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3 New results for variational regularization with

oversmoothing penalty term in Banach spaces

Bernd Hofmann* Chantal Klinkhammer† Robert Plato†

Abstract

In this article on variational regularization for ill-posed nonlinear problems,

we are once again discussing the consequences of an oversmoothing penalty term.

This means in our model that the searched-for solution of the considered nonlinear

operator equation does not belong to the domain of definition of the penalty func-

tional. In the past years, such variational regularization has been investigated com-

prehensively in Hilbert scales, but rarely in a Banach space setting. Our present

results try to establish a theoretical justification of oversmoothing regularization

in Banach scales. This new study includes convergence rates results for a pri-

ori and a posteriori choices of the regularization parameter, both for Hölder-type

smoothness and low order-type smoothness. An illustrative example is intended to

indicate the specificity of occurring non-reflexive Banach spaces.

Keywords: Nonlinear ill-posed problem, variational regularization, oversmoothing

penalty, convergence rates results, a priori parameter choice strategy, discrepancy prin-

ciple, logarithmic source conditions
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1 Introduction

The goal of this paper is the theoretical justification of variational regularization with

oversmoothing penalties for nonlinear ill-posed problems in Banach scales. Precisely,

we consider operator equations of the form

F (u) = f † , (1)

where F : X ⊃ D(F ) → Y is a nonlinear operator between infinite-dimensional

Banach spaces X and Y with norms ‖ · ‖. We suppose that the right-hand side f † ∈ Y
is approximately given as f δ ∈ Y satisfying the deterministic noise model

‖f δ − f † ‖ ≤ δ, (2)
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with the noise level δ ≥ 0. Throughout the paper, it is assumed that the considered

equation (1) has a solution u† ∈ D(F ) and is, at least at u†, locally ill-posed in the

sense of [15, Def. 1.1] and [13, Def. 3]. Consequently, a variant of regularization is

required for finding stable approximations to the solution u† ∈ D(F ) of equation (1),

and we exploit in this context a variant of variational regularization with regularization

parameter α > 0, where the regularized solutions uδα are minimizers of the extremal

problem

T δ
α(u) := ‖F (u)− f δ ‖r + α‖u− u‖r1 → min , subject to u ∈ D(F ), (3)

with some exponent r > 0 being fixed. Here, ‖ · ‖1 is a norm on a densely defined

subspace X1 of X , which is stronger than the original norm ‖ · ‖ in X . Precisely, we

define the stronger norm ‖ · ‖1 by ‖u‖1 = ‖G−1u‖, u ∈ R(G), where the generator

G : X → X with range R(G) is a bounded linear operator, which is one-to-one and

has an unbounded inverse G−1. Further conditions on the operator G are given in

Section 2 below. Moreover, the element u ∈ X1 ∩ D(F ), occurring in the penalty

term of the Tikhonov functional T δ
α, denotes an initial guess. Note that we restrict our

consideration in this study to identical exponents r for the misfit term and the penalty

functional in order to avoid unnecessary technical complications.

In the present work, we discuss the nonlinear Tikhonov-type regularization (3)

with focus on an oversmoothing penalty term. This means in our model that we have

u† 6∈ X1, or in other words ‖u†‖1 = +∞, which is an expression of ‘non-smoothness’

of the solution u† with respect to the reference Banach space X1. Variational regular-

ization of the form (3) with r = 2 and oversmoothing penalty for nonlinear ill-posed

operator equations (1) has been investigated comprehensively in the past four years in

Hilbert scales, and we refer to [11, 14] as well as further to the papers [5, 8, 9, 12, 17].

For related results on linear problems, see, e.g., [21]. Our present study continues and

extends, along the lines of [14], the investigations on nonlinear problems to Banach

scales. This new study includes fundamental error estimates yielding convergence and

convergence rates results for a priori and a posteriori choices of the regularization pa-

rameter, both for Hölder-type smoothness and low order smoothness. The necessary

tools for low order smoothness in the Banach space setting are provided. In addition,

a relaxed nonlinearity and smoothing condition on the operator F is considered that

turns out to be useful for maximum norms.

Banach space results for the discrepancy principle in a pure equation form have

already been proven for the oversmoothing case in the recent paper [3]. In parallel, such

results have been developed for oversmoothing subcases to variants of ℓ1-regularization

and sparsity promoting wavelet regularization in [19, Sec. 5] and [20].

The outline of the remainder is as follows: in Section 2 we summarize prerequisites

and assumptions for the main results in the sense of error estimates and convergence

rates for the regularized solutions. On the one hand, error estimates for a priori choices

of the regularization parameter are presented in Section 3. On the other hand, Section 4

presents results and consequences for using a discrepancy principle. An illustrative

example in Section 5 is intended to indicate the specificity of occurring non-reflexive

Banach spaces. A numerical case study will be presented in Section 6 that illustrates

the theoretical results. Technical details, constructions and verifications for proving the

main results of the paper are given in the concluding Section 7.
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2 Prerequisites and assumptions

In this section, we introduce a scale of Banach spaces generated by an operator of

positive type. Moreover, we define the logarithm of a positive operator and formulate

the basic assumptions for our study. The concluding subsection is devoted to well-

posedness and stability assertions for the variant of variational regularization under

consideration in this paper.

2.1 Non-negative type operators, fractional powers, and regular-

ization operators

Let X with norm ‖ · ‖ be a Banach space and L(X ) with norm ‖ · ‖L(X) the associated

space of bounded linear operators mapping in X . Furthermore, let the injective operator

G ∈ L(X ) with range R(G) and unbounded inverseG−1 be of non-negative type, i.e.,

G+ βI : X → X one-to-one and onto, ‖(G+ βI)−1 ‖L(X) ≤
κ∗
β
, β > 0, (4)

for some finite constant κ∗ > 0. Fractional powers of non-negative type operators may

be defined as follows [1, 2]:

(a) For 0 < p < 1, the fractional power Gp : X → X is defined by

Gpu :=
sinπp

π

∫ ∞

0
sp−1(G+ sI)−1Guds for u ∈ X . (5)

This defines a bounded linear operator on X .

(b) For arbitrary values p ≥ 1, the bounded linear operator Gp : X → X is defined

by

Gp := Gp−⌊p⌋G⌊p⌋.

We moreover use the notation G0 = I .

In what follows, we shall need the interpolation inequality for fractional powers of op-

erators, see, e.g., [18] or [7, Proposition 6.6.4]: for each pair of real numbers

0 < p < q, there exists some finite constant c = c(p, q) > 0 such that

‖Gpu‖ ≤ c‖Gqu‖p/q‖u‖1−p/q for u ∈ X . (6)

For 0 < p < 1 = q, the value of the constant can be chosen as c = 2(κ∗ + 1), cf.,

e.g., [24, Corollary 1.1.19]. Under the stated assumptions on G, for each p > 0, the

fractional powerGp is one-to-one, and we use the notationG−p = (Gp)−1. We do not

need that the operatorG has dense range in X .

