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The Hausdorff Moment Problem in the light of

ill-posedness of type I

Daniel Gerth∗, Bernd Hofmann∗, Christopher Hofmann∗,
and Stefan Kindermann†

Abstract

The Hausdorf moment problem (HMP) over the unit interval in an L2-setting
is a classical example of an ill-posed inverse problem. Since various applications
can be rewritten in terms of the HMP, it has gathered significant attention in the
literature. From the point of view of regularization it is of special interest because
of the occurrence of a non-compact forward operator with non-closed range.
Consequently, HMP constitutes one of few examples of a linear ill-posed problem
of type I in the sense of Nashed. In this paper we highlight this property and
its consequences, for example, the existence of a infinite-dimensional subspace
of stability. On the other hand, we show conditional stability estimates for the
HMP in Sobolev spaces that indicate severe ill-posedness for the full recovery
of a function from its moments, because Hölder-type stability can be excluded.
However, the associated recovery of the function value at the rightmost point
of the unit interval is stable of Hölder-type in an H1-setting. We moreover
discuss stability estimates for the truncated HMP, where the forward operator
becomes compact. Some numerical case studies illustrate the theoretical results
and complete the paper.

Key words: Hausdorff moment problem, ill-posedness of type I, linear non-compact
forward operator, conditional stability estimates, numerical case studies.
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1 Introduction

In the past few decades, there has been developed a comprehensive theory and practice
for the stable approximate solution of ill-posed linear operator equations

Ax = y , (1)
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modelling inverse problems with bounded linear forward operators A : X → Y mapping
between infinite-dimensional separable Hilbert spacesX and Y . We refer in this context
to the corresponding chapters of the monographs [5, 11, 15, 17, 20, 29, 30, 32, 34, 36, 43].
Hadamard (cf. [16]) introduced the concept of well-posedness applicable to an operator
equation (1) that requires injectivity, surjectivity and continuous invertibility of the
operator A. If A violates at least one of the three conditions, then (1) is ill-posed in
the sense of Hadamard. For linear problems (1), which are ill-posed in the sense of
Hadamard, Zuhair Nashed focused in [37] on the stability aspect, which is the most
important one for the numerical analysis. Moreover, ibid he introduced the distinction
of two types of ill-posedness. The following definition (cf. [24, Def. 2]) is a consequence
of this introduction.

Definition 1 (well-posedness vs. ill-posedness). We call a linear operator equation (1)
well-posed in the sense of Nashed if the range R(A) of the bounded linear operator A
is a closed subset of Y , consequently ill-posed in the sense of Nashed if the range is not

closed, i.e., R(A) 6= R(A)Y . In the ill-posed case, the equation (1) is called ill-posed of
type I if the range R(A) contains an infinite-dimensional closed subspace, and ill-posed
of type II otherwise.

Remark 1. A necessary condition for ill-posedness in the sense of Definition 1 is that

dim (R(A)) =∞ . (2)

On the other hand, a criterion differentiating well-posedness from ill-posedness in the
Hilbert space setting is delivered by the Moore-Penrose pseudoinverse

A† : R(A)⊕R(A)⊥ ⊂ Y → N (A)⊥ ⊂ X

of the forward operator A. If and only if the linear operator A† is a bounded one,
the range R(A) is closed and hence the operator equation (1) is well-posed (see also
[11, §2.1]). For Hilbert spaces X and Y , the equation (1) is, under the condition (2),
ill-posed in the sense of Nashed of type II if and only if the operator A is compact [37,
Thm. 4.6]. Well-posedness in the sense of Definition 1 does, however, not exclude the
case of non-injective A possessing non-trivial null-spaces N (A). Note that an analog
to Definition 1 in Banach spaces, but only for injective A, has been discussed in [13].
Extended discussions of the non-injective case can be found in [14, §1.2.4].

The vast majority of linear ill-posed operator equations (1) with applications in
natural sciences and imaging have a compact forward operator A and are hence of
type II in the sense of Nashed. Mostly, these problems can be written as linear Fredholm
integral equations of the first kind

[Ax](s) :=

∫

Ω

k(s, t) x(t) dt = y(s) (s ∈ Σ), (3)

with a non-degenerate kernel k : Σ×Ω ⊂ R
d1×Rd2 → R that implies a compact forward

operator A : X = L2(Ω)→ Y = L2(Σ) for sufficiently regular and bounded subsets Σ of
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R
d1 and Ω of Rd2 . If, for example, the kernel k is square integrable, i.e., k ∈ L2(Σ×Ω),

then A is compact and even of Hilbert-Schmidt type. Such linear operator equations
that are ill-posed of type II with compact operator A are characterized by the singular
system {σi, ui, vi}∞i=1 (cf. [11, §2.2]) with singular values

‖A‖ = σ1 ≥ σ2 ≥ ... ≥ σi ≥ σi+1 ≥ ...→ 0 as i→∞.

Then the corresponding degree of ill-posedness of equation (1) is represented by the
decay rate of the singular values, and we refer in this context for details to [20, §3.1.6]
or [22, Def. 8].

Discussions about the smaller class of operator equations (1) being ill-posed of
type I with non-compact operators A are often focusing on multiplication operators

[Ax](t) := m(t) x(t) = y(s) (t ∈ Ω), (4)

with A : X = L2(Ω)→ Y = L2(Ω), where the multiplier functionm ∈ L∞(Ω) possesses
essential zeros (cf., e.g., [19, 21, 35]). In the present paper, however, we will consider
another ill-posed problem of type I, which occurs when one tries to recover a real
function over [0, 1] from the infinite sequence of its moments. Then the linear operator
A maps from the separable Hilbert space X = L2(0, 1) of quadratically integrable real
functions over the unit interval [0, 1] to the separable Hilbert sequence space Y = ℓ2.
This is a variant of the Hausdorff moment problem (HMP). It will be introduced in
Section 2 and discussed further with respect to analysis and numerics in the subsequent
sections. Section 3 delivers a proof of the ill-posedness of type I and some further
characterization of the HMP. The truncated version of the HMP using a finite number
of moments is introduced in Section 4 and further discussed with respect to error
estimates in Section 5. Relations to other problems and inversion are presented in
Section 6. On the other hand, Section 7 completes the analysis of the HMP with a
series of stability results under Sobolev-type smoothness assumptions, which indicate
the severe ill-posedness of the full recovery of a function from its moment. However,
the associated recovery of the function value at the rightmost point of the unit interval
is stable of Hölder-type. Section 8 complements and illustrates the theory by means of
some numerical case studies. To prepare for all this, we complete in the following the
introductory section with some additional assertions on ill-posed problems of type I.

There is a simple relation between the ill-posedness of the linear operator equa-
tion (1) with forward operator A : X → Y mapping between Hilbert spaces and the
associated equation

A∗ y = x , (5)

with the adjoint operator A∗ : Y → X to A as forward operator.

Proposition 1. The operator equation (1) is ill-posed of type I in the sense of Nashed
if and only if the adjoint equation (5) is ill-posed of type I.

Proof. The closed range theorem states that R(A) is closed if and only if R(A∗) is
closed. Thus, we have the result that the operator equation (1) is ill-posed in the sense
of Nashed if and only if the adjoint equation (5) is ill-posed. Moreover, Schauder’s
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theorem says that A is compact if and only if A∗ is. Finally, as stated above, it is a
classical result that, for mappings between Hilbert spaces, an ill-posed problem is of
type I if and only if A is non-compact. All together this proves the proposition.

The following proposition presents a further simple equivalent formulation of ill-
posedness of type I.

Proposition 2. Let the problem (1) be ill-posed in the sense of Nashed. Then it is ill-
posed of type I if and only if there exist a constant C1 > 0 and an infinite-dimensional
subspace X1 of X such that

‖x‖X ≤ C1‖Ax‖Y ∀x ∈ X1. (6)

Proof. Let A be ill-posed of type I. Then there exists a closed infinite dimensional
subspace Z of Y with Z ⊂ R(A). Consider the operator Ã = A|N(A)⊥ . Then Ã is

injective and clearly, due to R(A) = R(Ã), its range contains Z. Thus, by the open
mapping theorem, Ã has a bounded inverse on Z, i.e., for all y ∈ Z, ‖Ã−1y‖X ≤
C1‖y‖Y . Since Z ⊂ R(A) we can replace any y = Ãx = Ax with the corresponding
x ∈ N (A)⊥ yielding

‖x‖X ≤ C1‖Ax‖Y ∀x ∈ Ã−1Z =: X1.

