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Abstract We address facts and open questions concerning the degree of ill-posedness of the

composite Hausdorff moment problem aimed at the recovery of a function x ∈ L2(0, 1) from

elements of the infinite dimensional sequence space `2 that characterize moments applied to

the antiderivative of x. This degree, unknown by now, results from the decay rate of the

singular values of the associated compact forward operator A, which is the composition of

the compact simple integration operator mapping in L2(0, 1) and the non-compact Hausdorff

moment operator B(H) mapping from L2(0, 1) to `2. There is a seeming contradiction be-

tween (a) numerical computations, which show (even for large n) an exponential decay of

the singular values for n-dimensional matrices obtained by discretizing the operator A, and

(b) a strongly limited smoothness of the well-known kernel k of the Hilbert-Schmidt operator

A∗A. Fact (a) suggests severe ill-posedness of the infinite dimensional Hausdorff moment

problem, whereas fact (b) lets us expect the opposite, because exponential ill-posedness oc-

curs in common just for C∞-kernels k. We recall arguments for the possible occurrence of

a polynomial decay of the singular values of A, even if the numerics seems to be against it,

and discuss some issues in the numerical approximation of non-compact operators.
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ment problem, composition of compact and non-compact operators, kernel smoothness
of Hilbert-Schmidt operators.
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1 Introduction

In the recent paper [4], we have dealt with properties of the forward operator B(H) :
L2(0, 1)→ `2 of the Hausdorff moment problem defined as

[B(H)z]j :=

∫ 1

0

tj−1z(t)dt (j = 1, 2, ...). (1)

This inverse problem, which can be written as an operator equation

B(H) z = y, (2)

aims at the recovery of a function z ∈ L2(0, 1) from data of the square-summable

infinite sequence
{∫ 1

0
tj−1z(t)dt

}∞
j=1

of monomial moments to z. It has been outlined

ibid that B(H) is a non-compact and injective bounded linear operator with non-closed
range, which implies that the operator equation (2) is ill-posed of type I in the sense of
Nashed [12]. This means that there is an infinite dimensional subspace of `2 on which
the inverse of B(H) is continuous. Despite considerable efforts in [4], a full description
of this subspace is still missing.

Open Question 1: What is the infinite dimensional subspace of `2, on which the
inverse of the operator B(H) is continuous?
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In contrast to linear ill-posed problems of type II with compact forward operators in
Hilbert spaces, where the decay rate to zero of the singular values expresses the degree
of ill-posedness in a concise way, the characterization of the strength of ill-posedness
is much more complicated (cf. [5, 6, 11]) in non-compact cases like (2) with B(H) from
(1). As discussed in [4], for the Hausdorff operator B(H) it seems to be important
that B(H)(B(H))∗ : `2 → `2 coincides with the infinite dimensional Hilbert matrix

H =
(

1
i+j−1

)∞
i=1,j=1

, where the n-dimensional segments Hn =
(

1
i+j−1

)n
i=1,j=1

are very

ill-conditioned n× n-matrices with condition numbers that grow exponentially with n
as an impact of the well-known asymptotics σn(Hn) ∼ exp(−3.526n) as n → ∞ (see,
e.g., [2, Example 3.3]).

If, however, B(H) acts in combination with a compact operator, then the compo-
sition operator is compact, and its singular value decay rate serves as an appropriate
measure for the corresponding ill-posedness. Such situation occurs if we try to recover
x ∈ L2(0, 1) from moment data applied to the antiderivative of x. In the present note,
we combine the compact integration operator J : L2(0, 1)→ L2(0, 1) defined as

[Jx](s) :=

∫ s

0

x(t)dt (0 ≤ s ≤ 1) (3)

with B(H) from (1) in the operator equation

Ax = y , (4)

where the forward operator is here the composition

A := B(H) ◦ J : L2(0, 1)→ `2. (5)

Taking into account the well-known properties of J and B(H), the composition A from
(5) turns out to be a compact and injective bounded linear operator with non-closed
range. Consequently, there exists a singular system {σi(A), ui(A), vi(A)}∞i=1 with com-
plete orthonormal systems {ui(A)}∞i=1 in L2(0, 1) and {vi(A)}∞i=1 in `2, respectively,
satisfying the conditions Aui(A) = σi(A)vi(A) (i = 1, 2, ...) and the positive and non-
increasing sequence of singular values {σi(A)}∞i=1 with limi→∞ σi(A) = 0. In this con-
text, we recall the following definition from [6, Definition 8], which has been slightly
updated. We also refer to [8] for the related concept of ill-posedness intervals and
further discussions.