The scale of normed spaces {Xτ}τ∈R, generated by G, is given by the formulas

Xτ = R(Gτ ) for τ > 0, Xτ = X for τ ≤ 0,

‖u‖τ := ‖G−τu‖ for τ ∈ R, u ∈ Xτ . (7)

For τ < 0, topological completion of the spaces Xτ = X with respect to the norm

‖ · ‖τ is not needed in our setting. We note that (Gp)p≥0 defines a C0-semigroup on

3



R(G), which in particular means that Gpu → u for p ↓ 0 is valid for any u ∈ R(G)
(cf. [7, Proposition 3.1.15]). Finally, we note that

R(Gτ2) ⊂ R(Gτ1) ⊂ R(G) for all 0 < τ1 < τ2 <∞. (8)

2.2 The logarithm logG

For the consideration of low order smoothness, we need to introduce the logarithm of

G. For selfadjoint operators in Hilbert spaces this can be done by spectral analysis, and

we refer in this context for example to [16]. In Banach spaces, logG may be defined

as the infinitesimal generator of the C0-semigroup (Gp)p≥0 considered on R(G):

(logG)u = lim
p↓0

1
p (G

pu− u), u ∈ D(logG),

where

D(logG) = { u ∈ X : lim
p↓0

1
p (G

pu− u) exists },

cf., e.g., [22] or [7, Proposition 3.5.3]. Low order smoothness of an element u ∈ X by

definition then means u ∈ D(logG). Note that we obviously have D(logG) ⊂ R(G).
In addition, R(Gp) ⊂ D(logG) is valid for arbitrarily small p > 0, which follows

from [22, Satz 1]. Summarizing the above notes, we have a chain of subsets of X as

R(Gp) ⊂ D(logG) ⊂ R(G) for all p > 0. (9)

This means that also in the Banach space setting, any Hölder-type smoothness is stronger

than low order smoothness.

2.3 Main assumptions

In the following assumption, we briefly summarize the structural properties of the space

X , of the operator F and of its domain D(F ), in particular with respect to the solution

u† of the operator equation. Moreover, we make one more assumption concerning G
in addition to the requirements on the operatorG stated above.

Assumption 1. (a) The infinite-dimensional Banach space X has a separable pre-

dual space Z with Z∗ = X such that a weak∗-convergence denoted as ⇀∗ takes

place in X .

(b) The operator F : X ⊃ D(F ) → Y is weak∗-to-weak sequentially continuous,

i.e., for elements un, u0 ∈ D(F ), weak∗-convergence un ⇀∗ u0 in X implies

weak convergence F (un)⇀ F (u0) in Y .

(c) The domain of definition D(F ) ⊂ X is a sequentially weak∗-closed subset of X .

(d) Let D := D(F ) ∩ X1 6= ∅.

(e) Let the solution u† ∈ D(F ) to equation (1) with right-hand side f † be an interior

point of the domain D(F ).
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(f) Let the data f δ ∈ Y satisfy the noise model (2), and let the initial guess u satisfy

u ∈ X1 ∩ D(F ).

(g) Let a > 0, and let 0 < ca ≤ Ca and c0, c1 > 0 be finite constants such that the

following holds:

• For each u ∈ D satisfying ‖u− u† ‖−a ≤ c0, we have

‖F (u)− f † ‖ ≤ Ca‖u− u† ‖−a. (10)

• For each u ∈ D satisfying ‖F (u)− f † ‖ ≤ c1, we have

ca‖u− u† ‖−a ≤ ‖F (u)− f † ‖. (11)

(h) The operator G : X → X defined above possesses a pre-adjoint operator G̃ :
Z → Z such that G̃∗ = G holds true.

Remark 2. From the inequality (11) of item (g) in Assumption 1, we have for u† ∈ X1

that u† is the uniquely determined solution to equation (1) in the set D. For u† /∈ X1,

there is no solution at all to (1) in D. But in both cases, alternative solutions u∗ /∈ X1

with u∗ ∈ D(F ) and F (u∗) = f † cannot be excluded in general. Note that the concept

of penalty-minimizing solutions, which is usual in theory of Tikhonov regularization,

does not make sense in the case of oversmoothing penalties.

2.4 Existence and stability of regularized solutions

The following two propositions on existence and stability can be immediately taken

from [29, § 4.1.1], and we refer in this context also to [10] and [28, § 3.2].

Proposition 3 (well-posedness, cf. Prop. 4.1 of [29]). For all α > 0 and f δ ∈ Y , there

exists a regularized solution uδα ∈ D, minimizing the Tikhonov functional T δ
α(u) in (3)

over all u ∈ D(F ).

Proposition 4 (stability, cf. Prop. 4.2 of [29]). For all α > 0, the minimizers uδα ∈ D
of the extremal problem (3) are stable with respect to the data f δ. More precisely,

for a data sequence {fn} converging to f δ with respect to the norm topology in Y ,

i.e. lim
n→∞

‖fn−f
δ‖ = 0, every associated sequence {un} of minimizers to the extremal

problem

‖F (u)− fn‖
r + α‖u− u‖r1 → min , subject to u ∈ D(F ),

has a subsequence {unk
}, which converges in the weak∗-topology of X , and the weak∗-

limit ũ of each such subsequence is a minimizer uδα of (3).

In order to prove the applicability of both propositions to our situation, we have

to state that the relevant items of Assumptions 3.11 and 3.22 in [29] can be met as a

consequence of our Assumption 1 by taking into account Remark 4.9 in [29], where

the transfer from the weak-situation to the weak∗-situation is explained. In particular,
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since G is bounded, we have ‖u‖1 ≥ c̃‖u‖ with some constant c̃ > 0 for all u ∈ X1.

Then the penalty functional Ω : X → [0,∞] of the Tikhonov functional T δ
α, defined as

Ω(u) :=

{
‖u− u‖r1 = ‖G−1(u− u)‖r for u ∈ X1

+∞ for u ∈ X \ X1
,

possesses the required stabilizing property (cf. item (c) of Assumption 3.22 in [29])

as a consequence of the sequential Banach–Alaoglu theorem, which implies that the

sublevel sets

{u ∈ X : Ω(u) ≤ c} ⊂ {u ∈ X : ‖u− u‖r ≤
c

c̃r
}

are weak∗ sequentially compact in X for all c ≥ 0. Moreover, Ω is sequentially weak∗

lower semi-continuous (cf. item (b) of Assumption 3.22 in [29]), because the existence

of a pre-adjoint operator G̃ : Z → Z to G in the sense of item (h) of Assumption 1 en-

sures that G : X → X is weak∗-to-weak∗ sequentially continuous. This together with

the weak∗ lower semi-continuity of the norm functional in X yields the sequentially

weak∗ lower semi-continuity of the penalty functional Ω.

3 Error estimate and a priori parameter choices

We start with an error estimate result that provides the basis for the analysis of the

regularizing properties, including convergence rates under a priori parameter choices.

In what follows, we use the notation

κ :=
1

r(a+ 1)
. (12)

Theorem 5. Let Assumption 1 be satisfied. Then there exist finite positive constants

K1, α0 and δ0 such that for 0 < α ≤ α0 and 0 < δ ≤ δ0, an error estimate for the

regularized solutions as

‖uδα − u† ‖ ≤ f1(α) +K1
δ

ακa
(13)

holds, where f1(α) for 0 < α ≤ α0 is some bounded function satisfying:

• (No explicit smoothness) If u† ∈ R(G), then f1(α) → 0 as α → 0.