It is not difficult to show that X1 is closed and infinite-dimensional.
Conversely, if (6) holds, then A cannot be compact as we may choose an orthonor-

mal basis {ei}∞i=1 in X1 with ‖ei‖X = 1 ∀ i ∈ N. The corresponding image sequence
satisfies for any i 6= j that

‖Aei − Aej‖2Y ≥ C−2
1 ‖ei − ej‖2X = 2C−2

1 .

Thus, the sequence {ei}∞i=1 cannot have a convergent subsequence. Hence A must be
non-compact.

We thus conclude the following result:

Corollary 1. For a bounded linear operator A : X → Y between Hilbert spaces X and
Y with non-closed range R(A), the following assertions are equivalent:

(a) The operator equation (1) is ill-posed of type I.

(b) There exist a constant C1 and an infinite closed subspace X1 with

‖x‖X ≤ C1‖Ax‖Y ∀x ∈ X1. (7)

(c) There exist a constant D1 and an infinite closed subspace Y1 with

‖y‖Y ≤ D1‖A∗y‖Y ∀y ∈ Y1. (8)
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2 The Hausdorff moment problem over the unit in-

terval

Now we are going to introduce the Hausdorff moment problem (HMP) over the unit
interval, which goes back to Hausdorff’s article [18], as a special case of the linear
operator equation (1). Discussions on alternative moment problems and variants of
the Hausdorff moment problem, including the multi-dimensional case, are for example
given in [2, 33, 38, 40, 42].

Definition 2 (Hausdorff moment problem). We call the inverse problem of solving
the linear operator equation (1) the Hausdorff moment problem (HMP) if the forward
operator A maps from the separable Hilbert space X = L2(0, 1) into the separable Hilbert
space Y = ℓ2 and attains the form

[Ax]j :=

1
∫

0

tj−1 x(t) dt (j = 1, 2, ...). (9)

Precisely, a real function x with support on [0, 1] has to be recovered from the infinite
(countable) sequence of its moments.

The assertions of the following proposition on the HMP-forward operator A are
either taken from [27] with references therein or immediately evident.

Proposition 3. For the operator A : L2(0, 1) → ℓ2, which was introduced by for-
mula (9), we have the following properties: A is an injective and bounded linear op-

erator with ‖A‖L(L2(0,1),ℓ2) = sup
06=x∈L2(0,1)

‖Ax‖
ℓ2

‖x‖
L2(0,1)

=
√
π. The adjoint operator A∗ to A

attains the form

[A∗ y](t) :=
∞
∑

j=1

yj t
j−1 (0 ≤ t ≤ 1), (10)

and is hence for all y = (y1, y2, ...) ∈ ℓ2 well-defined and injective, which means that
A∗ : ℓ2 → L2(0, 1) and that the ranges R(A) and R(A∗) are dense in ℓ2 and L2(0, 1),
respectively.

We furthermore consider the operators AA∗ and A∗A and relate the first one to the
well-known Hilbert (infinite) matrix H = (Hi,j)

∞
i,j=1 with entries

Hi,j =

(

1

i+ j − 1

)

. (11)

Note that this object can also be considered as a bounded linear operator H : ℓ2 → ℓ2.

Proposition 4. The operator AA∗ : ℓ2 → ℓ2 can be represented by the (infinite) Hilbert
matrix H defined by formula (11) as as

AA∗(yi)
∞
j=1 → (Hy)∞i=1 = (

∞
∑

j=1

Hi,jyj)
∞
i=1,
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i.e., for short we can write
AA∗ = H. (12)

The operator A∗A : L2(0, 1) → L2(0, 1) can be represented as singular integral
operator

A∗A : x→
∫ 1

0

k(s, t)x(t)dt (13)

with
∫ 1

0

k(s, t)x(t)dt := lim
ǫ→0

∫ 1−ǫ

0

1

1− stx(t)dt.

Proof. From (9) and (10) it follows, for y = (yi)
∞
i=1 ∈ ℓ2, directly that

AA∗y =
∞
∑

j=1

∫ 1

0

ti−1tj−1dtyj =
∞
∑

j=1

1

i+ j − 1
yj = Hy.

In the case of the converse composition A∗A, we take for x ∈ L2(0, 1) a cut-off at
t = 1 and define xǫ(t) = x(t)χ0,1−ǫ(t) with the characteristic function χ. Then it follows
that ‖x− xǫ‖L2(0,1) → 0 as ǫ→ 0, and by continuity we have that Ax = limǫ→0Axǫ in
the ℓ2-norm. Thus,

A∗Ax = lim
ǫ→0

A∗Axǫ

with

A∗Axǫ =

∞
∑

j=1

sj−1

∫ 1−ǫ

0

tj−1x(t)ds =

∫ 1−ǫ

0

∞
∑

j=1

(st)j−1x(t)dt =

∫ 1−ǫ

0

1

1− stx(t)dt

By using Legendre polynomials, we may derive an LQ-decomposition of the mo-
ment operator, i.e., similar as for matrices a decomposition into a product of a lower left
triangular operator and an orthogonal operator. For this, we define the orthonormal
Legendre Polynomials on the interval [0,1]:

Ln(x) :=
√
2n+ 1Pn(2x− 1),

where Pn are the standard orthogonal Legendre polynomials on [−1, 1]; cf. [1]. The
normalizing factor

√
2n+ 1 makes Ln(x) an orthogonal basis of L2(0, 1).

Proposition 5. The HMP-operator A has the decompostion

A = LQ, (14)

where Q is the isometry

Q : L2(0, 1)→ ℓ2 x→
(

〈x, Ln−1〉L2(0,1)

)∞
n=1

and L is a lower triangular operator

L : ℓ2 → ℓ2 (yj)
∞
i=1 → (

∞
∑

i=1

Li,jyj)
∞
i=1
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represented by the lower triangular (infinite) matrix

Li,j =

√

(2(j − 1) + 1

(i− 1) + (j − 1) + 1

(

i− 1
j − 1

)

(

i− 1 + j − 1
j − 1

) , i, j = 1, 2, . . . (15)

Remark 2. It follows from the formula (15), which was verified with Mathematica,
that Li,j = 0 for j > i, hence the matrix has lower triangular shape. Note that in
formula (15), the indices start from i, j = 1, which is the reason why it differs to the
formula (20j) in [41]. The different sign factor (−1)j in [41] arises because of a different
(signed) normalization of the polynomials. Evidently, we have from (12) and (14) that

H = LL
∗ , (16)

where L
∗ is the upper triangular (infinite) matrix transposed to L. Hence, (16) ex-

presses a Cholesky decomposition of the Hilbert matrix H.

3 Proving ill-posedness of type I in the sense of

Nashed

In order to show ill-posedness of type I in the sense of Nashed, we will prove that HMP

is ill-posed (i.e. R(A) 6= R(A) ℓ
2

and A−1 : R(A) ⊂ ℓ2 → L2(0, 1) is unbounded) and

that A with R(A) ℓ
2

= ℓ2, which implies condition (2), is not compact, see also [20,
pp.91–93] and [3, p.47].

Proposition 6. The operator equation (1) with the operator A from (9) is ill-posed of
type I in the sense of Definition 1.

Proof: First we consider an (obviously existing) infinite sequence {ei}∞i=1 in form of an
orthonormal system in L2(0, 1) such that ‖ei‖L∞(0,1) ≤ C for some constant 0 < C <∞
and all i ∈ N. Then we have weak convergence ei ⇀ 0 in L2(0, 1) as i → ∞. On the
other hand, we have

‖Aei‖2ℓ2 =
∞
∑

j=1





1
∫

0

tj−1ei(t)dt





2

≤ C2
∞
∑

j=1





1
∫

0

tj−1dt





2

= C2
∞
∑

j=1

1

j2
=
C2 π2

6
,

and with ei ⇀ 0 for all j = 1, 2, ... also
∫ 1

0
tj−1ei(t)dt → 0 as i → ∞, because all

polynomials tj−1 represent L2(0, 1)-elements. Then we can exchange summation and
limitation due to Lebesgue’s dominated convergence theorem, and we thus obtain

lim
i→∞
‖Aei‖2ℓ2 =

∞
∑

j=1

lim
i→∞





1
∫

0

tj−1ei(t)dt





2

= 0.
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This, however, contradicts the boundedness of A−1, because there is no constant
0 < K < ∞ such that 1 = ‖ei‖L2(0,1) ≤ K ‖Aei‖ℓ2 for all i ∈ N. Hence the Haus-
dorff moment problem from Definition 2 is ill-posed.

