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1. INTRODUCTION

Let X and Y be infinite-dimensional Banach spaces and let A : X →Y denote a bounded linear
operator mapping between X and Y . Our focus is on the associated linear operator equation

Ax = y (x ∈ X , y ∈ Y ) , (1.1)

assuming that this equation has to be considered to be ill-posed is some well-defined sense.
In the seminal paper [13], M. Z. Nashed introduced a new approach to classification and

distinguishing type I and type II of ill-posedness for such equations (1.1) and thus of the cor-
resonding operators A. For the article [13] and a wide range of publications on linear problems
in abstract function spaces since then, ill-posedness has been characterized by a non-closed
range R(A) of the operator A, whereas a closed range of A indicates well-posedness. The well-
posedness in case of a closed range is motivated by the fact that a closed range implies stability
in the sense of Ivanov [8] also for non-injective A. This means, for the exact right-hand side
y ∈ R(A) = R(A)

Y
, that approximations yn ∈ R(A) with lim

n→∞
∥yn − y∥Y = 0 imply the con-

vergence of the quasi-distance qdist(A−1(yn),A−1(y)) (cf. [7, Def. 1]) to zero as n → ∞ (see,
e.g., [3, Prop. 1.12]).
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Even though the concept of complementedness of null-spaces N (A) of the operator A al-
ready appeared around ill-posedness types by Nashed in [13, Thm. 4.5], the detailed influence
of complemented or uncomplemented null-space N (A) on the characterization of ill-posedness
was seriously addressed for the first time in the monograph [3] of the first author. The simplifi-
cation that (1.1) is well-posed if the range is closed in Y and ill-posed if R(A) ̸=R(A)

Y
is fully

consistent if X and Y are both Hilbert spaces and also in the Banach space case if A is injective.
In this context, we refer for details to our earlier article [4], and in particular to Figure 1 therein.

If, however, A is a non-injective linear operator in general Banach spaces, uncomplemented
null-spaces N (A) in X may occur. For uncomplemented null-spaces it is clear that a closed
range implies stability in the sense of Ivanov, but it is not clear whether that stability fails if
the range is not closed. But much more important for uncomplemented null-spaces N (A) is
that occurring pseudoinverses of A are always unbounded (see for consequences Proposition 2.1
below), and we remember in this context that we know unboundedness as an ill-posedness cri-
terion with respect to the Moore-Penrose pseudoinverse in the Hilbert space setting. Taking into
account the interplay of uncomplemented and complemented null-spaces, the characterization
and classification of ill-posedness for both injective and non-injective operators A in Banach
spaces was intensively discussed in a recent paper of the second author with S. Kindermann [6],
and we refer for a comparision with our following studies preferably to Section 4 ibid with the
Definition 4.1 and its illustration by Figure 3.

In [6], the occurrence of the so-called hybrid case was discovered, i.e. the existence of hybrid-
type operators A in the sense of Definition 2.3 below, where the range R(A) of a strictly singular
operator contains a closed infinite-dimensional subspace. This is only possible if the null-
space N (A) is uncomplemented and A is not compact (see Proposition 2.4 below). Typical
representatives for hybrid-type operators are bounded linear operators A = AMaz mapping the
Banach space X onto a separable Banach space Y that we will call Mazur-type operators, see
Example 2.5 for details. The hybrid case and Mazur-type operators are of particular interest to
our paper.

On the one hand, we will suggest a partially new Definition 2.6 for well- and ill-posedness
characterization and classification as an alternative to [6, Def. 4.1], where as main point in con-
trast to the former definition the ill-posedness type of hybrid cases switches from type II to
type I such that now all ill-posed operators A containing a closed infinite-dimensional subspace
are uniformly of type I. This new definition collects as ill-posed of type II all equations (1.1)
(area to the right of the vertical line in Figure 1 below) that cannot be saved in the sense that par-
tial overcoming of ill-posedness through domain restriction in the inversion process or finding
continuous nonlinear pseudoinverses (possible in one way or another for type I ill-posendess)
completely fails for type II.

On the other hand, we will give examples that equations with hybrid-type operators A should
not be considered and handled as well-posed problems, although R(A) may even be closed.
These reasons are closely releated to deficits of the method of ℓ1-regularization for operators
of the form A : ℓ1 → Y in the case of ill-posedness of type I. The new Theorem 3.2 below will
show the failure of the weak*-weak continuity of such operators. This kind of continuity of
A, however, is an important sufficient condition for existence, stability and convergence of ℓ1-
regularized solutions (see Proposition 3.1 below). For the specific example of a Mazur-type
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operator that maps ℓ1 onto ℓ2, the failure of the ℓ1-regularization can even be outlined in an
explicit manner.