• (Hölder smoothness) If u† ∈ Xp for some 0 < p ≤ 1, then f1(α) = O(ακp) as

α→ 0.

• (Low order smoothness) If u† ∈ D(logG), then f1(α) = O((log 1
α )

−1) as α→ 0.

Theorem 5, the proof of which can be found in [26], allows us to derive regular-

izing properties of variational regularization with oversmoothing penalty and to obtain

convergence and rates results for appropriate a priori parameter choices that culminate

in Theorem 6. For evaluating the strength of smoothness for the three different oc-

curring situations in Theorem 5 (no explicit smoothness, Hölder smoothness and low

order smoothness) we recall the chain (9) of range conditions.

The following theorem is a direct consequence of Theorem 5, because its proof

is immediately based on the error estimate (13) with the respective properties of the

function f1(α).
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Theorem 6. Let Assumption 1 be satisfied.

• (No explicit smoothness) Let u† ∈ R(G). Then for any a priori parameter choice

α∗ = α(δ) satisfying α∗ → 0 and δ
ακa

∗

→ 0 as δ → 0, we have

‖uδα∗
− u† ‖ → 0 as δ → 0.

• (Hölder smoothness) Let u† ∈ Xp for some 0 < p ≤ 1. Then for any a priori

parameter choice satisfying α∗ = α(δ) ∼ δ1/(κ(p+a)), we have

‖uδα∗
− u† ‖ = O(δp/(p+a)) as δ → 0.

• (Low order smoothness) Let u† ∈ D(logG). Then for any a priori parameter choice

satisfying α∗ = α(δ) ∼ δ, we have

‖uδα∗
− u† ‖ = O((log 1

δ )
−1) as δ → 0.

4 Results for a discrepancy principle and consequences

For the specification of a suitable discrepancy principle, the behaviour of the misfit

functional α 7→ ‖F (uδα) − f δ ‖ needs to be understood, for δ > 0 fixed. The basic

properties are summarized in the following proposition. As a preparation, we introduce

the following parameter:

er =

{
1, if r ≥ 1,

2−1+1/r otherwise.
(14)

Proposition 7. Let Assumption 1 be satisfied. Then for δ > 0 fixed, the function

α 7→ ‖F (uδα)− f δ ‖ is non-decreasing, with

lim
α→0

‖F (uδα)− f δ ‖ ≤ erδ, lim
α→∞

‖F (uδα)− f δ ‖ = ‖F (u)− f δ ‖.

In addition, we have limα→∞ ‖uδα − u‖ = 0.

Proof. This follows along the lines of the proof of [14, Proposition 4.5]. Details are

thus omitted here.

Algorithm 8 (Discrepancy principle). Let b > er and c > 1 be finite constants.

(a) If ‖F (u)− f δ ‖ ≤ bδ holds, then choose α∗ = ∞, i.e., uδ∞ := u ∈ D.

(b) Otherwise, choose a finite parameter α =: α∗ > 0 such that

‖F (uδα∗
)− f δ ‖ ≤ bδ ≤ ‖F (uδγδ

)− f δ ‖ for some α∗ ≤ γδ ≤ cα∗, (15)

where c > 1 denotes some finite constant.

Remark 9. (a) Practically, a parameterα∗ satisfying condition (15) can be determined,

e.g., by a sequential discrepancy principle. For more details, see, e.g., Section 6 and

[14].

7



(b) It follows from Proposition 7 that Algorithm 8 is feasible. We note that for δ > 0
fixed, the function α 7→ ‖F (uδα) − f δ ‖ may be discontinuous. For this reason, we do

not consider other versions of the discrepancy principle, e.g., ‖F (uδα∗
)− f δ ‖ = bδ or

b1δ ≤ ‖F (uδα∗
)− f δ ‖ ≤ b2δ.

We next present the main result of this paper.

Theorem 10. Let Assumption 1 be satisfied, and let the regularization parameterα∗ =
α(δ, f δ) be chosen according to the discrepancy principle.

• (No explicit smoothness) If u† ∈ R(G), then we have

‖uδα∗
− u† ‖ → 0 as δ → 0.

• (Hölder smoothness) If u† ∈ Xp for some 0 < p ≤ 1, then we have

‖uδα∗
− u† ‖ = O(δp/(p+a)) as δ → 0.

• (Low order smoothness) If u† ∈ D(logG), then

‖uδα∗
− u† ‖ = O((log 1

δ )
−1) as δ → 0.

The proof of Theorem 10 is given in Section 7.5.

5 An illustrative example

The following example with specific Banach spaces and nonlinear forward operator

is intended to illustrate the assumptions stated above and to indicate the specificity of

occurring non-reflexive Banach spaces. This example should show that the general

mathematical framework developed in this paper is applicable. The considered basis

space is the non-reflexive and non-separable space X = L∞(0, 1) with the essential

supremum norm ‖ · ‖ = ‖ · ‖∞ possessing a separable pre-dual space Z = L1(0, 1).
The generatorG of the scale of Banach spaces is given by

[Gu](x) =

∫ x

0

u(ξ) dξ (0 ≤ x ≤ 1, u ∈ L∞(0, 1)). (16)

Below we give some properties of G:

• The operator G : L∞(0, 1) → L∞(0, 1) is of non-negative type with constant

κ∗ = 2, see, e.g., [24].

• G is a compact operator, which possesses a compact pre-adjoint operator G̃ :
L1(0, 1) → L1(0, 1), which is characterized by

[G̃v](x) =

∫ 1

x

v(ξ) dξ (0 ≤ x ≤ 1, v ∈ L1(0, 1)).

8



• G has a trivial nullspace and a non-dense range

R(G) =W 1,∞
0 (0, 1) := { u ∈ W 1,∞(0, 1) : u(0) = 0 },

with

R(G) = C0[0, 1] := { u ∈ C[0, 1] : u(0) = 0 }.

As a consequence of the last item we have that X1 =W 1,∞
0 (0, 1) with ‖u‖1 := ‖u′‖∞.

With X = Y = L∞(0, 1), the nonlinear forward operator of this example is F :
L∞(0, 1) → L∞(0, 1) given by

[F (u)](x) = exp((Gu)(x)) (0 ≤ x ≤ 1, u ∈ L∞(0, 1)). (17)

This operatorF is weak∗-to-weak sequentially continuous, because F is a composition

of the continuous outer nonlinear exponential operator and the inner linear integration

operator G, both mapping in L∞(0, 1). The operator G transforms weak∗-convergent

sequences in L∞(0, 1) to norm-convergent sequences in this space, because G is com-

pact and has a pre-adjoint operator (cf. [4, Lemma 2.5]).