To prove non-compactness of A we should exploit here a sequence {xi}∞i=1 in L2(0, 1)
which is not uniformly bounded in L∞(0, 1) but in L2(0, 1). Following an idea of
A. Neubauer we use for this purpose xi(t) =

√
i ti (0 ≤ t ≤ 1) with ‖xi‖L2(0,1) ≤ 1√

2
for

all i = 1, 2, . . . . The image Axi converges to zero component-wise, since

[Axi]j =

1
∫

0

tj−1
√
iti dt =

√
i

i+ j
→ 0 as i→∞. (17)

Whenever this sequence has a subsequence which is norm convergent in ℓ2, then the
limit must be the zero sequence. However, we find that

‖Axi‖2ℓ2 =
∞
∑

j=1





1
∫

0

tj−1
√
i tidt





2

=
∞
∑

j=1

( √
i

i+ j

)2

= i

∞
∑

j=i+1

1

j2
≥ i

∞
∫

i+1

1

t2
dt =

i

i+ 1
→ 1 6= 0

as i → ∞. Combining this with (17) implies that {Axi}∞i=1 cannot have a norm
convergent subsequence, and thus A fails to be compact.

Remark 3. Due to Proposition 6 the operator A : L2(0, 1) → ℓ2 from (9) is non-
compact and so is the non-negative self-adjoint operator H = AA∗ : ℓ2 → ℓ2, which
means that zero is an accumulation point of the spectrum of the bounded linear opera-
tor H mapping in ℓ2. Hence, the inverse operator H−1 must be unbounded. Moreover,
we have H−1 = (L∗)−1

L
−1 because of (16).

Since the HMP is ill-posed of type I, it is of interest to characterize the spaces X1

and Y1 from Corollary 1 with respect to common properties of its elements. Using the
results of the previous sections we immediately find the following conditions. From
(7) it follows that ‖x‖2L2[0,1] ≤ C2

1‖Ax‖2ℓ2 for all x ∈ X1. Together with ‖Ax‖2ℓ2 =

〈A∗Ax, x〉L2[0,1]×L2[0,1] and (13), this yields that x ∈ X1, if there is C > 0 such that

1
∫

0

x2(t) dt ≤ C

1
∫

0

1
∫

0

1

1− stx(s)x(t) ds dt

On the other hand, by a similar argument it follows from (8) and (12) that y ∈ Y1 if
there is C > 0 such that

‖y‖2ℓ2 ≤ C〈Hy, y〉ℓ2×ℓ2 = C‖Ly‖2ℓ2.
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For a further characterization of Y1 we may associate to sequences in ℓ2 the associate
power series function:

fy(t) := A∗y =

∞
∑

j=1

yjt
j−1,

and due to ‖A∗y‖L2(0,1) = ‖fy‖L2(0,1) and (8) we conclude that there exists a subspace
Y1 ⊂ ℓ2 with

‖y‖ℓ2 ≤ D1‖fy‖L2(0,1). (18)

Since the opposite inequality of (18) holds, as A∗ is bounded, we have on Y1 the norm
equivalence ‖fy‖L2(0,1) ∼ ‖y‖ℓ2.

It follows that fy is convergent at least on a dense set and, since it is a power series,
its convergence radius must be larger or equal to 1: r ≥ 1. Thus, we may extend it
analytically to the unit disk D. The corresponding ℓ2-norm on the coefficients is the
Hardy space H

2(D):

H
2(D) := {f =

∞
∑

i=1

ciz
i−1 analytic in D : ‖ci‖ℓ2 <∞}, ‖f‖H2(D) = ‖(ci)i‖ℓ2.

We can associate ‖ci‖ℓ2 with the norm of the Fourier series (note our index shift con-
vention)

‖y‖ℓ2 = ‖
∞
∑

i=0

yi+1e
ins‖L2(0,1) = ‖fy(eis)‖L2(0,1),

where fy(e
is) is considered as a function of s ∈ (0, 2π). Hence, in Y1, the L

2-norm of
the analytic extension to the unit circle is equivalent to the L2-norm on the interval
[0, 1]:

‖fy(eis)‖L2(0,1) ≤ D1‖fy(t)‖L2(0,1).

Thus if we denote by fy also its analytic extension to the unit disc, we have an
alternative characterization of the space Y1 as

‖fy‖H2(D) ≤ D1‖fy‖L2(0,1).

Conversely, if a function in H
2(D) satisfies this inequality and if its imaginary part

vanishes on [0, 1], its restriction to [0, 1] is in Y1. Below in Section 6 we will point
out some further characterizations of Y1. Unfortunately, none of them allows to derive
a simple description of the elements of Y1 in terms of, for example, the decay of its
elements. However, it is clear that the set Y1 is nonempty. For instance any finite
sequence (yi) is obviously in Y1 and thus any polynomial is in X1, although with a
constant that in general grows with the degree. Further, it includes functions that are
(almost) singular, and the decay rate of the entries of (yi) appears to be irrelevant, as
we will show in the following. Define fY = gα, with

gα(t) = (1− t)α α ∈ (−1
2
, 0),

Then

‖gα‖2L2(0,1) =
1

1 + 2α
.
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The associated coefficient sequence is given by the binomial series

(1− t)α =
∞
∑

k=0

(

α
k

)

(−t)k,

hence the sequence of coefficients is

yi =

(

α
i− 1

)

(−1)i−1 ‖gα‖2H2(D) = ‖yi‖2ℓ2 =
∞
∑

k=0

(

α
k

)2

=
Γ(1 + 2α)

Γ(1 + α)2
. (19)

Thus we have that the constant in (18) is

D2
1 =

Γ(1 + 2α)(1− 2α)

Γ(1 + α)2
.

Although the constant D1 explodes as α approaches −1
2
. we may choose an infinite

sequence {αi}∞i=1 with elements in (−1
2
, 0) that yields an infinite sequence of coefficients

{yi}∞i=1, all linear independent, which are in the stable subspace Y1. This verifies non-
compactness of A∗ and thus ill-posedness of type I, and hence by Corollary 1 also for
A.

It is interesting to further investigate the sequence {yi}∞i=1 from (19). From Eulers

definition of the Γ-function one show that c1
1

k1+α ≤
∣

∣

∣

∣

(

α
k

)∣

∣

∣

∣

≤ c2
1

k1+α with positive

constants c1, c2. Further, for −1 < α < 0 we have the identity
(

α
k

)

=
Γ(α+ 1)

Γ(k + 1)Γ(α− k + 1)
= (−1)k

∣

∣

∣

∣

Γ(α+ 1)

Γ(k + 1)Γ(α− k + 1)

∣

∣

∣

∣

, k = 0, 1, . . .

This means that the sequence (yi) in (19) is not alternating but positive for all i ∈ N.
In summary,

c1
1

k1+α
≤ yi ≤ c2

1

k1+α
,

i.e., the coefficients fall strictly monotonously and slowly, in particular for α close to
−1

2
.

4 The truncated Hausdorff moment problem and

the associated semi-discrete forward operator

In practice, the moment observation is limited to a finite number n of moments, which
motivates the replacement of A by a semi-discrete operator An possessing a finite
dimensional range. For the discussion of such problem we refer, for example, to the
series of publications in [2, 4, 8, 12, 26, 27, 28, 39, 41, 47]).

Definition 3 (truncated Hausdorff moment problem). We call the inverse problem of
solving the linear operator equation

An x = Pn y (20)
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the truncated or finite Hausdorff moment problem if the forward operator An maps
from the separable Hilbert space X = L2(0, 1) into the separable Hilbert space Y = ℓ2

and attains the form

[An x]j :=

1
∫

0

tj−1 x(t) dt (j = 1, 2, ..., n), [An x]j := 0 (j = n+1, n+2, ...). (21)

Precisely, a real function x with support on [0, 1] has to be recovered from the finite
sequence of its first n moments.

Remark 4. Note that, compared to other papers, including [41], we have shifted the
index i in (9), (21) from starting at i = 0 to starting at i = 1. In the truncated version
we sum up to n = j − 1 instead of n = j as in [41]. Therefore we will have an index
shift n← n+ 1 when citing the results of [41].