The paper is organized as follows: In Section 2 we present, illustrated by a figure as well as
by examples, and justify our new classification scheme with shifted hybrid case. In this context,
we introduce Mazur-type operators. These operators are of hybrid-type and play a prominent
role in the examples and in Section 3, in which we discuss phenomena of ℓ1-regularization and
ill-posedness. Section 3 presents and proves a proposition and three new theorems around the
weak∗-to-weak continuity of operators in ℓ1, its failure for operators ill-posed of type I and the
associated consequences.

2. A NEW FACET FOR ILL-POSEDNESS CLASSIFICATION IN BANACH SPACES

2.1. Preliminaries. Since the null-space N (A) of the bounded linear operator A is a closed
linear subspace of X , we always find another subspace U in X such that

X = N (A)⊕U is a direct sum of N (A) and U,

but such algebraic complements U of N (A) need not be unique. If, in particular, there exists
a closed complement U of N (A), then the null-space is called topologically complemented,
or simply complemented in X , otherwise uncomplemented in X . Banach spaces X , which are
not isomorphic to a Hilbert space, always contain uncomplemented subspaces (see, e.g., [11]).
Consequently, for such Banach spaces X , uncomplemented null-spaces N (A) in X may occur
for bounded linear operators A : X → Y . In separable Banach spaces each closed subspace,
including the uncomplemented ones, is the null-space of some bounded linear operator with
X =Y , cf. [10, Prop. 2.1]. The quotient map A : X →X/U corresponding to an uncomplemented
subspace U is another example of a bounded linear operators with uncomplemented null-space.
Along the lines of discussions in [3, Section 1] we mention that, for X with a direct sum as
X = N (A) ⊕ U , the restriction A|U : U → R(A) ⊂ Y of A is a bijective mapping, and we
denote its well-defined inverse A†

U : R(A)→U as pseudoinverse of A with respect to U .

Proposition 2.1. If for the bounded linear operator A : X → Y from equation (1.1) the null-
space N (A) is complemented in X with the closed infinite-dimensional subspace U of the
Banach space X such that the direct sum X = N (A)⊕U takes place, then the pseudoinverse
A†

U : R(A) → U is a bounded linear operator if and only if the range R(A) is closed. If,
however, N (A) is uncomplemented in X and hence every infinite-dimensional subspace U with
X = N (A)⊕U is not closed, then the pseudoinverse A†

U : R(A)→U is always unbounded.

Proof. For complemented null-spaces, the assertion of the proposition is a consequence of the
open mapping theorem, whereas the assertion for uncomplemented null-spaces can be found
with proof in [3, Prop. 1.11]. □

For the classification of well-posed and ill-posed equations (1.1), it plays a prominent role
on the one hand whether the associated bounded linear operators A have a finite-dimensional
or infinite-dimensional range R(A) and on the other hand if the operators are strictly singular
or not and if the operators are compact or not. We recall that A : X → Y is called strictly
singular if, given any closed infinite-dimensional subspace Z of X , A restricted to Z is not
an isomorphism (i.e., linear homeomorphism), which means that closed subspaces Z of X , for
which the restriction A|Z has a bounded inverse, are necessarily finite dimensional. We also note
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that all compact operators are strictly singular and that the following proposition taken from [6,
Lemma 1.4] is valid.

Proposition 2.2. If the range R(A) of the bounded linear operator A : X →Y mapping between
infinite-dimensional Banach spaces X and Y is finite-dimensional, then A is strictly singular and
compact with closed range R(A). Conversely, let A be strictly singular and possess a closed
range R(A). Then R(A) is finite-dimensional and A is also compact whenever either

• X and Y are Hilbert spaces
• or A is an injective mapping between Banach spaces X and Y .

The situation becomes more complicated if non-injective operators A and uncomplemented
nullspaces N (A) are taken into account. Then hybrid-type operators many occur, and along
the lines of [6, Def. 4.6 and Prop. 4.7] we give the following Definition 2.3 and Proposition 2.4.

Definition 2.3 (Hybrid-type). We characterize the operator equation (1.1) and its corresponding
bounded linear operator A : X → Y as of hybrid-type if A is strictly singular and its range R(A)
contains an infinite-dimensional closed subspace of Y .

Proposition 2.4. For an operator equation (1.1) of hybrid-type, the operator A : X → Y is not
compact and its null-space N (A) is always uncomplemented.