Moreover, the operatorF is Fréchet differentiable on its domain of definitionD(F ) =
L∞(0, 1), with [F ′(u)]h = [F (u)] ·Gh. Now consider some function u† ∈ L∞(0, 1)
which is assumed to be fixed throughout this section. We then have

c1 ≤ Fu† ≤ c2 on [0, 1], with c1 := exp(−‖Gu† ‖∞) > 0, c2 := exp(‖Gu† ‖∞),

so that

c1|Gh| ≤ |F ′(u†)h| ≤ c2|Gh| on [0, 1] (h ∈ L∞(0, 1)). (18)

For any u ∈ L∞(0, 1), we denote by ∆ = ∆(u) and θ = θ(u) the following functions:

∆ := Fu− Fu† ∈ L∞(0, 1), θ := G(u− u†) ∈ L∞(0, 1).

Thus, ‖u− u† ‖−1 = ‖θ‖∞, and we refer to (7) for the definition of ‖ · ‖−1.

Below we show that the basic estimates (10) and (11) are satisfied for that example

with a = 1. As a preparation, we note that

|∆− F ′(u†)(u− u†)| ≤ |θ| |∆| on [0, 1], (19)

and refer in this context to [9, Sect. 4.4]. In this reference, the same F is analyzed as

an operator mapping in L2(0, 1), where moreover its relation to a parameter estimation

problem for an initial value problem of a first order ordinary differential equation is

outlined.

(a) We first show that (10) holds. Even more general we show that it holds for any

u ∈ L∞(0, 1) sufficiently close to u†, not only for u ∈ X1. From (18) we have that

|∆− F ′(u†)(u − u†)| ≥ |∆| − |F ′(u†)(u− u†)| ≥ |∆| − c2|θ| on [0, 1],

and (19) then implies the estimate

|∆| − c2|θ| ≤ |θ| |∆| on [0, 1].

9



For any u ∈ L∞(0, 1) satisfying ‖θ‖∞ ≤ τ < 1, we thus have |∆| ≤ τ |∆| + c2|θ|
and therefore (1− τ)|∆| ≤ c2|θ| on [0, 1]. This finally yields

1−τ
c2

‖∆‖∞ ≤ ‖θ‖∞ for ‖θ‖∞ ≤ τ (0 < τ < 1),

from which the first required nonlinearity condition (10) follows immediately.

(b) We next show that (11) holds, in fact for any u ∈ L∞(0, 1) sufficiently close to u†.

From (18) we have

|∆− F ′(u†)(u − u†)| ≥ |F ′(u†)(u− u†)| − |∆| ≥ c1|θ| − |∆| on [0, 1],

and (19) then implies that

c1|θ| ≤ |∆|+ |θ| |∆| on [0, 1].

For any 0 < ε < c1 and u ∈ L∞(0, 1) satisfying ‖∆‖∞ ≤ c1 − ε, we thus have

c1|θ| ≤ |∆|+ (c1 − ε)|θ| and therefore ε|θ| ≤ |∆| on [0, 1]. This provides us with the

estimate ε‖θ‖∞ ≤ ‖∆‖∞, which is valid for ‖∆‖∞ ≤ c1 − ε (0 < ε < c1). This,

however, yields directly the second required nonlinearity condition (11) and completes

the list of requirements imposed by Assumption 1.

6 Numerical case studies

In this section, we verify the main result in Theorem 10 for the situation of Hölder

smoothness. For this, we recall the example considered in Section 5. In particular, for

the spaces X = Y = L∞(0, 1), equipped with the essential supremum norm ‖ · ‖ =
‖ · ‖∞, we consider the operator equation (1), where the nonlinear forward operator

F : L∞(0, 1) → L∞(0, 1) is given by (17). In this context, the integration operatorG,

defined as in (16), generates the space

X1 = R(G) =W 1,∞
0 (0, 1) := { u ∈W 1,∞(0, 1) : u(0) = 0 } ,

with norm ‖u‖1 := ‖u′‖∞. As verified in the previous section, this example satisfies

Assumption 1 with a = 1.

In the numerical experiments presented below, we consider the model equation

F (u) = f † with f †(x) = exp(xp+1/(p+ 1)), 0 ≤ x ≤ 1, with two different values p
from the interval (0, 1). The solution is obviously given by u†(x) = xp for 0 ≤ x ≤ 1.

It satisfies u† ∈ Xp which follows from the fact that the fractional powers Gp coincide

with Abel integral operators, and thus [GpΓ(1 + p)](x) = xp, 0 ≤ x ≤ 1, where Γ
denotes Euler’s gamma function. For details, we refer to [6, p. 9] and [25]. Note that

u† /∈ X1, hence we have an oversmoothing penalty term in the Tikhonov functional

T δ
α(u) defined as in (3). To find a regularized solution for u†, we set u = 0 as an initial

guess and r = 1 in the minimization problem (3). We use R programming software

[27] for the implementation. The interval [0, 1] is partitioned by using equidistant grid

points 0 = x0 < . . . < xN = 1 with N = 100. To approximate the functions u on the

given grid, we exploit linear splines that vanish at x = 0. In what follows, we use the

notation

‖u‖ := max
i=0,...,N

|ui|
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Table 1: Numerical results of Algorithm 8 for p = 0.3.

δ α∗ ‖uδα∗
− u†‖

‖uδα∗
− u†‖

δp/(p+1)

0.0500 7.813 · 10−3 0.2118 0.4228

0.0250 7.813 · 10−3 0.2124 0.4975

0.0125 1.953 · 10−3 0.1929 0.5304

0.0062 2.441 · 10−4 0.1496 0.4827

0.0031 4.883 · 10−4 0.1559 0.5902

0.0016 1.221 · 10−4 0.1217 0.5405

0.0008 6.104 · 10−5 0.1157 0.6033

0.0004 3.052 · 10−5 0.0920 0.5625

0.0002 7.629 · 10−6 0.0919 0.6597

for the discrete norm. We simulate perturbed observations f δ
i , i = 0, . . . , N , as fol-

lows:

f δ
i =

{
f †
i + δ ρi

‖ρ‖ , i = 1, . . . , N ,

f †
0 i = 0 .

In this setting, f †
i = (F (u†))i = exp(xp+1

i /(p + 1)), for i = 0, . . . , N , denotes the

simulated right-hand side of operator equation (1), and the vector ρ = (ρ1, . . . , ρN)T

consists of independent and identically distributed standard Gaussian variables ρi, for

i = 1, . . . , N . The discrepancy principle is implemented sequentially as follows (see

Remark 4.8 in [14]):

• Choose initial constants b > er, θ > 1, and α(0) > 0.

• If ‖F (uδ
α(0))− f δ‖ ≥ bδ holds, proceed with α(k) = θ−kα(0), for k = 1, 2 . . .,

until ‖F (uδ
α(k))− f δ‖ ≤ bδ ≤ ‖F (uδ

α(k−1))− f δ‖ is satisfied for the first time.

On that occasion, set α∗ = α(k).

• If ‖F (uδ
α(0)) − f δ‖ ≤ bδ holds, proceed with α(k) = θkα(0), for k = 1, 2 . . .,

until ‖F (uδ
α(k−1))− f δ‖ ≤ bδ ≤ ‖F (uδ

α(k))− f δ‖ is satisfied for the first time.

Set α∗ = α(k−1).