The truncated Hausdorff moment problem is strongly underdetermined, because a
real function over [0, 1] has to be identified from an n-dimensional vector. Evidently,
we have An = PnA, where Pn is the orthogonal projector in ℓ2 on the n-dimensional
subspace with zeros in all components with numbers greater than n. Semi-discrete
operators of this general structure have early been discussed in the paper [6]. The
following proposition with properties of An is easy to prove.

Proposition 7. For the operator An : L2(0, 1) → ℓ2, which was introduced by for-
mula (21), we have the following properties: An is a bounded but non-injective linear
operator with n-dimensional range R(An). Consequently, An is a compact operator.
The pseudoinverse A†

n : ℓ2 → L2(0, 1) and the adjoint operator A∗
n to An, which attains

the form

[A∗
n y](t) :=

n
∑

j=1

yj t
j−1 (0 ≤ t ≤ 1), (22)

are bounded linear operators and well-defined everywhere on ℓ2. Both ranges R(A†
n)

and R(A∗
n) coincide with the n-dimensional space span(1, t, ..., tn−1) of polynomials up

to degree n − 1. Consequently, the infinite-dimensional null-space N (A) contains all
functions in L2(0, 1) which are orthogonal to all polynomials up to degree n − 1. We
have pointwise convergence ‖Ax−Anx‖ℓ2 → 0 as n→∞ for all x ∈ L2(0, 1).

The results from Proposition 7, in particular the conditions R(An) = R(An)
ℓ2

and dim(R(An)) = n, which indicate that An : L2(0, 1)→ ℓ2 is non-injective and non-
surjective with a continuous pseudoinverse A†

n, is the basis for the following proposition.
The last assertion of Proposition 8 exploiting the inverse of the Hilbert matrix is taken
from the proof of Theorem 1 in [41].

Proposition 8. The operator equation (20) with the operator An from (21) is well-
posed in the sense of Nashed (cf. Definition 1), but ill-posed in the sense of Hadamard.
For all y ∈ ℓ2 the uniquely determined minimum-norm solution x†n to equation (20)
exists and can be verified as x†n = A†

ny = A†
nPny. In detail, we have for the vector

v = ([Pny]1, ..., [Pny]n) ∈ R
n with ‖Pny‖ℓ2 = ‖v‖2 the equation

‖A†
nPny‖2L2(0,1) = 〈H−1

n v, v〉2, (23)
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where Hn ∈ R
n×n is the corresponding ill-conditioned n-dimensional segment of the

Hilbert matrix (11), and ‖·‖2 as well as 〈·, ·〉2 denote the Euclidean norm and Euclidean
inner product in R

n, respectively.

Remark 5. We have ‖A − An‖L(L2(0,1),ℓ2) 6→ 0, because the sequence {An}∞n=1 of
compact operators cannot converge in norm to the non-compact operator A. Instead
of the ill-posedness of the ‘continuous’ equation (1) we have in general ill-conditioning
of the ‘semi-discrete’ equation (20) even if n is moderate, since, as outlined in the
subsequent section, the operator norm ‖A†

n‖L(ℓ2,L2(0,1)) tends to grow very fast with n.
From (23), in combination with the classical result

‖H−1
n ‖2 ≤ Ĉ exp

(

4 ln(1 +
√
2)
)

≤ Ĉ exp(3.526n) (24)

from [44] and [46] concerning the spectral norm of the inverse of the Hilbert matrix,
we can estimate with the constant Ĉ > 0 independent of n as

‖A†
ny‖2L2(0,1) = ‖A†

nPny‖2L2(0,1) ≤ Ĉ exp(3.526n)‖Pny‖2ℓ2 ≤ Ĉ exp(3.526n)‖y‖2ℓ2
and consequently obtain

‖A†
n‖L(ℓ2,L2(0,1)) ≤

√

Ĉ exp(1.763n). (25)

Numerical illustrations concerning the upper estimate (25) can be found in Section 8.

5 Error estimates for the truncated problem under

noisy data

Let for the not available element y ∈ R(A) ⊂ ℓ2 denote by x̃ ∈ L2(0, 1) the corre-
sponding (uniquely determined) solution to equation (1). Moreover, let yδ ∈ ℓ2 be an
available perturbation to y satisfying the noise model

‖yδ − y‖ℓ2 ≤ δ, (26)

with noise level δ > 0. Then we have with xδn := A†
ny

δ and x†n := A†
ny and due to the

orthogonality of the range of A†
n and of the null-space of An that

‖xδn − x̃‖2L2(0,1) = ‖xδn − x†n‖2L2(0,1) + ‖x†n − x̃‖2L2(0,1),

and further that

‖xδn − x̃‖2L2(0,1) ≤ ‖A†
n‖2L(ℓ2,L2(0,1)) δ

2 + ‖(A†
nA− I)x̃‖2L2(0,1). (27)

The upper estimate (27) of the norm square error for the solution x̃ of the original
operator equation (1) with A from (9), by means of using as approximate solutions
the minimum-norm solutions A†

ny
δ of equation (20) based on noisy data yδ, yields a

worst case error bound on the right-hand side with two terms. In particular, the first
term of the error bound expresses the noise amplification with amplification factor
‖A†

n‖L(ℓ2,L2(0,1)) that tends to grow extremely with n, see (25). On the other hand, the
second term of the error bound depending on n and on the smoothness of the solution
x̃ tends to decay to zero whenever n tends to infinity as the following proposition
indicates.
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Proposition 9. We have lim
n→∞

‖(A†
nA− I)x̃‖L2(0,1) = 0 for arbitrary x̃ ∈ L2(0, 1).

Proof: The proof ideas sketched in the following can be found in [41] or [3]. By
{Li}∞i=0 denote the orthonormal basis in L2(0, 1) formed by the normalized and shifted
Legendre polynomials introduced above in Section 2. This is the results of the Gram-
Schmidt orthogonalization procedure applied to the non-orthogonal basis {ti−1}∞i=1 in
L2(0, 1). By construction of this basis, we have {Li−1}ni=1 as orthonormal basis of the
n-dimensional subspace span(1, t, ..., tn−1) of L2(0, 1). Then we can split the solution
x̃ =

∑∞
i=1〈x̃, Li−1〉L2(0,1) Li−1 with ‖x̃‖2L2(0,1) =

∑∞
i=1〈x̃, Li−1〉2L2(0,1) < ∞ in a unified

manner as x̃ = x1 + x2 with x1 = A†
nAx̃ ∈ span(L0, ..., Ln−1) and x2 ∈ N (An) ⊥

span(L0, ..., Ln−1). Thus we arrive at

‖(A†
nA− I)x̃‖2L2(0,1) =

∞
∑

i=n

〈x̃, Li〉2L2(0,1) → 0 as n→∞.

This proves the proposition.
To prove convergence rates for ‖(A†

nA − I)x̃‖L2(0,1) → 0 as n → ∞, additional
smoothness conditions on x̃ have to be imposed. We only mention the following two
such results, which are taken from [41, p. 511] and [3, Remark 4.1].

Proposition 10. If x̃ ∈ H1(0, 1), then the estimate

‖(A†
nA− I)x̃‖L2(0,1) ≤

1

2n
‖x̃‖H1(0,1) (28)

holds true. If we even have x̃ ∈ H2(0, 1), then the estimate

‖(A†
nA− I)x̃‖L2(0,1) ≤

1

2
√
2n2
‖x̃‖H2(0,1)

is valid.

Error and stability estimates for the original (non-truncated) Hausdorff moment
problem can be found in Section 7 below.

6 Relation to other problems and inversion

The HMP arises as a simplification in several classical direct and inverse problems.
Moreover, inversion formulae for the HMP have been derived, which can be used in
other related inverse problems as well. These various ramifications are the topic of this
section.

6.1 The Laplace transform

At first we relate the HMP to the Laplace transform. Recall that the Laplace transform
is defined as

L : L2[0,∞]→ L2[0,∞]

f → Lf(s) :=
∫ ∞

0

e−stf(t) dt.

The relation to the HMP operator is the following (see, e.g., [41]):
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Proposition 11. For x ∈ L2([0, 1]), define x̃ as

x̃(τ) := x(e−τ ) τ ∈ [0,∞]

Then we have
[Ax]j = L(x̃)(j), j = 1, 2, . . .

Proof. This follows easily by the substitution t = e−τ with dt = −e−τdτ .

Thus, the HMP operator is equivalent to a sampling of the Laplace transform of x̃
at the integer points. An inversion formula for the Laplace transform due to Widder
[45] is closely related to the classical HMP inversion formula, which we present in the
next section.

