularized solutions xδαopt according to (5.1) have been
calculated with a constant initial guess x̄ ≡ 0.5 in the discretized form for n = 2, 3 and randomly
generated noisy data yδ ∈ L2([0, 2]n) (full data case) as well as for yδ ∈ L2([0, 1]n) (limited data
case). The relative empirical errors in % measured in the discrete L2-norm for different δ, each
simulated from 10 independent runs, are listed in Table 1. The bottom line of the table contains
the Hölder exponent 0 < κ < 1 of the convergence rate ‖xδαopt − x

†‖ = O(δκ) as δ → 0 for the
different situations, which had been estimated by regression from the selection of δ-values under
consideration in the table.

Table 1: Relative error norms of regularized solutions

relative input errors relative output errors of xδαopt

‖yδ−y†‖Y
‖y†‖Y

‖xδαopt−x
†‖X

‖x†‖X
full data case limited data case
n = 2 n = 3 n = 2 n = 3

10% 9.85% 13.48% 17.54% 23.59%
8% 8.70% 12.12% 17.21% 22.59%
5% 6.38% 9.82% 15.17% 19.99%
2% 3.61% 6.26% 9.74% 14.54%
1% 2.31% 4.12% 7.95% 11.58%

0.8% 1.98% 3.57% 7.39% 10.50%
0.5% 1.44% 2.61% 5.94% 9.24%
0.2% 0.78% 1.42% 4.10% 6.85%
0.1% 0.48% 0.87% 2.70% 5.47%
0.05% 0.30% 0.53% 1.76% 4.31%

estim. Hölder exponent κ 0.66 0.61 0.43 0.32

An inspection of Table 1 shows for both dimensions n = 2 and n = 3 a substantial reduction of
the regularization error norms in the full data case compared to the limited data case. This is
intuitively explained by the lack of data in [0, 2]n \ [0, 1]n, but even though this lack is considerably
larger in dimension n = 3 (factor 8) compared to n = 2 (factor 4), the error norms do not fully
reflect this behavior.
Based on ten different noise levels δ, a rough estimation of convergence rates of the corresponding
error norms as δ tends zero indicates Hölder exponents κ > 0.5 in the full data case and κ < 0.5
in the limited data case. However, both results cannot fully be explained by available theory. It
is known from [12] and [11, Theorem 10.4] that a κ = 0.5 rate (i.e. O(

√
δ)) is obtained under a

range-type source condition x† − x̄ = (F ′(x†))∗w in combination with a smallness condition on
‖w‖Y . On the other hand, it has been shown in [5, Prop. 2.6] that such theory is hard to apply for
the autoconvolution operator F even in the one-dimensional case. To obtain rates with κ > 0.5, it
is i.e. known from [29] and [11, Theorem 10.7], that a rate O(δ

2
3 ) can be obtained under the higher-

order range condition x† − x̄ = (F ′(x†))∗F ′(x†)v in combination with a smallness condition on

11



‖v‖X . But in view of [5, Prop. 2.6] it is also questionable whether such a result can be applied for
the autoconvolution operator F at hand. In both situations, one reason seems to be fact that the
compact Fréchet derivatives F ′(x) carry too little information about the non-compact operator
F . Also variational source conditions introduced in [21] and, for example, further analyzed in
[19, 32] could not be successfully exploited for obtaining convergence rates in deautoconvolution.
Solely in [4, Prop. 5.1 and Cor. 5.2] a convergence rate could be derived by means of variational
source conditions, but only under strong sparsity assumptions on the solution x†. Nevertheless,
the numerical experiment in the context of Table 1 indicates the practical occurrence of Hölder
convergence rates for regularized solutions to the multi-dimensional deautoconvolution problem.
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optics, Birkhäuser/Springer, Cham, 2018.

[16] Y. Fukuda, Appearance potential spectroscopy (APS): old method, but applicable to study of
nano-structures, Analytical Sciences, 26(2):187–197, 2010.

[17] D. Gerth, B. Hofmann, S. Birkholz, S. Koke, and G. Steinmeyer, Regularization of an au-
toconvolution problem in ultrashort laser pulse characterization, Inverse Problems in Science
and Engineering, 22(2):245–266, 2014.

[18] R. Gorenflo and B. Hofmann, On autoconvolution and regularization, Inverse Problems,
10(2):353–373, 1994.

[19] T. Hohage and F. Werner, Error estimates for variational regularization of inverse problems
with general noise models for data and operator, Electron. Trans. Numer. Anal., 57:127–152,
2022.

[20] B. Hofmann, On the degree of ill-posedness for nonlinear problems, J. Inverse Ill-Posed Probl.,
2(1):61–76, 1994.

[21] B. Hofmann, B. Kaltenbacher, C. Pöschl and O. Scherzer, A convergence rates result for
Tikhonov regularization in Banach spaces with non-smooth operators, Inverse Problems,
23(3):987–1010, 2007.

[22] B. Hofmann and R. Plato, On ill-posedness concepts, stable solvability and saturation, J. In-
verse Ill-Posed Probl., 26(2):287–297, 2018.

[23] B. Hofmann and O. Scherzer, Factors influencing the ill-posedness of nonlinear problems,
Inverse Problems, 10(6):1277-1297, 1994.

[24] B. Hofmann and O. Scherzer, Local ill-posedness and source conditions of operator equations
in Hilbert spaces, Inverse Problems, 14(5):1189–1206, 1998.

[25] J. Janno, Lavrent’ev regularization of ill-posed problems containing nonlinear near-
to-monotone operators with application to autoconvolution equation, Inverse Problems,
16(2):333–348, 2000.

[26] J. L. Lions, Supports de produits de composition I (in French), Comptes Rendus
Acad. Sci. Paris, 232:1530–1532, 1951.

[27] J. L. Lions, Supports dans la transformation de Laplace (in French), J. Analyse Math., 2:369–
380, 1953.
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