Within the minimization steps, we use the command fminunc included in the

package pracma. Table 1 and 2 illustrate the results of Algorithm 8 for p = 0.3 and

p = 0.7, respectively, and for decreasing values of δ. The initial values are chosen

as b = 2, θ = 2, and α(0) = 1. Except for the second column of Table 1, all values

are rounded to four decimal places. The second columns of the tables present the val-

ues of the regularization parameter α∗ chosen by the discrepancy principle. The third

columns illustrate the corresponding regularization errors. The last columns confirm

the statement of Theorem 10.

Figure 1 shows the shapes (solid lines) of minimizers uδα of the Tikhonov functional

in the case p = 0.3 for a fixed noise level δ = 0.0125 and a series of regularization

11



Table 2: Numerical results of Algorithm 8 for p = 0.7.

δ α∗ ‖uδα∗
− u†‖

‖uδα∗
− u†‖

δp/(p+1)

0.0500 0.0156 0.0916 0.3146

0.0250 0.0156 0.0869 0.3967

0.0125 0.0156 0.0703 0.4273

0.0062 0.0078 0.0444 0.3586

0.0031 0.0078 0.0532 0.5726

0.0016 0.0078 0.0253 0.3619

0.0008 0.0005 0.0246 0.4682

0.0004 0.0010 0.0171 0.4323

0.0002 0.0001 0.0125 0.4209

parameters α > 0 with decreasing values. The relative error ‖F (u†) − f δ‖/‖F (u†)‖
is given by 0.01. Dotted lines represent in all five pictures the graph of the solution

u†(x) = x0.3, 0 ≤ x ≤ 1, to be reconstructed. In the first picture, for the largest

α, the regularized solution is too smooth. By reducing the values of α, the recov-

ery gets improved. Precisely, the third picture yields the best approximate solution,

which corresponds with α∗ from the discrepancy principle. As a consequence of the

ill-posedness of the problem, more and more oscillating solutions occur when α further

tends to zero.

7 Constructions and verifications

In this section, we verify the main result of the paper. For this purpose, we return to the

general setting considered in Section 2, i.e., G : X → X denotes a bounded linear op-

erator which is of non-negative type, one-to-one and has an unbounded inverse, where

X is a Banach space.

7.1 Introduction of auxiliary elements

For the auxiliary elements introduced below, we consider linear bounded regularization

operators associated with G,

Rβ : X → X for β > 0 (20)

and its companion operators

Sβ := I −RβG for β > 0. (21)

12



Figure 1: Behaviour of minimizing functions uδα for δ = 0.0125 and decreasing values

of α.
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Throughout this section, we assume that the following conditions are satisfied:

‖Rβ ‖L(X) ≤
c∗
β for β > 0, (22)

‖SβG
p ‖L(X) ≤ cpβ

p for β > 0, (0 ≤ p ≤ p0) (23)

RβG = GRβ for β > 0, (24)

where 0 < p0 < ∞ is a finite number to be specified later, and c∗ and cp denote finite

constants. We assume that cp is bounded as a function of p.

Example 11. An example is given by Lavrentiev’s m-times iterated method with an

integer m ≥ 1. Here, for f ∈ X and v0 = 0 ∈ X , the element Rβf is given by

(G+ βI)vn = βvn−1 + f for n = 1, 2, . . . ,m, Rβf := vm.

The operatorRβ can be written in the form

Rβ = β−1
m∑

j=1

βj(G+ βI)−j ,

and the companion operator is given by Sβ = βm(G + βI)−m. For m = 1, this gives

Lavrentiev’s classical regularization method, Rβ = (G + βI)−1. For this method,

the conditions (22)–(24) are satisfied with p0 = m. In fact, for integer 0 ≤ p ≤ m,

estimate (23) holds with constant cp = (κ∗ + 1)m, see [24, Lemma 1.1.8]. From this

intermediate result and the interpolation inequality (6), inequality (23) then follows for

non-integer values 0 < p < m, with constant cp = 2(κ∗ + 1)m+1. △

We are now in a position to introduce auxiliary elements which provide an essential

tool for the analysis of the regularization properties of Tikhonov regularization consid-

ered in our setting. They are defined as follows,

ûβ := u+RβG(u
† − u) = u† − Sβ(u

† − u) for β > 0, (25)

where G is the generator of the scale of normed spaces introduced in Section 2.1, and

Rβ , β > 0, is an arbitrary family of regularizing operators as in (20) satisfying the

conditions (22)–(24) with saturation

p0 ≥ 1 + a,

and Sβ , β > 0, denotes the corresponding companion operators, cf. (21). In addition,

the solution u† of the operator equation (1) and the corresponding initial guess u are as

introduced above. The basic properties of the auxiliary elements (25) are summarized

in Lemma 15 below.

We next state another property of regularization operators which is also needed

below.

Lemma 12. There exists some finite constant c > 0 such that, for each 0 < p ≤ 1, we

have

‖RβG
p ‖L(X) ≤ cβp−1 for β > 0.

14



Proof. Since RβG
p = GpRβ , for κ1 = 2(κ∗ + 1) we have

‖RβG
pw‖ = ‖GpRβw‖ ≤ κ1‖GRβw‖p‖Rβw‖1−p

≤ κ1(c0 + 1)pc1−p
∗ ‖w‖βp−1, w ∈ X ,

where the first inequality follows from the interpolation inequality (6). For the meaning

of the constants c0 and c∗, we refer to (22) and (23), respectively.

7.2 Auxiliary results for logG

Lemma 13. For each u ∈ D(logG) and each 0 ≤ p < p0, we have

‖SβG
pu‖ = O(βp(log 1

β )
−1) as β → 0.

Proof. By (Gq)q≥0 a C0-semigroup on R(G) is defined, and thus ‖Gq ‖L(R(G)) ≤
Ceωq for q ≥ 0, where ω > 0 and C > 0 denote suitable constants, and ‖ · ‖L(R(G))

denotes the norm of operators on R(G). Therefore, each real λ > ω belongs to the re-

solvent set of the operator logG : R(G) ⊃ D(logG) → R(G), i.e., (λI − logG)−1 :
R(G) → R(G) exists and defines a bounded operator, cf. [23, Theorem 5.3, Chap-

ter 1]. Since

R((λI − logG)−1) = D(λI − logG) = D(logG),

we can represent u as

u = (λI − logG)−1w

with some w ∈ R(G). From (cf. [23, proof of Theorem 5.3, Chapter 1])

u = (λI − logG)−1w =

∫ ∞

0

e−λqGqw dq,

we obtain

SβG
pu =

∫ ∞

0

e−λqSβG
p+qw dq = y1 + y2,

with

y1 =

∫ p0−p

0

e−λqSβG
p+qw dq, y2 =

∫ ∞

p0−p

e−λqSβG
p+qw dq.