Proof. By Definition 2.3, R(A) contains a closed infinite-dimensional subspace, say M. Since
M is infinite-dimensional, then by the Riesz lemma there is a bounded sequence (yn)⊂M which
has no convergent subsequence. Even though A is non-injective, the open mapping theorem in
the formulation of [16, Theorem 3] still gives a sequence (xn)n∈N with xn ∈ A−1(yn), ∥xn∥X ≤
C∥yn∥Y and Axn = yn for all n ∈ N. If A was compact, then (yn)n∈N would have a convergent
subsequence, which is a contradiction.

If the null-space would be complemented and A is not compact, then X = N (A)⊕U is
connected with an infinite-dimensional closed subspace U of X . This, however, leads to a
contradiction. Namely, let M ⊆ R(A) be an infinite-dimensional closed subspace of Y and,
due to the continuity and injectivity of A on U , the set A†

U [M] is an infinite-dimensional closed
subspace of X on which A is continuously invertible as a consequence of Proposition 2.1. This,
however, contradicts the strict singularity of A. □

Example 2.5 (Mazur-type operators in sequence spaces). Let X := ℓ1 and let Y be a separable
Banach space. Further, let (ζ (k))k∈N be a countable dense subset of the unit sphere in Y with
ζ (k) ̸= ζ (l) for k ̸= l. Then, for x = (x1,x2, ...) ∈ ℓ1,

AMaz x :=
∞

∑
k=1

xk ζ
(k) (2.1)

defines a bounded linear operator mapping ℓ1 onto Y ([1, Theorem 2.3.1 and its proof]). If Y
is not isomorphic to a subspace of ℓ1, then the null-space N (AMaz) is uncomplemented ([1,
Corollary 2.3.3 and its proof]). Note that choosing different separable Banach spaces Y and
different sequences (ζ (k))k∈N we obtain many different operators with uncomplemented null-
space. We refer to such operators as Mazur-type operators, because their existence was already
shown in [2, page 111, item e)].

Of particular interest to us are Mazur-type operators AMaz : ℓ1 → ℓq, 1 < q < ∞, mapping the
non-reflexive Banach space ℓ1 continuously onto the reflexive and separable Banach space ℓq.
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Such operators are strictly singular (see [5, Theorem]), because ℓ1 does not contain an infinite-
dimensional reflexive subspace and ℓq is a reflexive Banach space. Moreover, as a consequence
of Proposition 2.4, such an operator AMaz is not compact and possesses an uncomplemented
null-space. Our focus is on the special case q = 2 introduced as example in [5]. In the sequel,
we will abbreviate this operator mapping from ℓ1 on ℓ2 as B.

2.2. Updated classification with switched hybrid case and its illustration.

Definition 2.6 (Well- and ill-posedness characterization and classification). Let A : X →Y be a
bounded linear operator mapping between the infinite-dimensional Banach spaces X and Y .

Then the operator equation (1.1) is called well-posed if

the range R(A) of A is a closed subset of Y and, moreover,

the null-space N (A) is complemented in X ;

otherwise the equation (1.1) is called ill-posed.

In the ill-posed case, (1.1) is called ill-posed of type I if

the range R(A) contains an infinite-dimensional closed subspace of Y ;

otherwise the ill-posed equation (1.1) is called ill-posed of type II.

well-posed

ill-posed of type I

ill-posed of type II

operator is
strictly singular

operator is
not strictly singular

operator  is compact

finite-dimensional

range

infinite-dimensional
range

1

2
4

... uncomplemented null-space possible

3

hybrid-type
operator

FIGURE 1. Case distinction for bounded linear operators between infinite-
dimensional Banach spaces with complemented and uncomplemented null-
spaces and shifted hybrid case

2.3. Discussion of Figure 1. The figure should help us to illustrate the impact of Definition 2.6
on the classification of well-posedness and ill-posedness of the linear operator equation (1.1)
formulated in Banach spaces X and Y , where the operator A : X → Y may be non-injective
and may have an uncomplemented null-space N (A). Bearing in mind the operator properties
described in the preliminaries, we are going to discuss in this subsection the different possible
cases with reflection to the areas appearing in the figure.