Definition 1. Let A be a compact operator mapping between Hilbert spaces with non-
closed range. If there exists a constant C > 0 and an exponent 0 < κ < ∞ such
that

C i−κ ≤ σi(A) ∀i ∈ N , (6)

we call the operator equation (4) moderately ill-posed of degree at most κ. If for all
ε > 0 , (6) does not hold with κ replaced by κ−ε we call (4) ill-posed of degree κ. If (6)
does not hold for arbitrarily large κ, we call (4) severely ill-posed. Typical behaviour of
severely ill-posed equations is exponential ill-posedness, which means that there exist
positive constants C1, C2 and an exponent 0 < θ <∞ such that the inequality

σi(A) ≤ C1 exp(C2 i
θ) ∀i ∈ N (7)

holds.
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Open Question 2: Is the operator equation (4) with the composite operator A from
(5) moderately ill-posed or, in contrast, even exponentially ill-posed?

To the best of our knowledge, this question that we ask to analysis and numerics
in this note has not yet been answered satisfactorily, despite considerable efforts in
the articles [3, 4, 7]. In Section 2 we formulate our current knowledge about analyt-
ical results and corresponding suggestions with respect to Open Question 2. We will
formulate in this context an Open Question 3, which meets the possible occurrence of
exponential ill-posedness for integral equations kernel functions of limited smoothness.
Numerical computations of the singular value decay for n× n matrices approximating
the operator A from (5) will be discussed in Section 3. This decay is of exponential
type, even if n is fairly large. However, we reiterate an explanation given in [3] that
such phenomenon does not rule out the possibility of moderate ill-posedness for the
original equation (4) with A mapping between the infinite dimensional Hilbert spaces
L2(0, 1) and `2. In Section 4 we formulate some open problems on the relation between
the spectrum of non-compact operators and their discrete approximations.

2 Analysis facts for the infinite dimensional composite
Hausdorff moment problem

In order to get insight into the structure of the compact operator A from (5) with
B(H) from (1) and J from (3), we recall some corresponding results from [4]. In
this context, the system {Lj}∞j=1 of normalized shifted Legendre polynomials with the
explicit expressions

Lj(t) =

√
2j − 1

(j − 1)!

(
d

dt

)j−1
tj−1(1− t)j−1 (0 ≤ t ≤ 1),

which is a complete orthonormal system in L2(0, 1), plays a prominent role. Taking into
account [4, Proposition 5 and Remark 2] we can factorize the Hausdorff (monomial)
moment operator B(H) as B(H) = L◦Q, where L : `2 → `2 is an infinite lower triangular
matrix occurring in the Cholesky decomposition H = LL∗ of the infinite Hilbert matrix
H. For an explicit expression of the entries of L we refer to [4, Proposition 5]. On the
other hand, the operator Q : L2(0, 1)→ `2 defined as

[Qx]j := 〈x, Lj〉L2(0,1) (j = 1, 2, ...) (8)

characterizes an isometry. Consequently, we can factorize the operator equation (4)
into an inner problem

Q (Jx) = w , (9)

ill-posed of type II with the compact operator Q ◦ J , and an outer problem

Lw = y (10)

which is ill-posed of type I.
Solving the operator equation (9) is in the papers [9, 13] considered as the recon-

struction of the derivative x ∈ L2(0, 1) of the function Jx based on Legendre-type
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Figure 1: Singular functions u10(A) and u10(J) computed from the discretized opera-
tors. Obviously, the functions look completely different.

moments {
∫ 1

0
Lj(t)[Jx](t)dt}∞j=1, or in other words as a specific approach of numerical

differentiation. Due to the isometry Q and the well-known singular value asymptotics
σi(J) � 1/i 1 of J , we have that σi(Q ◦ J) � 1/i and that the operator equation (9) is
moderately ill-posed of degree one.

Since L is the infinite lower triangular matrix of the Cholesky decomposition of
the infinite Hilbert matrix H, we derive from the properties of H (cf., e.g, [10]) that
the spectrum of the non-compact operator L with ‖L‖L(`2,`2) =

√
π contains the whole

interval [0,
√
π] and is purely continuous, because H has no embedded eigenvalues.