Below we provide suitable estimates for y1 and y2. The former term can be estimated

as follows for β < 1:

‖y1 ‖ ≤ c1‖w‖

∫ p0−p

0

βp+q dq = c1‖w‖βp 1

log β
βq

∣∣q=p0−p

q=0

= c1‖w‖βp 1

| log β|
(1− βp0−p) ≤ c1‖w‖βp 1

| log β|
,

15



where c1 denotes a finite constant. The element y2 can be written as follows:

y2 =

∫ ∞

p0−p

e−λqSβG
p0Gq−(p0−p)w dq,

and thus we can estimate as follows:

‖y2 ‖ ≤ c2‖w‖

∫ ∞

p0−p

e−λqβp0eω(q−(p0−p)) dq

≤ c3‖w‖e−ω(p0−p)βp0

∫ ∞

p0−p

e−(λ−ω)q dq = O(βp0) as β → 0,

where c2 and c3 denote suitable finite constants. This completes the proof.

Lemma 14. For each u ∈ D(logG), we have

‖Rβu‖ = O(
1

β log 1
β

) as β → 0.

Proof. Follows similar to Lemma 13, by making use of Lemma 12. Details are thus

omitted.

7.3 Some preparations for low order rates

In the analysis of low order rates, the functions

ϕ(t) = (log 1
t )

−1, 0 < t < 1, (26)

χ±1,q(t) = tq(log 1
t )

∓1, 0 < t < 1 (q > 0), (27)

will be needed. Below we state some elementary properties of those functions. Note

that ϕ(t) = χ1,0(t) holds, so (26) is a special case of (27).

(a) For q ≥ 0, the function χ1,q is monotonically increasing on the interval (0, 1),
with χ1,q(t) → 0 as t→ 0.

(b) For q > 0, the function χ−1,q is monotonically increasing on the interval (0, t0],
with t0 = t0(q) < 1 chosen sufficiently small. We have χ−1,q(t) → 0 as t→ 0.

(c) For q > 0, the inverse function χ−1
1,q : (0, 1) → R satisfies

χ−1
1,q(s) ∼ q−1/qχ−1,1(s)

1/q as s→ 0.

This in particular implies that, for each 0 < s0 < 1, we have

χ−1
1,q(s) ≍ χ−1,1(s)

1/q, 0 < s ≤ s0.

(d) For each q > 0, we have ϕ(χ±1,q(t)) ∼ qϕ(t) as t → 0. Thus, in particular for

each fixed t1 small enough and each e > 0, we have

ϕ(χ±1,q(t)
e) ≤ c1ϕ(t), 0 < t ≤ t1,

for some appropriate constant c1.
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(e) For each constant c2 > 0, we have ϕ(c2t) ∼ ϕ(t) as t→ 0, and thus in particular

ϕ(c2t) ≍ ϕ(t), 0 < t ≤ t2,

for t2 < 1/c2 fixed.

Here, for two positive, real-valued functions f, g : (0, t0) → R, the notation f(t) ∼
g(t) as t → 0 means f(t)/g(t) → 1 as t → 0. In addition, f(t) ≍ g(t) for t ∈ I ⊂
(0, t0) means that there are finite positive constants c1, c2 such that c1f(t) ≤ g(t) ≤
c2f(t) for t ∈ I .

7.4 Properties of auxiliary elements

In this section, we present the basic properties of the auxiliary elements, which may be

used to verify our convergence results presented below.

Lemma 15. Consider the auxiliary elements from (25), generated by regularization

operators Rβ , β > 0, with saturation p0 ≥ 1 + a. Let the three functions gi(β) (i =
1, 2, 3) be given by the following identities:

‖ ûβ − u† ‖ = g1(β), (28)

‖ ûβ − u† ‖−a = g2(β)β
a, (29)

‖ ûβ − u‖1 = g3(β)β
−1, (30)

for β > 0, respectively. Those functions gi(β) (i = 1, 2, 3) are bounded and have the

following properties:

• (No explicit smoothness) If u† ∈ R(G), then we have gi(β) → 0 as β → 0
(i = 1, 2, 3).

• (Hölder smoothness) If u† ∈ Xp for some 0 < p ≤ 1, then gi(β) = O(βp) as

β → 0 (i = 1, 2, 3).

• (Low order smoothness) If u† ∈ D(logG), then gi(β) = O((log 1
β )

−1) as β → 0
(i = 1, 2, 3).

Proof. By definition, those three functions g1, g2 and g3 under consideration can be

written as follows:

g1(β) = ‖Sβ(u
† − u)‖,

g2(β) = β−a‖GaSβ(u
† − u)‖,

g3(β) = β‖Rβ(u
† − u)‖,

and, according to conditions (22)–(24), thus are bounded.

• The three convergence statements under any missing smoothness assumptions all

are verified by making use of the uniform boundedness principle. We give some details

for the function g1. In fact, (23) applied for p = 1 gives Sβz → 0 as β → 0 for all z
from the range R(G). The uniform boundedness ‖Sβ‖L(X) ≤ c0, cf. (23) for p = 0,

and the denseness of R(G) in R(G) then gives g1(β) = ‖Sβ(u
†−u)‖ → 0 as β → 0.

The assertions for g2 and g3 follow similarly.
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• We consider Hölder smoothness next. Since u†, u ∈ Xp holds, we have u† −
u = Gpw for some w ∈ X . The statements are now easily obtained from (23) and

Lemma 12.

• We have u†−u ∈ D(logG), and the statements now easily follow from Lemmas 13

and 14.

The preceding lemma allows the construction of smooth approximations in X1 to u†,

which may be used in the subsequent proofs.

Lemma 16. Under the conditions of Lemma 15, the following holds:

• (No explicit smoothness) If u† ∈ R(G), then for some parameter choice β = βδ
we have

‖ ûβδ
− u† ‖ → 0, ‖ ûβδ

− u† ‖−a = O(δ), ‖ ûβδ
− u‖1 = o(δ−1/a), (31)

as δ → 0.

• (Hölder smoothness) If u† ∈ Xp for some 0 < p ≤ 1, then for some parameter

choice β = βδ we have

‖ ûβδ
− u† ‖ = O(δ

p
p+a ), ‖ ûβδ

− u† ‖−a = O(δ),

‖ ûβδ
− u‖1 = O(δ−

1−p
p+a ) as δ → 0. (32)

• (Low order smoothness) If u† ∈ D(logG), then for some parameter choice β = βδ
we have

‖ ûβδ
− u† ‖ = O((log 1

δ )
−1), ‖ ûβδ

− u† ‖−a = O(δ),

‖ ûβδ
− u‖1 = O(δ−

1
a (log 1

δ )
−(1+ 1

a
)) as δ → 0. (33)

For each of the three cases, the parameter choice β = βδ is specified in the proof.

Proof. We consider the following choices of βδ:

• In case of no explicit smoothness, one may choose βδ = cδ1/a.

• In case of Hölder smoothness, one can choose βδ = cδ
1

p+a .

• In case of low order smoothness, we consider βδ = c(δ log 1
δ )

1/a for 0 < δ < δ0,

with δ0 sufficiently small.

Here, c > 0 denotes an arbitrary constant factor. The first two statements follow as

an easy consequence of Lemma 15. The statement on the low order case is also a

consequence of Lemma 15. In this case, however, below we consider some details.