6 J. FLEMMING, B. HOFMANN

The area to the right of the vertical line in the figure is devoted to the equations that are
ill-posed of type II in the sense of Definition 2.6 with strictly singular operators A possessing
an infinite-dimensional range R(A), which has no closed infinite-dimensional subspace. As we
already had mentioned in the introduction, those problems cannot be saved in the sense that par-
tial overcoming of ill-posedness through domain restriction in the inversion process or finding
continuous nonlinear pseudoinverses via the Bartle–Graves theorem (cf. [6, Theorem 5.5]) is
possible. This is just because their ranges R(A) do not contain an infinite-dimensional closed
subspace. For a Hilbert space setting, this right area if full of compact operators A. In the
Banach space setting, however, the compact operators form only a proper subset. For example,
in sequence spaces the injective embedding operators A := E q

p : ℓp → ℓq (1 ≤ p < q < ∞) are
strictly singular but not compact, and we refer for related problems also to the recent paper [14].

The area to the left of the vertical line in the figure is separated by a horizontal line. Above the
line one can find the well-posed problems in the sense of Definition 2.6 and below the line the
ill-posed problems of type I in the sense of that definition. From the right side, two protrusions
(bulgs) grow into this left area. Both express strictly singular operators, whereas otherwise
all operators A belonging to the area left of the vertical line are not strictly singular. Strictly
singular operators correspond to the areas with dark background in the figure. The upper pro-
trusion collects the well-posed problems with operators A possessing finite-dimensional ranges,
whereas the lower protrusion expresses the interesting hybrid case in the sense of Definition 2.3.
The figure also shows that hybrid-type operators are well-separated from the compact operators.

It seems to be of interest, in which areas of Figure 1 operators A with uncomplemented null-
spaces N (A) can be found. We have indicated in the figure such areas by the small circled
numbers 1⃝, 2⃝, 3⃝ and 4⃝. The number 1⃝ meets the hybrid case (see also Example 2.5 above),
and it should be emphasized that all operators A of the hybrid case have uncomplemented
null-spaces as Proposition 2.4 proves. In the three areas, where 2⃝, 3⃝ and 4⃝ appear, uncom-
plemented null-spaces are not typical but they can appear as outlined in Examples 2.7, 2.8 and
2.9 below, where the Mazur-type operator B (see Example 2.5) mapping from ℓ1 onto ℓ2 with
null-space uncomplemented in ℓ1 is an auxiliary tool for the construction of concrete versions
to all three examples. In the area of well-posed problems, uncomplemented null-spaces are ex-
cluded by definition. Neither operators A with closed infinite-dimensional range and continuous
inverse A−1 : R(A) = R(A)

Y → X nor compact operators A with finite-dimensional range may
have uncomplemented null-spaces.

Example 2.7 (Non-compact compositions to Mazur-type operator B). 2⃝ As an example for
strictly singular but non-compact operators A with infinite-dimensional range and uncomple-
mented null-space indicated by number (2) we introduce a composition A =: C ◦B : ℓ1 → Z of
a version of the Mazur-type operator B : ℓ1 → ℓ2, possessing an uncomplemented null-space
N (B), and a bounded non-compact injective operator C : ℓ2 → Z with a non-closed range
R(C) that does not contain a closed infinite-dimensional subspace. Due to the surjectivity of
B and the injectivity of C, the range R(A) of A is then also non-closed and does not contain a
closed infinite-dimensional subspace, moreover the null-space N (A) is also uncomplemented.
A concrete version of such operator C is the strictly singular and non-compact embedding op-
erator C = E p

2 : ℓ2 → Z = ℓp (2 < p < ∞). Non-compactness of C yields a bounded sequence
(yn)n∈N ⊂ Y such that (C yn)n∈N ⊂ Z does not contain a convergent subsequence. In the def-
inition (2.1) of B we choose a sequence (ζ (k))k∈N that contains all ỹn := 1

∥yn∥Y
yn. If (kn)n∈N
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is such that ζ kn = ỹn, then we have x(n) := ∥yn∥Y e(kn), with e(k) := (0, . . . ,0,1,0, . . .) being
the usual unit sequences (1 at position k). This implies Bx(n) = yn, and thus the image of the
bounded sequence (x(n))n∈N under the composition A =C ◦B does not contain any convergent
subsequence. Consequently, A is not compact, but evidently also not of hybrid-type.

Example 2.8 (Compact compositions to Mazur-type operator B). 3⃝ As an example for com-
pact operators A with infinite-dimensional range and uncomplemented null-space indicated by
number (3) we can present a composition operator A := C ◦B for a compact injective operator
C : ℓ2 →Y and the Mazur-type operator B : ℓ1 → ℓ2 from Example 2.5. Evidently, the composi-
tion is compact, because B is bounded. Since the null-space of B is uncomplemented in ℓ1 and
C is injective, the null-space of A is also uncomplemented.