6.2 Hausdorff’s range characterization

There is a classical characterization of the range of A due to Hausdorff [18]. For (yi)
∞
i=1,

we define the forward differences

µm,n :=
n
∑

l=0

(−1)l
(

n
l

)

ym+l+1, m, n ∈ {0, 1, . . .},

and for N ∈ N and 0 ≤ m ≤ N ,

λN,m :=

(

N
m

)

µm,N−m

Then, according to Hausdorff, a sequence of moments is in R(A) if and only if there
exists a constant L such that for all N ,

(N + 1)
N
∑

m=0

|λN,m|2 ≤ L. (29)

Similar conditions can be formulated for moments of Lp functions or functions of
bounded variations.

Note that our previous LQ-decomposition of the operatorA allows for an alternative
characterization of the range; however, it is not obvious, how Hausdorff’s result is
related to that, and this is what we would like to study in this part in more detail.
The range characterization by the LQ-decomposition is based on the fact that the
operator L : ℓ2 → ℓ2 in the decomposition (14) is triangular, and hence its inverse can
be calculated by back-substitution.

Lemma 1. The inverse to L is given in (infinite) matrix form by

L
−1
i,j = (−1)(i−1)+(j−1)

√

(2(i− 1) + 1

(

i− 1
j − 1

)(

i− 1 + j − 1
j − 1

)

, i, j = 1, . . . (30)
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Again this agrees with the formula (20j) in [41] up to the sign factor arising from a
different normalization. A full characterization of the range R(A) of A : L2(0, 1)→ ℓ2

in form of a Picard-type condition is thus that

R(A) = R(L) =
{

(yi)
∞
i=1 : ‖L−1y‖ℓ2 <∞

}

. (31)

It is quite interesting that due to the ill-posedness of type I, and Corollary 1, this range
has to include a closed infinite-dimensional subspace Y1 with a constant C > 0 such
that

‖A−1y‖L2[0,1] = ‖L−1y‖ℓ2 ≤ C‖y‖ℓ2 ∀y ∈ Y1 ⊂ ℓ2.

Now, Hausdorff’s condition (29) is another characterization, which is related to L

in a non-obvious way. By using the substitution l → N −m− l, we find,

µm,N−m =
N−m
∑

l=0

(−1)l
(

N −m
l

)

ym+l+1

= (−1)N−m

N−m
∑

l=0

(−1)l
(

N −m
N −m− l

)

yN−l+1

= (−1)N−m
N−m
∑

l=0

(−1)l
(

N −m
l

)

µN−l+1,

where up to a sign, this is nothing but the (N−m)-th backward difference at the index
N + 1. We define the following triangular right upper matrix: RN ∈ R

(N)×(N)

RN :=

























1 −
(

N − 1
1

) (

N − 1
2

)

. . .

(

N − 1
N − 2

)

(−1)N−1

0 1

(

N − 2
2

)

. . . 1

0 0 1 . . . . . . −1
0 0 0 1 . . . 1
0 0 0 0 1 −1
0 0 0 0 0 1

























,

i.e., the nonzero elements are

(RN)i,j =(−1)N−i(−1)N−j

(

N − i
N − j

)

= (−1)N−i(−1)N−j

(

N − i
j − i

)

i = 1, N, j = i, . . . , N.

Then, replacing in the formula for µm,N−m the value N → N −1 and setting i = m+1
and j = N − l, we find with this definition that

(µi−1,N−1−(i−1))
N
i=1 =













µ0,N−1

µ1,N−2

. . .

. . .
µN−1,0













= RN













y1
y2
. . .
. . .
yN













.
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Moreover, define the diagonal matrix (setting i = m+ 1):

DN :=
√
Ndiag

((

N − 1
i− 1

))

, i = 1, . . .N

which allows us to write
√
NλN−1,i−1 = (DNRNPNy)

N
i=1.

Thus, the Hausdorff condition (29) is equivalent to

sup
N
‖DNRNPNy‖2RN ≤ L. y ∈ ℓ2,

where ‖·‖RN denotes the Euclidean norm in R
N . On the other hand, the range condition

(31) can be written as
sup
N
‖PNL

−1y‖ℓ2 ≤ C,

which raises the question of the relation of DNRNPN and PNL
−1. At least asymptoti-

cally they should generate equivalent norms. The interesting result is the following.

Proposition 12. Define the RN×N matrix

VN := DNRNPNLPN .

Then, V T
N VN is a diagonal matrix with

V T
N VN =: TN = diag









(

N − 1
k − 1

)

(

N − 1 + k
k − 1

)









k=1,N

.

Moreover, extending TN by 0 to k > N yields an operator on ℓ2 which converges
pointwise to the identity

lim
N→∞

TN = Id.

In particular we have for all y ∈ R(A)

‖DNRNPNy‖2RN = ‖T
1
2
NPNL

−1y‖RN .

Proof. The result for the matrix V T
N VN has been calculated and proven by Askey,

Schoenberg and Scharma [4]. We have verified the result by symbolic calculation using
Mathematica, also to adopt the result to our notation. It follows that for all y ∈ ℓ2,

‖T
1
2
NPNy‖2RN = (TNPNy, PNy)ℓ2 = (V T

N VNPNy, PNy)ℓ2

= ‖VNPNy‖2RN = ‖DNRNPNLPNy‖2RN .

Set z = PNLPNy and note that this relation can be inverted as PNy = PNL
−1PNz.

(This follows, e.g. from the fact that PN is an orthogonal projector, and that
L
−1PNLPN = Id from the triangular structure.) This yields

‖T
1
2
NPNL

−1PNz‖2RN = ‖DNRNPNz‖2RN .
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Finally, by the triangular structure, it follows that PNL
−1(I − PN) = 0, thus we have

that ‖T
1
2
NPNL

−1PNz‖RN = ‖T
1
2
NPNL

−1z‖RN .
The fact hat TN converges pointwise to the identity can be verified by some ele-

mentary calculations: We find that
(

N − 1
k − 1

)

(

N − 1 + k
k − 1

) = Πk−1
j=0

(

1− 2
j + 1

j +N + 1

)

,

from which we observe that the diagonal entries are montonically decreasing and that
they converge pointwise for k fixed to 1 as N →∞.

6.3 The linearized radially symmetric impedance tomography

problem

The electrical impedance tomography (EIT) problem is another classical inverse prob-
lem, which is related to the HMP problem. In EIT, the aim is to extract information
about the conductivity from boundary measurements of current/voltage pairs. Since
the definition of the problem in the seminal paper of Calderon [9], it has been investi-
gated in various direction and now serves as the paradigmatic instance of a parameter
identification problem from boundary measurements; see, e.g., the review [7].

In a mathematical formulation, the problem is to consider solution of the boundary
value problem on a Lipschitz domain Ω

div(γ∇u) = 0 in Ω, u = f on Ω. (32)

The data for the problem are multiple or infinitely many pairs of Cauchy-data
(f, γ ∂

∂n
u|∂ω) on the boundary, and the interest is to recover the conductivity γ(x)

in the interior Ω. The data can be encoded into the so-called Dirichlet-to-Neumann
(DtN) map, Λγ : H

1
2 (∂Ω) → H− 1

2 (∂Ω), defined as the mapping f → γ ∂
∂n
u|∂Ω, i.e.,

from Dirichlet boundary data to Neumann boundary data. It is convenient to subtract
from the data the corresponding DtN operator of a constant known background con-
ductivity (which we take here as γ0 = 1) such that the inverse problem amounts to
reconstructing a perturbation of the background γ = 1 + σ from the perturbation of
the DtN operator Λγ − Λ1. Finally, for small perturbation it makes sense to perform
a linearization such that the linearized impedance tomography problem uses the data
Λ′

1[σ] instead of Λγ − Λ1, with Λ′
1 denoting the Frechet derivative.

In the simplest case of Ω = {(x, y) ⊂ R
2|x2+ y2 ≤ 1} being the unit disk and if the

perturbed conductivity σ is radially symmetric, then the problem is closely related to
HMP. Indeed, the operator Λ′

1 can be expressed as

〈Λ′
1[σ]f, g〉 =

∫

Ω

σ(x)∇uf (x).∇ug(x)dx,

where uf , ug are solutions to (32) with γ = 1, i.e., harmonic functions. In case of σ
being radially symmetric:

σ(x) = σ(
√

x2 + y2),
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the only relevant information in Λ′
1 is in the diagonal, i.e., it suffices to take f = g;

cf. [31]. Furthermore, we may choose a sequence of orthonormalized funtions f on the
boundary such as fn(φ) ∼ {sin(nφ), cos(nφ)}. The corresponding solutions to (32)
(with the normalization such that ‖∇uf‖L2(Ω) = 1) is then given in polar coordinates
as

un,s(r, φ) = cnr
n sin(nφ), un,c(r, φ) = cnr

n cos(nφ), cn =

√
n + 1

n
√
2π

.