Although the complete singular system of J is available as{
σi(J) = 2

(2i−1)π , ui(J) =
√

2 cos (i− 1
2)πt, vi(J) =

√
2 sin (i− 1

2)πt
}∞
i=1

,

we cannot conclude from this to the singular system {σi(A), ui(A), vi(A)}∞i=1 of the
compact operator A = L ◦Q ◦ J or at least to its singular value asymptotics, because
the orthonormal eigensystem {ui(A)}∞i=1 is completely unknown and does not seem to
have anything to do with the eigensystem {ui(J)}∞i=1. A visualization of this is given
in Figure 1, where we plot a numerical approximation to u10(A) and u10(J) obtained
by calculating the singular value decomposition of 1000× 1000 matrix approximations
to A and J .

We now recall a result from [7], which leaves open whether the operator equation
(4) with the composite operator A from (5) is moderately or severely (exponentially)
ill-posed in the sense of Definition 1.

1For two decreasing sequences {si}∞i=1 and {ti}∞i=1 of positive numbers, the symbol si � ti denotes
that there are constants 0 < c ≤ c <∞ such that the inequalities

c si ≤ tj ≤ c si (i = 1, 2, ...)

are valid.
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Proposition 1 (Corollary 3.6 and Theorem 5.1 in [7]). For the composite operator
A : L2(0, 1) → `2 from (5) there exist positive constants C and C such that, for
sufficiently large indices i ∈ N, the inequalities

exp(−C i) ≤ σi(A) ≤ C

i3/2
(11)

concerning the singular values of A are valid.

Hence, it needs further approaches to bridge the big gap of singular value rates
occurring in Proposition 1 and to decide whether the lower bound or the upper bound
in the inequality chain (11) is more realistic. Since A is a Hilbert-Schmidt operator,
a conceivable alternative approach to the singular value asymptotics of A is via the
smoothness of the symmetric and positive kernel k(s, t) for (s, t) ∈ [0, 1]× [0, 1] of the
integral operator A∗A mapping in L2(0, 1). In the appendix of [7] it has been proven
that this kernel representation attains the form of an infinite series as

[A∗Ax](s) =

1∫
0

k(s, t)x(t)dt with k(s, t) =
∞∑
j=1

(1− sj)(1− tj)
j2

. (12)

Proposition 2. The kernel k(s, t) from (12) is continuous on the whole closed unit
square, i.e., k ∈ C([0, 1]× [0, 1]). However, there occur poles at some boundary points
of the unit square for partial derivatives of k with respect to the variable s. Even for
the first partial derivative we have that ∂k(s,t)

ds
/∈ C([0, 1]× [0, 1]) due to lim

s→1

∂k(s,t)
ds

= −∞
for 0 ≤ t < 1.

Proof. It is evident that the functions 0 ≤ (1− sj)(1− tj)/j2 ≤ 1/j2 are continuous for

all (s, t) ∈ [0, 1]× [0, 1] and for all j ∈ N, which implies that the series
∑∞

j=1
(1−sj)(1−tj)

j2

is uniformly absolutely convergent and that the kernel function k is continuous on the
whole closed unit square. By repeated formal partial differentiation of all terms inside
the sum with respect to the variable s we see that poles with growing order occur at
some boundary points, which contradicts an assumption of infinite differentiability of

the kernel k. Just the first partial derivative of the form ∂k(s,t)
ds

=
∑∞

j=1
−sj−1(1−tj)

j
does

not attain a finite value at the boundary points (s, t) of the unit square characterized

by s = 1 and 0 ≤ t < 1, because of lim
s→1

∂k(s,t)
ds

= −∞.
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Open Question 3: Under which conditions can an operator equation (4) with a
Hilbert-Schmidt operator A mapping from L2(0, 1) into an arbitrary Hilbert space
Y with non-closed range R(A) be severely (exponentially) ill-posed in the sense of
Definition 1, provided that the kernel k ∈ L2([0, 1] × [0, 1]) from A∗A : L2(0, 1) →
L2(0, 1) has limited smoothness, which means that k is not infinitely many continuously
differentiable on the whole closed unit square?

Answers to that question, which seems to be an open one at the moment, could help
to evaluate the impact of the limited smoothness of the kernel k in (12) on the singular
value asymptotics of A from (5). If severely ill-posed equations would require infinite
differentiability of the kernel on the whole square [0, 1]× [0, 1], then a polynomial decay
rate of σi(A) could be concluded.