For this purpose, we will make use of the notation ϕ(t) = (log 1
t )

−1 introduced in

Section 7.3. We first note that for some constant c1 > 0, we have

ϕ(βδ) ≤ c1ϕ(δ), 0 < δ ≤ δ0, (34)
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which in fact follows easily from the two estimates given in items (d) and (e) introduced

in Section 7.3. The three given estimates for the low order case are now consequences

of Lemma 15 and estimate (34). For ‖ ûβδ
−u† ‖ this is immediate, and in addition, we

also obtain the following:

‖ ûβδ
− u† ‖−a ≤ c2ϕ(βδ)β

a
δ ≤ c3ϕ(δ)(ϕ(δ)

−1δ)a/a = c3δ,

‖ ûβδ
− u‖1 ≤ c4ϕ(βδ)β

−1
δ ≤ c5ϕ(δ)(ϕ(δ)δ

−1)1/a = c5ϕ(δ)
1+ 1

a δ−1/a,

where c2, . . . , c5 denote appropriately chosen constants. This completes the proof of

the lemma.

7.5 Proof of Theorem 10

This section is devoted to the proof of our main result, Theorem 10. As a basic ingre-

dient, we need to provide reasonable estimates of the two terms ‖uδα∗
− u† ‖−a and

‖uδα∗
− u‖1. We start with the estimation of the former one.

Lemma 17. Let Assumption 1 be satisfied. We then have

‖uδα∗
− u† ‖−a = O(δ) as δ → 0.

Proof. From the choice of α∗ and estimate (11), it follows that

ca‖u
δ
α∗

− u† ‖−a ≤ ‖F (uδα∗
)− f † ‖ ≤ ‖F (uδα∗

)− f δ ‖+ δ ≤ (b+ 1)δ (35)

for δ > 0 small enough. Note that the upper bound presented at the end of (35)

guarantees that estimate (11) is applicable with u = uδα∗
for δ small enough. This

concludes the proof.

Our next goal is to provide appropriate estimates for ‖uδα∗
− u‖1. This requires

some preparations. For this purpose, we recall the definition from (12), this is κ =
1

r(a+1) .

Lemma 18. Let Assumption 1 be satisfied. There exists some α0 > 0 such that for

0 < α ≤ α0 and each δ > 0, we have

max{‖F (uδα)− f δ ‖, α1/r‖uδα − u‖1} ≤ ψ(α)ακa + erδ,

where the constant er is given by (14). In addition, ψ(α) is a bounded function which

satisfies the following:

• (No explicit smoothness) If u† ∈ R(G), then ψ(α) → 0 as α → 0.

• (Hölder smoothness) If u† ∈ Xp for some 0 < p ≤ 1, then ψ(α) = O(ακp) as

α→ 0.

• (Low order smoothness) If u† ∈ D(logG), then ψ(α) = O((log 1
α )

−1) as α → 0.
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Proof. Let u† ∈ R(G). For auxiliary elements of the form (25), with saturation p0 ≥
1 + a, we choose

β = β(α) = ακ. (36)

For α > 0 small enough, say 0 < α ≤ α0, we have ûβ ∈ D because of Lemma 15 and

since moreover u† is assumed to be an interior point of D(F ). We thus have

(‖F (uδα)− f δ ‖r + α‖uδα − u‖r1)
1/r ≤ (‖F (ûβ)− f δ ‖r + α‖ ûβ − u‖r1)

1/r

≤ er(‖F (ûβ)− f δ ‖+ α1/r‖ ûβ − u‖1)

≤ er(‖F (ûβ)− f † ‖+ α1/r‖ ûβ − u‖1 + δ). (37)

The first term on the right-hand side of the latter estimate can be written as

‖F (ûβ)− f † ‖ ≤ Ca‖ ûβ − u† ‖−a = Cag2(β)β
a = Cag2(α

κ)ακa. (38)

The estimate in (38) is a consequence of estimate (10), which is applicable with u = ûβ
for α small enough, and without loss of generality we may assume that small enough

means α ≤ α0 by choosing α0 sufficiently small in the beginning. The first identity in

(38) follows from representation (29) in Lemma 15.

The second term on the right-hand side of the estimate (37) can be represented as

follows:

α1/r‖ ûβ − u‖1 = α1/rg3(β)β
−1 = g3(α

κ)ακa,

based on (30) of Lemma 15. As a consequence, the estimate of Lemma 18 holds, if the

function ψ is chosen as

ψ(α) := er(Cag2(α
κ) + g3(α

κ)) for α ≤ α0 .

The asymptotic behavior of the function ψ stated in the lemma is an immediate conse-

quence of Lemma 15. This completes the proof of the lemma.

As a consequence of the preceding lemma, we can derive reasonable lower bounds

for the regularizing parameter α∗ obtained by the discrepancy principle, which actually

affects the stability of the method.

Corollary 19. Let Assumption 1 be satisfied. Let the parameter α = α∗ be chosen

according to the discrepancy principle.

• (No explicit smoothness) If u† ∈ R(G), then α−κa
∗ = o(δ−1) as δ → 0.

• (Hölder smoothness) If u† ∈ Xp for some 0 < p ≤ 1, then α
−κ(p+a)
∗ = O(δ−1) as

δ → 0.

• (Low order smoothness) If u† ∈ D(logG), then α−κa
∗ = O(δ−1(log 1

δ )
−1) as

δ → 0.
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Proof. We first note that parametersα∗ which stay away from zero can easily be treated

in each of the three cases. Note also that this is a related to a degenerated case, and it

includes the case α∗ = ∞.

In the following, we thus may assume that α∗ ≤ α0/c and thus γδ ≤ α0 hold,

whereα0 is given by Lemma 18, and the constant c and the parameter γδ are introduced

by the discrepancy principle (15). Lemma 18 then implies bδ ≤ ‖F (uδγδ
) − f δ ‖ ≤

ψ(γδ)γ
κa
δ + erδ and thus

(b− er)δ ≤ ψ(γδ)γ
κa
δ . (39)

The statements of the corollary for the two cases “no explicit smoothness” and “Hölder

smoothness” now easily follow from the properties on the function ψ presented in

Lemma 18, respectively. Low order smoothness is considered next. In this case, with-

out loss of generality we may assume that α0 < 1. Estimate (39) then means

c1δ ≤ (log 1
γδ
)−1γκaδ = χ1,κa(γδ),

where c1 > 0 denotes a constant, and the notation from Section 7.3 is used again.

From item (a) of that section, we now easily obtain χ−1
1,κa(c1δ) ≤ γδ , with δ > 0 small

enough. This provides the basis for the following estimates, which also utilize items (c)

and (e) from Section 7.3:

cα∗ ≥ γδ ≥ χ−1
1,κa(c1δ) ≥ c2χ−1,1(c1δ)

1/(κa)

= c3(δ log
1

c1δ
)1/(κa) ≥ c4(δ log

1
δ )

1/(κa),

where c2, c3 and c4 denote appropriately chosen finite constants, and δ is again suffi-

ciently small. A simple rearrangement yields the statement on low order smoothness.

Below, we present suitable estimates for ‖uδα∗
− u‖1.

Corollary 20. Let Assumption 1 be satisfied. Let the parameter α = α∗ be chosen

according to the discrepancy principle. Then the following holds:

• (No explicit smoothness) If u† ∈ R(G), then ‖uδα∗
− u‖1 = o(δ−1/a) as δ → 0.