Thus, we find that
|un,s(r, φ)|2 = |un,c(r, φ)|2 = c2nn

2r2(n−1),

which yields for n = 1, . . .

〈Λ′
1[σ]fn, fn〉 =

∫

Ω

σ(
√

x2 + y2)|∇un, {c, s}(x, y)|2dxdy

= c2nn
2

∫ 2π

0

∫

01
σ(r)r2(n−1)rdrdφ = (n+ 1)

∫ 1

0

σ(r)r2n−1dr

=
(n+ 1)

2

∫ 1

0

σ(
√
t)tn−1dt.

Thus, we observe that in this radially symmetric case the impedance tomography
problem essentially agrees — up to a diagonal scaling D = diag( (n+1)

2
)n — to the

HMP:
Λ′

1[σ] = DAσ̃,

with σ̃(t) = σ(
√
t). An inversion formula for the linearized impedance tomography

problem with forward operator Λ′
1, which strongly resembles the formula for L−1, has

been stated in [31].

7 Stability estimates for the Hausdorff moment

problem and associated moduli of continuity

7.1 Conditional stability estimates for bounded Sobolev-norms

Since the HMP is ill-posed, only conditional stability estimates may be expected. That
is, we have to restrict the solution to a compact set. Even if this is imposed, one can
only expect for classical regularity sets at most logarithmic stability estimates due to
the exponential ill-posedness of the problem. For instance, from results of [41], such
stability results follow.

For the next results, we define the data norm

δ = ‖Ax‖ℓ2 =
[ ∞
∑

j=1

(
∫ 1

0

x(t)tj−1dt

)2
]

1
2

. (33)

For conditional stability estimates, one is interested in bounding the modulus of con-
tinuity

ωM(δ) := sup
x∈M, ‖Ax‖

ℓ2≤δ

‖x‖L2(0,1) ≤ ψ(δ), (34)
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where M is an appropriate compact subset of L2(0, 1) and ψ an index function that
characterizes a rate. Then, ωM(δ) is increasing in δ > 0 with the limit condition
limδ→0 ωM(δ) = 0. Note that, for constants λ > 1 and centrally symmetric and convex
sets M , we have ωλM(δ) = λωM(δ/λ). For further details of this concept we refer, for
example, to [23].

More general, one may replace ‖x‖L2(0,1) in (34) by some alternative norm or by
|ℓ(x)|, with ℓ being a linear functional (cf. Subsection 7.2 below).

We start, however, with (34) and consider H1-bounds and the compact set
M = {x ∈ L2(0, 1) : ‖x‖H1(0,1) ≤ E} in (34).

Theorem 1. Assume that we have the a priori bound

‖x‖H1(0,1) ≤ E .

Then we obtain, with δ defined in (33) and for sufficiently small δ
E
, the conditional

stability estimate

‖x‖L2(0,1) ≤
7√
8
E

(

− ln

(

C
δ

E

))−1

,

where the constant C > 0 is independent of E and δ. Consequently, the asymptotics
for the corresponding modulus of continuity is given as

sup
x∈L2(0,1): ‖x‖

H1(0,1)≤1, ‖Ax‖
ℓ2≤δ

‖x‖L2(0,1) = O
[

1

ln(1
δ
)

]

as δ → 0.

Proof. As in [41], we may represent x in terms of the Legendre Polynomials with

x =

∞
∑

i=1

λiLi−1(t) λi = L
−1(Ax).

Following [41], we split the norm into two parts. While not needed for this proof, we
adapt our index shift from Remark 4 compared to [41]. Let xN−1 be the projection
onto the span of the first N − 1 Legendre Polynomials, and rN−1 be the remainder.
Because of orthogonality, we have

‖x‖2L2(0,1) = ‖xN−1‖2L2(0,1) + ‖rN−1‖2L2(0,1).

For the tail, we have the approximation properties of orthogonal polynomials, cf. [41,
Eq.(28)] that

‖rN−1‖2L2(0,1) ≤
E2

4N2

For the corresponding projected part, it follows by orthogonality that with PN being
the projector onto the first N coefficients in ℓ2 that

‖xN−1‖L2(0,1) = ‖PN−1λ‖ℓ2 = ‖PN−1L
−1PN−1(Ax)‖ℓ2 .

Here we used the lower triangular structure, i.e., the first N − 1 coefficients can be
calculated from the first N − 1 moments. This yields that

‖x‖2L2(0,1) ≤
E

4N2
+ ‖PN−1L

−1PN−1‖2L(ℓ2)‖Ax‖2ℓ2
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The norm of ‖L−1PN−1‖2L(ℓ2) has been bounded in [41] such that we have by using the

(infinite) Hilbert matrix H and by recalling Remark 3

‖PN−1L
−1PN−1‖2L(ℓ2) ≤ ‖L−1PN−1‖2L(ℓ2) = λmax(PN−1(L

∗)−1
L
−1PN−1)

= λmax(PN−1H−1PN−1) ≤ Ĉ exp(3.5N),

where λmax denotes the largest eigenvalue of the corresponding self-adjoint operator
mapping in ℓ2 and where we have simplified the multiplier 3.526 in the exponent to
3.5. Thus, we end up with

‖x‖2L2(0,1) ≤
E2

4N2
+ Ĉ exp(3.5N) δ2. (35)

By balancing these two terms we find N as the solution of

1

4Ĉ

E2

δ2
= N2 exp(3.5N),

which is given by

N =
4

7
W

(

± 7

8
√

Ĉ

E

δ

)

where W is the principal branch of the Lambert-W function [10], defined as

z = W (z)eW (z). (36)

Inserting the expression for N into (35) yields

‖x‖2L2(0,1) ≤ 2Ĉδ2 exp

(

2W

(

7

8
√

Ĉ

E

δ

))

=
49

32

E2

W

(

7

8
√

Ĉ

E
δ

)2 . (37)

For z →∞ in (36), i.e., δ → 0 above, we have the asymptotical expansion

W (z) = ln z − ln ln z + o(1),

see [10]. This yields W (z) ≥ K ln z for any 0 < K < 1 and z = z(K) large enough.
Without loss of generality we set K = 1

2
. Combining this with (37) and taking the

square root gives

‖x‖L2(0,1) ≤
7√
8
E

1

ln

(

7

8
√

Ĉ

E
δ

) .

Rearranging completes the proof.

Furthermore, we may verify that the logarithmic conditional stability result from
Theorem 1 cannot be improved to Hölder-type conditional stability rates. This is done
by a counterexample in the following proposition, where even the extended Sobolev
space situation of M = {x ∈ L2(0, 1) : ‖x‖Hk(0,1) ≤ 1} (k = 1, 2, ...) with respect to the
modulus of continuity ωM(δ) is exploited.
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Proposition 13. For any µ ∈ (0, 1), any constant C > 0, and any integer k ≥ 1,
there exists functions x with

‖x‖Hk(0,1) ≤ 1

such that
‖x‖L2(0,1) ≥ C‖Ax‖µℓ2 .

Consequently, for all k = 1, 2, ..., an asymptotic bound of Hölder-type

sup
x∈L2(0,1): ‖x‖

Hk(0,1)
≤1, ‖Ax‖

ℓ2≤δ

‖x‖L2(0,1) = O (δµ) as δ → 0

cannot even hold for arbitrarily small exponents µ > 0.

Proof. Take a fixed function g ∈ C∞
0 ([0, 1]) with g 6= 0, compact support in [0, 1] and

with the first m moments vanishing:

∫ 1

0

g(t)tj−1dt = 0 j = 1, . . . , m.

For instance, g could be taken as the m-th derivative of a usual C∞
0 ([0, 1])-function.

The value of m will be determined later. We mention that the function g can be
extended as a C∞-function to R by setting g(t) = 0 for all t ∈ R\ [0, 1]. By multiplying
with a constant, we may additionally assume that ‖g‖Hk(0,1) ≤ 1. Note also that
‖g‖L2(0,1) = C1 6= 0 and also ‖Ag‖ℓ2 = C2 6= 0 because of the injectivity of A.