Example 2.9 (Type I ill-posedness in product spaces). 4⃝ Here, we consider the product spaces
X := ℓ1 × ℓ2, Y := ℓ2 × ℓ2 and the bounded linear operator A := (B, I) with the Mazur-type
operator B : ℓ1 → ℓ2 from Example 2.5 and the identity operator I : ℓ2 → ℓ2. Then the null-space
N (A) = N (B)×{0} is uncomplemented since N (B) is, which means that (1.1) with such
operator A is ill-posed. Obviously, A is an isomorphism on {0}× ℓ2 and therefore not strictly
singular, consequently not of hybrid-type. Moreover, A is ill-posed of type I, because the range
R(A) contains the infinite-dimensional closed subspace M = {0}× ℓ2.

Remark 2.10. As the repeated use of the operator B in the three examples above subtly suggests,
the occurrence of bounded linear operators with uncomplemented null-spaces seems to be rare,
and their targeted construction appears to be challenging. Now let X be a Banach space with a
closed subspace S uncomplemented in X and U a subspace such that the direct sum X = S⊕U
takes place. One might then consider it a simple construction to define an operator A : X → X
with uncomplemented null-space by the formula

Ax :=

{
0, if x ∈ S,
I, if x ∈U,

with I : U →U being the identity map on U . This is obviously a linear operator with null-space
N (A) = S, but unfortunately such operator is always unbounded. This is because P := I−A is
a bounded projection from X onto S whenever A is a bounded operator, and this is only possible
if S is complemented in X , see [12, Cor. 3.2.15].

Remark 2.11. As also Figure 1 indicates, the class of linear bounded operators A mapping
between Banach spaces that are ill-posed in the sense of Definition 2.6 is divided into two
clearly separated subclasses of type I and type II ill-posedness. Surprisingly, the dividing line
between these two types can be crossed when observing compositions of two operators of the
same type. As an example we consider, for some Banach space X and some strictly singular
operator C : X → X with non-closed range, the two operators D1 := (C, I) and D2 := (I,C)
both mapping from X ×X into itself, where I is the identity operator in X . These operators
are ill-posed of type I, because their ranges R(D1) and R(D2) are non-closed and contain
closed infinite dimensional subspaces in the Banach space X ×X . However, their composition
A :=D2◦D1 =(C,C) is strictly singular with non-closed range and therefore ill-posed of type II.

A similar phenomenon had been observed in [9] for Hilbert spaces, where also the dividing
line between the well-separated compact (type II) and non-compact (type I) ill-posed operators
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can be crossed by composition. Ibid there was analyzed the case that the composition of two
non-compact operators can lead to a compact one.

3. PHENOMENA OF ℓ1-REGULARIZATION AND ILL-POSEDNESS

In this section, we consider the operator equation (1.1) in the special case of bounded linear
operators

A : ℓ1 → Y , (3.1)

mapping from ℓ1 to the infinite-dimensional Banach space Y . In most cases such equations
are ill-posed, and one way to obtain stable approximate solutions to operator equations in the
ℓ1-case is to minimize the Tikhonov-type functional

T δ
α (x) := ∥Ax− yδ∥p

Y +α ∥x∥ℓ1 (3.2)

over x ∈ ℓ1 with regularization parameter α > 1 and some appropriate exponent p > 1. An
important sufficient condition for the existence and stability of minimizers xδ

α ∈ ℓ1 to the func-
tional T δ

α (x) is the weak∗-to-weak continuity of the operator A from (3.1) in the sense of Propo-
sition 3.1, for which we refer to [3, Theorem 9.4]. Here, weak∗-to-weak continuity means that
A transforms weak∗-convergent sequences in ℓ1 into weak-convergent sequences in Y , where
the weak∗-convergence in ℓ1 is related to the predual space c0 of ℓ1.

Proposition 3.1. Let A : ℓ1 → Y be weak∗-to-weak continuous. Then the following assertions
are true.

(i) Existence: There exist solutions to (1.1) with minimal norm (referred to as norm mini-
mizing solutions) and there exist minimizers of the Tikhonov-type functional (3.2). Fur-
ther, all minimizers of T δ

α are sparse.
(ii) Stability: If (yk)k∈N converges to yδ and if (x(k))k∈N is a corresponding sequence of

minimizers of (3.2) with yδ replaced by yk, then this second sequence has a weakly*
convergent subsequence and each weakly* convergent subsequence converges weakly*
to a minimizer of T δ

α .
(iii) Convergence: If (δk)k∈N converges to zero and if (yk)k∈N satisfies ∥yk −y†∥Y ≤ δk, then

there is a sequence (αk)k∈N such that each corresponding sequence of minimizers of
T δk

αk contains a weakly* convergent subsequence. Each such subsequence converges in
norm to some norm minimizing solution of (1.1).