3 Numerical results for the discretized problem and an at-
tempt to explain

If we would know the singular functions ui(A) ∈ L2(0, 1) and vi(A) ∈ `2, then we could
verify the ideal n× n-diagonal matrices

DA
n = (〈Aui(A), vj(A)〉`2)ni,j=1 = diag(σ1(A), ..., σn(A))

with the largest n singular values σi(A) = 〈Aui(A), vi(A)〉`2 as diagonal entries.

Open Question 4 : What are the singular functions ui(A) ∈ L2(0, 1) and vi(A) ∈ `2
of the composite operator A = B(H) ◦ J from (5)?

In place of DA
n , we can only calculate in practice for orthonormal test bases {ûi}∞i=1

in L2(0, 1) and {v̂i}∞i=1 in `2 the n× n-Gramian matrices

GA
n = (〈Aûi, v̂j〉`2)ni,j=1 with σi(GA

n ) ≤ σi(A) (i = 1, 2, ..., n) (13)

(cf. [1, Theorem 3.1]) and lim
n→∞

σ1(GA
n ) = σ1(A) (cf. [1, Theorem 3.5]). As a conse-

quence of (13), for fixed (possibly even large) n, the computed matrix singular values
σi(GA

n ) (i = 1, 2, ..., n) by using any test bases {ûi}∞i=1 and {v̂j}∞j=1 can only yield lower
bounds in (13) of the decay rates of the singular values σi(A) of the operator A mapping
between infinite dimensional spaces. Due to the prominent role of the Legendre poly-
nomials, the Gramian matrices GA

n =
(
〈ALi, e(j)〉`2)

)n
i,j=1

for ûi(t) = Li(t) (0 ≤ t ≤ 1)

and v̂j = e(j) (e
(j)
k = δk,j) are of specific interest. From [7, Lemma 5.4] we have that

〈AL1, e
(j)〉`2 = 1

j+1
and for 2 ≤ i ≤ n that 〈ALi, e(j)〉`2 = 1

j
√
2j+1
〈Li, hj〉L2(0,1) by using

the normalized monomials hj(t) =
√

2j + 1 tj with ‖hj‖L2(0,1) = 1. A plot of the first
20 singular values σi(GA

n ) (i = 1, . . . , 20) and n = 100 is shown in Figure 2. There the
exponential decay of the singular values is easily seen.
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Figure 2: Semi-logarithmic plot of the first 20 singular values of GA
n with n = 100.

As reference we plotted the function exp(−1.2i + 2). The fit of this function to the
computed singular values emphasizes the exponential decay of the latter.

The fact that the kernel k from (12) is not continuously differentiable makes severe
ill-posedness of the operator equation (4) with the composite operator A from (5)
quite unlikely. In contrast to that, numerical computations of singular values of n×n-
matrices arising from discretizations of A with n supporting points show clearly an
exponential decay, even for large n (displayed with n = 104 in Figure 3), and hence
suggest severe ill-posedness. However, there are no stringent analytical arguments that
allow us to conclude to an exponential decay of the singular values of the operator A :
L2(0, 1)→ `2 from an exponential decay of singular values of associated discretization
matrices. Taking into account the extreme ill-conditioning of Hilbert matrices, below
we recall arguments from [3] that might explain the exponential decay of matrix singular
values even if the original operator A mapping between infinite dimensional spaces has
polynomially decreasing singular values.

In [3] some arguments were made that an exponential decay of matrix singular
values is possible even if the singular values of the original operator A are slowly de-
creasing, which we recall here. Consider the n-dimensional segments Hn of the Hilbert
matrix H introduced above. Then the corresponding segments Ln (first n columns and
rows of L) satisfy the condition Ln(Ln)∗ = Hn, which implies that σi(Ln) =

√
σi(Hn).

In this context, we recall that (cf., e.g., [1, Theorem 3.5])

1 ≤ σ1(Hn) ≤ π = lim
n→∞

σ1(Hn) = σ1(H),

and we rewrite the inequality from [2, formula (4.8)]) as

σi(Ln) ≤ 2 [ϕ(n)]i−1 (σ1(Hn))1/2 (i = 1, 2, ..., n− 1), (14)
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Figure 3: (Plot courtesy of [3]) Semi-logarithmic plot of singular values of n×n-matrices
with n = 104 supporting points representing discretization matrices of the operators
A, B(H) and J . While numerically the singular values of J decay as suggested by the
theory, the singular values of B(H)◦J decay exponentially in the numerical experiments.

with the damping factor ϕ(n),

0 < ϕ(n) := exp

(
− π2

2 ln(8n− 4)

)
< 1 , (15)

which is growing with n to one with an asymptotics characterized by
1 − ϕ(n) ∼ 1/ ln(n) as n → ∞. We conjecture that (14) holds approximately as
an equation if n � i, which means that for fixed and sufficiently large n the decay of
σi(Ln) with respect to growing i is exponentially as σi(Ln) ∼ exp(−K i) with some
K = K(n) > 0. Table 1 shows that the multiplier ϕ(N)i−1 in (14) is rather far from
one even for i of medium size and large n.