• (Hölder smoothness) If u† ∈ Xp for some 0 < p ≤ 1, then ‖uδα∗
− u‖1 =

O(δ−
1−p
p+a ) as δ → 0.

• (Low order smoothness) If u† ∈ D(logG), then ‖uδα∗
−u‖1 = O(δ−

1
a (log 1

δ )
−(1+ 1

a
))

as δ → 0.

Proof. For parameters α∗ staying away from the origin, say α∗ ≥ α1 > 0, the state-

ments of the corollary follow immediately, since ‖uδα∗
− u‖1 stays bounded then, as

can be seen from the following computations:

α
1/r
1 ‖uδα∗

− u‖1 ≤ α
1/r
∗ ‖uδα∗

− u‖1 ≤ T δ
α(u

δ
α∗
)1/r ≤ T δ

α(u)
1/r

= ‖F (u)− f δ ‖ ≤ ‖F (u)− f † ‖+ δ.
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Therefore, in the following we may assume α∗ ≤ α0, where α0 is given by Lemma 18.

The same lemma then implies α
1/r
∗ ‖uδα∗

− u‖1 ≤ ψ(α∗)α
κa
∗ + erδ and thus

‖uδα∗
− u‖1 ≤ ψ(α∗)α

−κ
∗ + er

δ

α
1/r
∗

, (40)

where we make use of the identity κa − 1
r = −κ. The statements of the corollary

now follow by considering the two terms on the right-hand side of (40) separately,

respectively. For the two cases “no explicit smoothness” and “Hölder smoothness”,

this follows from the corresponding estimates from Lemma 18 and Corollary 19. The

proof is straightforward, and details thus are omitted here.

Below we present some details for the low order smoothness case. In this case, the

estimate of the function ψ given by Lemma 18 yields

‖uδα∗
− u‖1 ≤ c1(log

1
α∗

)−1α−κ
∗ + er

δ

α
1/r
∗

, (41)

for some suitable finite constant c1. We now can proceed by utilizing the lower estimate

of α∗ given by Corollary 19, i. e.,

c2(δ log
1
δ )

1/(κa) ≤ α∗ for 0 < δ ≤ δ1, (42)

with some constant c2, and δ1 is chosen small enough. From (42), the second term

on the right-hand side of (41) can be suitable estimated in a straightforward manner,

and we omit the details. We next consider the first term on the right-hand side of (41).

Without loss of generality, in the following we may assume that α0 < 1 considered in

the beginning of the proof is chosen so small such that the function (χ−1,κ(α))
−1 =

(log 1
α )

−1α−κ is monotonically decreasing for 0 < α ≤ α0, cf. item (b) in Section 7.3.

From (41), (42) and items (b) in Section 7.3, we then obtain

(log 1
α∗

)−1α−κ
∗ ≤ c3(δ log

1
δ )

−1/aσ, σ := (− log(c2(δ log δ)
1/(κa)))−1,

for some constant c3. From items (d) and (e) in Section 7.3, it follows that

σ = ϕ(c2χ−1,1(δ)
1/(κa)) ≤ c4ϕ(δ) = c4(log

1
δ )

−1,

for some constant c4. The statement in the third item of the corollary now follows.

We are now in a position to present a proof of the main result of this paper.

Proof of Theorem 10. We start with an elementary error estimate ‖uδα∗
−u† ‖ utilizing

the auxiliaries,

‖uδα∗
− u† ‖ ≤ ‖uδα∗

− ûβδ
‖+ ‖ ûβδ

− u† ‖, (43)

where βδ is given by Lemma 16. The error of the auxiliaries on the right-hand side of

(43) can be properly estimated using Lemma 16. Below we consider the term ‖uδα −
ûβ ‖ in more detail. From the interpolation inequality (6), it follows

‖uδα∗
− ûβδ

‖ ≤ c1‖u
δ
α∗

− ûβδ
‖
1/(a+1)
−a ‖uδα∗

− ûβδ
‖
a/(a+1)
1 , (44)
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where c1 denotes some finite constant not depending on δ. The first term on the right-

hand side of estimate (44) can be estimated by using Lemmas 16 and 17. Precisely, we

find the estimates

‖uδα∗
− ûβδ

‖−a ≤ ‖uδα∗
− u† ‖−a + ‖ ûβδ

− u† ‖−a = O(δ) as δ → 0,

so that estimate (44) simplifies to

‖uδα∗
− ûβδ

‖ ≤ c2δ
1/(a+1)‖uδα∗

− ûβδ
‖
a/(a+1)
1 , (45)

where c2 denotes some finite constant independent of δ. The last factor on the right-

hand side of (45) is estimated next, and for this purpose, we make use of the following

elementary estimate,

‖uδα∗
− ûβδ

‖1 ≤ ‖uδα∗
− u‖1 + ‖ ûβδ

− u‖1. (46)

We now proceed with the estimation of the right-hand side of (46) by distinguishing

our different smoothness assumptions.

(a) For u† ∈ R(G) (no explicit smoothness), from estimate (46), Lemma 16 and Corol-

lary 20 we obtain

‖uδα∗
− ûβδ

‖1 ≤ o(δ−1/a) + o(δ−1/a) = o(δ−1/a),

and estimate (45) then gives

‖uδα∗
− ûβδ

‖ ≤ c2δ
1

a+1 o(δ
−

1
a+1 ) → 0 as δ → 0.

This result in combination with estimate (43) and Lemma 16 yields ‖uδα∗
− u† ‖ → 0

as δ → 0. This is the first statement of Theorem 10.

(b) (Hölder smoothness) If u† ∈ Xp for some 0 < p ≤ 1, then from estimate (46),

Lemma 16 and Corollary 20 we obtain

‖uδα∗
− ûβδ

‖1 ≤ O(δ−
1−p
p+a ) +O(δ−

1−p
p+a ) = O(δ−

1−p
p+a ),

and estimate (45) then gives

‖uδα∗
− ûβδ

‖ ≤ c2δ
1

a+1O(δ−
1−p
p+a

a
a+1 ) = O(δ

p
p+a ) as δ → 0.

This estimate combined with estimate (43) and Lemma 16 yields ‖uδα∗
− u† ‖ =

O(δ
p

p+a ) as δ → 0. This is the second statement of Theorem 10.

(c) (Low order smoothness) If u† ∈ D(logG), then from estimate (46), Lemma 16 and

Corollary 20 we obtain

‖uδα∗
− ûβδ

‖1 = O(δ−
1
a (log 1

δ )
−(1+ 1

a
)),

and estimate (45) then gives

‖uδα∗
− ûβδ

‖ ≤ c2δ
1

a+1O(δ−
1

a+1 (log 1
δ )

−1) = O((log 1
δ )

−1) as δ → 0.

This estimate in combination with (43) and Lemma 16 yields ‖uδα∗
−u† ‖ = O((log 1

δ )
−1)

as δ → 0. This is the third and final statement of Theorem 10.
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[11] B. Hofmann and P. Mathé. Tikhonov regularization with oversmoothing penalty

for non-linear problems in Hilbert spaces. Inverse Problems, 34(015007), 2018.

24
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