We now define for 0 < r ≤ 1 and p ≥ k − 1
2
the scaled function

xr(t) := rpg( t
r
) (0 ≤ t ≤ 1).

Denoting by x
(n)
r the n-th derivative with respect to t, we find due to 0 < r ≤ 1 and

2p+ 1 ≥ 2k that
x(n)r (t) = rp−ng(n)( t

r
)

and

‖x(n)r ‖2L2(0,1) = r2p−2n

∫ 1

0

g(n)( t
r
)2dt = r2p+1−2n

∫ r−1

0

g(n)(z)2dz

= r2p+1−2n‖g(n)‖2L2(0,1) ≤ r2(k−n)‖g(n)‖2L2(0,1)

because the support of g is a subset of [0, 1]. Hence, we have

‖xr‖2Hk(0,1) =
k
∑

n=0

‖x(n)r ‖2L2(0,1) ≤
k
∑

n=0

r2(k−n)‖g(n)‖2L2(0,1) ≤ ‖g‖2Hk(0,1) ≤ 1.

Calculating the moments yields similar

∫ 1

0

xr(t)t
j−1dt = rp

∫ 1

0

g( t
r
)tj−1dt = rp+1

∫ 1

0

g(z)(rz)j−1dz = rp+j

∫ 1

0

g(z)zj−1dz.
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Thus

‖Axr‖2ℓ2 =
∞
∑

j=1

r2p+2j

(∫ 1

0

g(z)zj−1dz

)2

=

∞
∑

j=m+1

r2p+2j

(∫ 1

0

g(z)zj−1dz

)2

≤ r2p+2+2m

∞
∑

j=m+1

(∫ 1

0

g(z)zj−1dz

)2

≤ r2p+2+2m‖Ag‖2ℓ2.

Thus,

‖xr‖2L2(0,1)

‖Axr‖2µℓ2
≥

r2p+1‖g‖2L2(0,1)

r(2p+2+2m)µ‖Ag‖2µℓ2 .
=

1

r(1+2m)µ−(2p+1)(1−µ)

‖g‖2L2(0,1)

‖Ag‖2µℓ2

=
1

r(1+2m)µ−(2p+1)(1−µ)

C2
1

C2µ
2

.

Now we may choose m large enough as m > (2p+1)
(

1−µ
µ

)

− 1
2
such that the exponent

(1 + 2m)µ − (2p + 1)(1 − µ) of r in the denominator becomes positive. Then, we
observe that for r small enough the right-hand side can be made arbitrary large and
in particular larger than any given constant C in the proposition. This proves the
result.

Remark 6. For operator equations (1) with compact linear operators A in Hilbert
spaces the degree of ill-posedness can be characterized by the decay rate of the sin-
gular values σi of the forward operator. If we consider the equation Ek x = z for the
embedding operator Ek : Hk(0, 1)→ L2(0, 1), then it is well-known that σi(Ek) ∼ i−k.
This implies that finding the k-th derivative is a moderately ill-posed problems with
ill-posedness degree k. Since the HMP operator A from (9) is not compact, we cannot
verify its degree of ill-posedness by means of singular values. However, the composition
A ◦ Ek : Hk(0, 1) → ℓ2 is a compact operator, and one can observe the impact of the
non-compact operator A on the compact embedding operator Ek by considering the
decay rate of σi(A ◦ Ek). If one had a constant C > 0 such that

‖x‖L2(0,1) ≤ C ‖Ax‖ℓ2 (38)

for all x ∈ Hk(0, 1), then we would have σi(A ◦ Ek) ∼ σi(Ek) and the HMP operator A
would not have an impact on the degree of ill-posedness of the k-times differentiation
problem. However, Proposition 13 indicates that this is not true. Precisely, the loga-
rithmic rate occurring in Theorem 1 indicates for k = 1 that the operator equation (1)
with A ◦ E1 as forward operator is even severely (exponentially) ill-posed. This is even
more remarkable as we have verified that the stability inequality (38) does hold on a
subspace X1! Contrary to expectation, however, the composite operator A ◦ Ek does
not seem to inlcude an infinite-dimensional subspace where it is mildly ill-posed.

Consequently, we conclude that a non-compact operator with non-closed range can
in a composition with a compact operator strongly destroy the ill-posedness degree of
the compact part.

Such question was discussed in [25], where in L2(0, 1) the composition of a non-
compact multiplication operator of type (4) with the compact integration operator had
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been studied. In contrast to the HMP situation, it could be shown in [25] that wide
classes of such multiplication operators with essential zeros in the multiplier function
m do not change the decay rate of the singular values of the integration operators and
hence do not no change the degree of ill-posedness caused by the non-compact part.

7.2 Hölder stabilty at t = 1

For the HMP, the reconstruction of one single value at t = 1 is much more stable than
the reconstrution of the whole function. We therefore look for conditional stability
estimates with ‖x‖L2 replaced by the evaluation functional ℓ : x→ x(1).

We have the following result:

Theorem 2. Assume that x ∈ H1(0, 1) with the a priori bound

‖x′‖L2(0,1) ≤ E1.

Then, with δ defined in (33), we find

|x(1)| ≤ C(E1δ)
1
2

and consequently the corresponding asymptotics

sup
x∈H1(0,1): ‖x′‖

L2(0,1)≤E1, ‖Ax‖
ℓ2≤δ

|x(1)| = O
(√

δ
)

as δ → 0.

Furthermore, with x ∈ H1(0, 1) and the a priori bound

‖x′‖L∞(0,1) ≤ E∞,

we get the stability estimate

|x(1)| ≤ C̃ δ2/3 ln(1/δ)

with a constant C̃ > 0 depending on E∞ whenever δ > 0 is sufficiently small. This
yields the asymptotics

sup
x∈H1(0,1): ‖x′‖L∞(0,1)≤E∞, ‖Ax‖

ℓ2≤δ

|x(1)| = O
[

δ2/3 ln(1/δ)
]

as δ → 0.

If, however, δ ≥ c > 0, then we have an estimate of the form

|x(1)| ≤ C̄ δ

with some constant C̄ > 0 depending on E∞ and c.

Proof. Since we suppose x ∈ H1(0, 1), the point evaluation x(1) is always well-defined
by the trace theorem. Using integration by parts, we obtain for all j ≥ 1

∫ 1

0

x(t)tj−1dt =

∫ 1

0

x(t)
d

dt

(

1

j
tj
)

dt =
x(1)

j
−
∫ 1

0

x′(t)
1

j
tjdt.
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Thus,

x(1) =

∫ 1

0

x′(t)tjdt + j

∫ 1

0

x(t)tj−1dt

Now we consider the first case characterized by an L2-norm bound of the first derivative.
By the Cauchy-Schwarz inequality, we get that

|x(1)| ≤ ‖x′‖L2(0,1)‖tj‖L2(0,1) +

∣

∣

∣

∣

j

∫ 1

0

x(t)tj−1dt

∣

∣

∣

∣

= ‖x′‖L2(0,1)

1√
2j + 1

+

∣

∣

∣

∣

j

∫ 1

0

x(t)tj−1dt

∣

∣

∣

∣

.

(39)

This equation hold for all j. Summing up inequality (39) for j = 1, N , where C
denoting here a generic constant, yields

|x(1)| = 1

N

N
∑

j=1

|x(1)| ≤ E1
1

N

N
∑

j=1

1√
2j + 1

+
1

N

N
∑

n=1

j

∣

∣

∣

∣

∫ 1

0

x(t)tj−1dt

∣

∣

∣

∣

≤ E1
1

N

N
∑

j=1

∫ j

j−1

1√
2z + 1

dz +
1

N

(

N
∑

j=1

j2

)
1
2
(

N
∑

j=1

(

∫ 1

0

x(t)tj−1dt)2

)
1
2

≤ E1

√
2N + 1− 1

N
+
C
√
N3

N
δ ≤ CE1

1√
N

+ C
√
Nδ.

We may minimize the above expression by balancing both terms which leads to the
choice N = E1

δ
. Thus, we obtain the first result

|x(1)| ≤ C(E1δ)
1
2 .

In the second case using E∞ we replace (39) by

|x(1)| ≤ ‖x′‖L∞(0,1)

∫ 1

0

tjdt+

∣

∣

∣

∣

j

∫ 1

0

x(t)tj−1dt

∣

∣

∣

∣

= ‖x′‖L∞(0,1)
1

j + 1
+ j

∣

∣

∣

∣

∫ 1

0

x(t)tj−1dt

∣

∣

∣

∣

.