It was conjectured in [3] that limn→∞ σi(Hn) = π for any fixed i as it appears that
even numerically the singular values of the truncated Hilbert matrix (and hence those of
the operators Ln) increase slowly as the truncation index grows. For the multiplication
operator and its discretization an analogon to this conjecture was shown in [3], but
here we must leave it as an open question, since we only have the upper bound (14)
on the singular values, but no lower bound.

Open Question 5: Is limn→∞ σi(Hn) = π for any fixed i, or, if not, what is the
behaviour of σi(Hn) as n increases?

To apply these findings for the interpretation of the singular value decay curves
in Figure 3, we denote by An and Jn n × n-discretization matrices of the operators
A = L ◦ Q ◦ J and J , respectively. Then we know that σ2i(An) ≤ σi(Ln)σi(Jn), but
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n i = 2 i = 4 i = 10 i = 51

102 0.4777 0.1091 0.0013 9.1932 · 10−17

103 0.5774 0.1926 0.0071 1.1920 · 10−12

104 0.6459 0.2695 0.0196 3.2240 · 10−10

106 0.7331 0.3940 0.0612 1.8129 · 10−7

109 0.8054 0.5224 0.1426 1.9982 · 10−5

Table 1: Values of occurring multiplier ϕ(n)i−1 in (14).

the associated curves of Figure 3 even suggest that we have for large n approximately

σi(An) ≈ σi(Ln)σi(Jn) ≈ C exp(−K(n) i)σi(Jn), (16)

where σi(Jn) ∼ 1/i holds. If n is not too large, then for medium values of i the singular
value σi(An) is dominated by σi(Ln) ∼ exp(−K(n) i), because the damping multiplier
ϕ(n)i−1 in (14) is still far from one. This explains the exponential decay in the σi(An)-
curve of Figure 3 independent of the objective singular value decay rate of the operator
A mapping between infinite dimensional spaces. For making assertions concerning this
decay rate, numerics reach its limit here. Only for small i and very large n we have
that ϕ(n)i−1 is close to one, which would reflect a polynomial decay of σi(Jn) in σi(An)
in a realistic way. One might argue that this is visible in Figure 3 for i < 5.

4 The relationships between the spectrum of non-compact op-
erators and their discrete approximations

The argument presented above boils down to the convergence of the matrix approxi-
mations Ln to BH , and the relation of the spectra. As before, we recall the relations
LnL∗n = Hn and LL∗ = H and discuss the Hilbert matrix in the following. To compare
H and Hn we extend here Hn to an infinite matrix by filling it up with zero rows and
columns such that both are operators mapping in `2. In this sense, Hn has a finite di-
mensional range and hence represents a compact operator, whereas H is not compact.
Therefore, Hn cannot converge to H in norm, i.e. ‖H − Hn‖L(`2,`2) 6→ 0 as n → ∞,
because the norm limits of compact operators are always compact. Related to this are
the spectra, where Hn possesses a discrete spectrum for all n ∈ N, but the spectrum
of H is purely continuous. This raises the following question that seems to be closely
related to Open Question 4.

Open Question 6: How does ‖H−Hn‖L(`2,`2) behave as function of n?

The truncated matrices Hn have been treated in the literature fairly extensively,
but we could not find publications on the remainder. Hence we can only speculate here,
and it seems plausible that ‖H − Hn‖L(`2,`2) = π = ‖H‖L(`2,`2). To support this idea,
we show in Figure 4 a plot of the norms ‖Hn − H100‖L(`2(n),`2(n)) that we computed
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Figure 4: Numerical computation of ‖Hn −H100‖L(`2(n),`2(n)) for 1000 ≤ n ≤ 12000.

in the discrete finite dimensional setting with MATLAB. As n increases the norm
increases. For the largest n = 12000 we find ‖Hn − H100‖L(`2(n),`2(n)) ≈ 2.19, which is
still significantly smaller than π, but in terms of the slow convergence of the term ϕ(n)
from (15), we might need an unreasonable large n to get close to π.
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