The following theorem reflects the weak∗-to-weak continuity assumption of Proposition 3.1
in light of the type-classification from Definition 2.6.

Theorem 3.2. If the bounded linear operator A : ℓ1 → Y has infinite-dimensional range and is
weak∗-to-weak continuous, then the associated operator equation (1.1) is ill-posed of type II in
the sense of Definition 2.6.

Proof. See [3, Theorem 10.5] for a proof. There, the unmodified definition for type-I ill-
posedness is used, that is, type I requires that the range of A contains a closed infinite-dimensional
subspace M and that N (A) is complemented in the full pre-image A−1[M]. But the proof solely
relies on the first condition and does not use any arugment related to (un)complementedness of
N (A), thus, fits our modified Definition 2.6, too. □
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Weak*-to-weak continuity is a sufficient but not a necessary condition for existence, stability,
and convergence of Tikhonov minimizers. Especially for Mazur-type operators, which always
have a closed range, there is some chance that Tikhonov regularized solutions exist, are sta-
ble, and converge although Mazur-type operators lack weak*-to-weak continuity. But the next
theorem shows that Tikhonov regularization fails for Mazur-type operators.

Theorem 3.3. Let A := B : ℓ1 → ℓ2 be the Mazur-type operator defined in Example 2.5 based on
a sequence (ζ (k))k∈N. For yδ ∈ ℓ2 and α ≥ 0 the ℓ1-Tikhonov functional (3.2) has minimizers
if and only if yδ = λ ζ (k) for some λ ∈ R and some k ∈ N. For such yδ there is exactly one
minimizer if ζ (l) ̸=−ζ (k) for all l ∈ N, l ̸= k. The minimizer attains the form

xδ
α =


0, if λ ∈ [−α,α],

(λ −α)e(k), if λ > α,

(λ +α)e(k), if λ <−α.

(3.3)

If ζ (k) =−ζ (l) for some l, then for each

γ ∈

{
(α −λ ,0), if λ > α,

(0,−α −λ ), if λ <−α
(3.4)

there is an additional minimizer of the form

xδ
α =

{
(γ +λ −α)e(k)+ γ e(l), if λ > α,

(γ +λ +α)e(k)+ γ e(l), if λ <−α.
(3.5)

Here e(k) denotes the sequence (0, . . . ,0,1,0, . . .) with 1 at position k.

Proof. From
⟨η ,Ax⟩= ∑

k∈N
xk ⟨η ,ζ (k)⟩ (3.6)

for η ∈ ℓ2 and x ∈ ℓ1 we see

A∗
η = (⟨η ,ζ (1)⟩,⟨η ,ζ (2)⟩, . . .) ∈ ℓ∞. (3.7)

Due to convexity and continuity of the Tikhonov functional, xδ
α ∈ ℓ1 is a minimizer of T δ

α if and
only if

− 1
α

A∗ (Axδ
α − yδ ) ∈ ∂∥ · ∥ℓ1(xδ

α), (3.8)
where

ξ ∈ ∂∥ · ∥ℓ1(x) ⇔ ξk


=−1, if xk < 0,
∈ [−1,1], if xk = 0,
= 1, if xk > 0

for k ∈ N. (3.9)

The optimality condition implies that there is some η ∈ ℓ2 such that A∗η ∈ ∂∥ · ∥ℓ1(xδ
α).

Assume that xδ
α has at least two non-zero components [xδ

α ]m ̸= 0 and [xδ
α ]n ̸= 0. Denote the

signs of both components by sm ∈ {−1,1} and sn ∈ {−1,1}, respectively. Then [A∗η ]m = sm
and [A∗η ]n = sn or, equivalently, ⟨η ,ζ (m)⟩ = sm and ⟨η ,ζ (n)⟩ = sn. Now take a subsequence
(ζ (kl))l∈N of (ζ (k))k∈N converging to

η̃ :=
sm ζ (m)+ sn ζ (n)

∥sm ζ (m)+ sn ζ (n)∥ℓ2
. (3.10)
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Then ⟨η ,ζ (kl)⟩ → ⟨η , η̃⟩. From

⟨η , η̃⟩= 2
∥sm ζ (m)+ sn ζ (n)∥ℓ2

. (3.11)

we see ⟨η , η̃⟩ ≥ 1 and that ⟨η , η̃⟩> 1 holds if and only if ζ (m) and ζ (n) are linearly dependent.
Thus, ⟨η , η̃⟩= 1 is only possible for ζ (n) =−ζ (m).