(40)

Proceeding in the same way, where 1√
2j+1

is now replaced by
∫ 1

0
tjdt = 1

j+1
, we find

here by summation for j = 1, N − 1,

|x(1)| ≤ E∞
1

N − 1

N−1
∑

j=1

1

j + 1
+

1

N − 1

N−1
∑

j=1

j

∣

∣

∣

∣

∫ 1

0

x(t)tj−1dt

∣

∣

∣

∣

≤ E∞
1

N − 1

N−1
∑

j=1

1

j + 1
+
C
√

(N − 1)3

N − 1
δ

≤ E∞
1

N − 1

∫ N

1

1

t
dt+ C

√
N − 1δ

≤ E∞
1

N − 1
ln(N) + C

√
Nδ ≤ 2E∞

1

N
ln(N) + C

√
Nδ.
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Now we choose N = δ−2/3 and obtain for sufficiently small δ > 0 and some constant
C̃ > 0 depending on E∞ and C that

|x(1)| ≤ 2E∞ δ2/3 ln(δ−2/3) + C δ2/3 =
4

3
E∞ δ2/3 ln(δ−1) + C δ2/3 ≤ C̃ δ2/3 ln(1/δ).

Namely, we have 1 ≤ ln(δ−1) for δ ≤ 1/e.

If, however, δ ≥ c > 0, then we have with ‖x′‖L∞(0,1) ≤ E∞ and for N = 2 that

|x(1)| ≤ E∞ ln(2) + C
√
2 δ ≤

(

E∞ ln(2)

c
+ C
√
2

)

δ = C̄ δ.

This completes the proof.

8 Numerical case studies

8.1 Numerical discussion of L−1

One possible characterization of the range R(A) is given by (31). It is therefore of
interest to study the operator L−1, and we will do so in the following in the discrete
setting, where we consider truncations L−1

n := (L−1
ij )ni,j=1, n ∈ N. The matrices L−1

n are
the Cholesky factors of the inverse Hilbert matrix H−1

n introduced in (23). Thus we
have H−1

n = L
−1
n (L−1

n )T . In particular, this means that ‖L−1
n ‖22 = ‖H−1

n ‖2 where ‖ · ‖2
is the largest singular value of the matrix. Consequently, we have the bound ‖L−1

n ‖ ≤
C exp(1.763n) from (24). This asymptotics can be confirmed numerically as shown in
Figure 1. It is interesting that the asymptotics C exp(1.763n) not only describes the
norms ‖L−1

n ‖, but also the row-wise absolute maxima of the matrices. Because the
entries of |L|−1

n have alternating sign, we set |L|−1
n = |(L−1

n )ij |, i, j = 1, . . . , n. Figure 1
demonstrates that

max
j=1,...,i

(|L|−1
n )ij ≤ C exp(1.763n), i = 1, . . . n.

The maxima are not found on the main diagonal (|L|−1
n )ii, i = 1, . . . , n, but for some

[ i+1
2
] < j < i. On the main diagonal itself, the entries grow with a slightly lower,

approximately (|L|−1
n )ii ≤ C exp(1.4i). A plot of selected rows of |L|−1

n is given in
Figure 2. Clearly, the entries grow fast both in row index i and in column index j.
Hence, one would expect that sequences {yi}∞i=1 satisfying the range condition (31)
have to decay rapidly, which is in contrast to the slowly decaying example at the end
of Section 3. This seeming contradiction is resolved because the entries of L−1

n have
alternating sign, which means that the sums

i
∑

j=1

(L−1
n )ijyj , i = 1, 2, . . .

do not necessarily explode, for example when the elements of {yi}∞i=1 have constant
sign as is the case for the example (19). This suggests that monotonicity might play a
crucial role in the characterization of the stable subspace Y1.
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1050

growth of absolute values of |L-1|

Figure 1: Numerical studies for L
−1
n , n = 65. Blue, solid: asymptotic bound

exp(1.763i). Magenta, dashed: norms ‖L−1
i ‖2. Black, dash-dotted: row-wise max-

ima of |L|−1
n . Red, dotted: main diagonal of |L|−1

n .
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column index j

100

1010

1020

1030

1040

1050
rows 5+10*i of absolute values |L-1|

Figure 2: Numerical studies for |L|−1
n , n = 65. Plot of rows 5 + 10k, k = 1, . . . , 6.
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8.2 Numerical verification of the noise amplification factor

The following case study illustrates and complements the results of Remark 5 and in
particular of the upper estimate (25). We show that the regularization error in (27)
is driven by the amplification factor ‖A†

n‖L(ℓ2,L2(0,1)) and that the upper limit (25) and
the resulting rate in n presents a reasonable bound in practical situations. Therefore
we introduce a test case with exact solution

x̃(t) = 0.2 +
0.36

1 + 100(2.05t− 0.2)2
(0 ≤ t ≤ 1).

Because x̃ is almost constant for t > 0.5 with x̃(t) ≈ 0.2, it is easy to see that [Ax̃]i =
O(0.2

i
). In the next step we calculate for a sample of noisy data and fixed n the

minimum-norm solutions in the noisy case

xδn := A†
ny

δ = argmin{‖x‖L2(0,1)| x ∈ L2(0, 1) : ‖Anx− yδ‖ℓ2 = min}

and the associated version x†n := A†
ny for the noise-free case (δ = 0). As the ex-

act solution is assumed to be known, we can can compute the regularization errors
‖xδn − x†n‖L2(0,1). Subsequently we perform a linear regression in accordance with Re-
mark 5 for decaying noise level and fixed n, i.e., we assume

‖xδn − x†n‖L2(0,1) ≈ ‖A†
n‖L(ℓ2,L2(0,1))δ.

As a consequence we receive estimators for the amplification factor ‖A†
n‖L(ℓ2,L2(0,1)) and

denote these estimators with fn. In order to improve the accuracy of the results multiple
realizations of the error were used. A regression was performed for each realization.
The presented results are the mean of these regressions. This behaviour is visualized
in Figure 3. In this context, Figure 4 visualizes the quotient ln(fn)/n for various n,
which can be interpreted as the factor to n in the exponent of the estimation (25).
We conclude that the numerical observations coincide with the previously introduced
theoretical findings and the resulting rates match.
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Figure 3: Estimations for the amplification factor ‖A†
n‖L(ℓ2,L2(0,1)) for various n.
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Figure 4: Quotient ln(fn)/n for estimations of the amplification factor ‖A†
n‖L(ℓ2,L2(0,1))

and various n.
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[23] B. Hofmann, P. Mathé and M. Schieck, Modulus of continuity for conditionally stable ill-posed

problems in Hilbert space, J. Inverse Ill-Posed Probl., 16(6):567–585, 2008.

[24] B. Hofmann and R. Plato, On ill-posedness concepts, stable solvability and saturation, J. Inverse
Ill-Posed Probl., 26(2):287–297, 2018.

[25] B. Hofmann and L. vonWolfersdorf, A new result on the singular value asymptotics of integration

oprators with weights, J. Integral Equations Appl., 21(2):281–295, 2009.

[26] G. Inglese, Approximate solutions for a finite moment problem, Calcolo, 25(3):233–248, 1989.

[27] G. Inglese, Recent results in the study of the moment problem, In: Theory and Practice of Geo-

physical Data Inversion, Proc. of the 8th Int. Math. Geophysics Seminar on Model Optimization
in Exploration Geophysics 1990, Vieweg, Braunschweig-Wiesbaden, 1992, pp. 73–84.

[28] G. Inglese, Finite moment problems: geometry of the data space and conditioned maximum

entropy solutions, J. Inv. Ill-Posed Problems, 3(3):237–248, 1995.

[29] K. Ito and B. Jin, Inverse Problems: Tikhonov Theory and Algorithms, World Scientific Publ.,
Hackensack, 2015.

[30] S. I. Kabanikhin, Inverse and Ill-Posed Problems: Theory and Applications, De Gruyter, Berlin,
2012.

[31] S. Kindermann, Inversion formulas for the linearized impedance tomography problem, Preprint
on arXiv, Article 1706.02155, 2017.

[32] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems (2nd ed.), Springer,
New York, 2011.

[33] G. D. Lin, Recent development on the moment problem, Journal of Statistical Distributions and
Applications, 4:5 (17pp), 2017.

[34] S. Lu and S. V. Pereverzev, Regularization Theory for Ill-Posed Problems: Selected Topics, De
Gruyter, Berlin, 2013.
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