In case ⟨η , η̃⟩> 1 we find (large enough) kl with ⟨η ,ζ (kl)⟩> 1 or, equivalently [A∗η ]kl > 1.
Thus, A∗η /∈ ∂∥ ·∥ℓ1(xδ

α), which shows that xδ
α can have at most one non-zero component [xδ

α ]k
if ζ (l) ̸=−ζ (k) for all l ̸= k.

In case ⟨η , η̃⟩ = 1, we do not obtain a contradiction (at the moment). That is, xδ
α may

have two non-zero components [xδ
α ]m and [xδ

α ]n as long as ζ (n) = −ζ (m). But a third non-zero
component [xδ

α ]l is not possible, because corresponding ζ (l) would have to be equal to both
−ζ (m) and −ζ (n) = ζ (m).

Let xδ
α = βm e(m) with βm ∈R\{0} be a minimizer with only one non-zero component. Then

the optimality condition is equivalent to

⟨βm ζ
(m)− yδ ,ζ (m)⟩=−(sgnβm)α and |⟨βm ζ

(m)− yδ ,ζ (l)⟩| ≤ α for l ̸= m. (3.12)

The left-hand condition is equivalent to βm = ⟨yδ ,ζ (m)⟩− (sgnβm)α and, thus, to

βm =

{
⟨yδ ,ζ (m)⟩−α, if ⟨yδ ,ζ (m)⟩> α,

⟨yδ ,ζ (m)⟩+α, if ⟨yδ ,ζ (m)⟩<−α.
(3.13)

This shows that only

xδ
α =


0, if ⟨yδ ,ζ (m)⟩ ∈ [−α,α],

(⟨yδ ,ζ (m)⟩−α)e(m), if ⟨yδ ,ζ (m)⟩> α,

(⟨yδ ,ζ (m)⟩+α)e(m), if ⟨yδ ,ζ (m)⟩<−α,

(3.14)

for each m ∈ N are candidates for minimizers. The Tikhonov functional for these candidates is

T δ
α (xδ

α) =
1
2 ∥βm ζ

(m)− yδ∥2
ℓ2 +α |βm| (3.15)

= 1
2 β

2
m + 1

2 ∥yδ∥2
ℓ2 −βm ⟨yδ ,ζ (m)⟩+α |βm| (3.16)

= 1
2 β

2
m + 1

2 ∥yδ∥2
ℓ2 −βm

(
⟨yδ ,ζ (m)⟩−α sgnβm

)
(3.17)

= 1
2 β

2
m + 1

2 ∥yδ∥2
ℓ2 −β

2
m (3.18)

=−1
2 β

2
m + 1

2 ∥yδ∥2
ℓ2 . (3.19)

The candidate with greatest β 2
m is the true minimizer (which exists by assumption). From the

definition of βm we see that β 2
m is maximal (w. r. t. m) if |⟨y,ζ (m)⟩| is maximal. In particular,

the existence of a minimizer implies that there is some m with |⟨yδ ,ζ (m)⟩| ≥ |⟨yδ ,ζ (m̃)⟩| for all
m̃ ∈ N. If (ζ (kl))kl∈N is a sequence converging to yδ

∥yδ ∥
ℓ2

, then we have

|⟨yδ ,ζ (m)⟩| ≥ |⟨yδ ,ζ (kl)⟩| → ∥yδ∥ℓ2. (3.20)

Thus, |⟨yδ ,ζ (m)⟩| = ∥yδ∥ℓ2 , which implies yδ = λ ζ (m) for some λ ∈ R. Note that |βm −
⟨yδ ,ζ (m)⟩|= α and |⟨ζ (m),ζ (l)⟩| ≤ 1 for all l, which implies the second condition in (3.12).
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It remains to discuss the case of two non-zero compentents in xδ
α . Let xδ

α = βm e(m)+ γm e(n)

be such a minimizer. Remember ζ (n) = −ζ (m) as well as sgnβm ̸= sgnγm. The former results
in

Axδ
α = (βm − γm)ζ

(m), (3.21)
the latter in

∥xδ
α∥ℓ1 = (sgnβm)(βm − γm). (3.22)

In full analogy to the one-component case one obtains a family of candidates parametrized by
m and γ . Looking at the Tikhonov functional for those candidates one sees that the functional’s
value does not depend on γ but only on m in the same way as for the one-component case.
Analogously to the one-component case one obtains the structure of yδ allowing for minimizers
with two non-zero components. □

Theorem 3.3 shows that for Mazur-type operators Tikhonov regularized solutions only exist
for yδ from a dense subset of the data space. In principle, one could approximate each yδ ∈ ℓ2

by a sequence y(k) with corresponding Tikhonov minimizers x(k). If this sequence converges
(at least weakly*), one could consider its limit as a regularized solution for yδ . But from the
structure of the minimizers provided by the proposition above one easily sees that the sequence
of minimizers always converges weakly* to 0 (and it is not norm-Cauchy).

The authors conjecture that in ℓ1 there is an intimate connection between both lacking weak*-
to-weak continuity and uncomplemented null-spaces, driven by the fact that they were unable
to find weak*-to-weak continuous operators with uncomplemented null-space. Both classes
of operators with uncomplemented null-space, Mazur-type operators as well as quotient maps,
are not weak*-to-weak continuous by Theorem 3.2. The following theorem shows that even
compositions with Mazur-type operators (cf. Examples 2.7 and 2.8) always lack weak*-to-weak
continuity.

Theorem 3.4. Let AMaz : ℓ1 → Y be of Mazur-type with Y some separable Banach space (cf.
Example 2.5) and let C : Y → Z with C ̸= 0 be some bounded linear operator mapping into a
Banach space Z. Then A :=C ◦AMaz is not weak*-to-weak continuous.

Proof. For n ∈ N consider e(n) with 1 at position n and zeros else. The sequence (e(n))n∈N
converges weakly* to zero in ℓ1. We show that there is some η ∈ Z∗ such that the dual product
⟨η ,Ae(n)⟩Z∗,Z does not tend to zero as n → ∞, which would mean that (Ae(n))n∈N does not
converge weakly to zero in Z and would prove the theorem. Now, for arbitrary η ∈ Z∗, we have

⟨η ,Ae(n)⟩Z∗,Z =
∞

∑
k=1

e(n)k ⟨η ,C ζ
(k)⟩Z∗,Z = ⟨η ,C ζ

(n)⟩Z∗,Z = ⟨C∗
η ,ζ (n)⟩Y ∗,Y . (3.23)

Take some η with C∗η ̸= 0 and some y ∈ Y with ⟨C∗η ,y⟩Y ∗,Y ̸= 0 and ∥y∥Y = 1. Then we find
a sequence (kn)n∈N such that there is norm convergence ζ (kn) → y in Y as n → ∞. Thus

⟨C∗
η ,ζ (kn)⟩Y ∗,Y → ⟨C∗

η ,y⟩Y ∗,Y ̸= 0, (3.24)

and the proof is complete. □

Weak*-to-weak continuity would imply weak* closedness of the null-space, which in non-
reflexive Banach spaces is a stronger property than norm or weak closedness (note that a sub-
space is norm closed if and only if it is weakly closed). Does weak* closedness of the null-space
imply its complementedness in ℓ1? In reflexive Banach spaces weak* and weak convergence
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coincide and all bounded linear operators are weak*-to-weak continuous. Nethertheless, com-
plemented as well as uncomplemented null-spaces may occur and there is no relationship be-
tween complementedness of null-spaces and weak*-to-weak continuity. In ℓ∞ it is known that
uncomplemented null-spaces may occur even for weak*-to-weak continuous operators, see [15,
Theorem 3.1]. In ℓ1 the question whether weak*-to-weak continuity implies complementedness
of the null-space remains open. At least the converse is not true. The following example shows
that there are ill-posed operators with complemented null-space which are not weak*-to-weak
continuous.

Example 3.5 (Not weak*-to-weak continuous injective operator). Let A : ℓ1 → ℓ2 be defined by

Ax :=

(
∞

∑
l=1

xl,
1
2 x2, . . . ,

1
k xk, . . .

)
. (3.25)

Then A is injective with inverse A−1 : R(A)→ ℓ1 given by

A−1 y :=

(
y1 −

∞

∑
l=2

l yl, 2y2, . . . , k yk, . . .

)
. (3.26)

The inverse is unbounded, because ∥A−1 e(k)∥ℓ1 = 2k → ∞. The mapping A is not weak*-to-
weak continuous, because Ae(k) = (1,0, . . . ,0, 1

k ,0, . . .) converges weakly to e(1) and not to 0.
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