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DEAUTOCONVOLUTION IN THE TWO-DIMENSIONAL CASE∗

YU DENG†, BERND HOFMANN†, AND FRANK WERNER‡

Abstract. There is extensive mathematical literature on the inverse problem of deautoconvolution for a function
with support in the unit interval [0, 1] ⊂ R, but little is known about the multidimensional situation. This article tries
to fill this gap with analytical and numerical studies on the reconstruction of a real function of two real variables
over the unit square from observations of its autoconvolution on [0, 2]2 ⊂ R2 (full data case) or on [0, 1]2 (limited
data case). In an L2-setting, twofoldness and uniqueness assertions are proven for the deautoconvolution problem in
2D. Moreover, its ill-posedness is characterized and illustrated. Extensive numerical case studies give an overview
of the behaviour of stable approximate solutions to the two-dimensional deautoconvolution problem obtained by
Tikhonov-type regularization with different penalties and the iteratively regularized Gauss–Newton method.

Key words. deautoconvolution, inverse problem, ill–posedness, case studies in 2D, Tikhonov-type regularization,
iteratively regularized Gauss–Newton method

AMS subject classifications. 47J06, 65R32, 45Q05, 47A52, 65J20

1. Introduction. The object of research in this work is the problem of deautoconvolution,
where our focus is on the two-dimensional case. A square integrable real function of two
variables x(t1, t2) (0 ≤ t1, t2 ≤ 1) is to be identified from the function y = x ∗ x, i.e., its
autoconvolution. If we consider x as an element of the Hilbert space L2

(
R2
)

with support
supp(x) ⊆ [0, 1]2, then, it is well-known that x ∗ x belongs to L2

(
R2
)

as well, with support
supp(x ∗ x) ⊆ [0, 2]2. In this context, the elements x and x ∗ x can be both considered as
tempered distributions with compact support, where supp(·) is defined as the essential support
with respect to the Lebesgue measure λ in R2. Instead of y itself, only a noise corrupted
version of it, denoted by yδ ∈ L2

(
R2
)
, is available, where δ ≥ 0 denotes the noise level.

Since the inverse problem of deautoconvolution tends to be ill-posed, the aim of the recovery
process is to find stable approximate solutions of x based on the data yδ. We are going to
distinguish the full data case, where noisy data are available for y(s1, s2) (0 ≤ s1, s2 ≤ 2),
and the limited data case, where data are given for y(s1, s2) (0 ≤ s1, s2 ≤ 1). Since the
scope of the data in the limited data case is only 25%, when compared to the full data case, the
effect of ill-posedness is stronger in this case. As a consequence, the chances for an accurate
recovery of x are more restricted in the limited data case, than in the full case.

The simplest application of our deautoconvolution problem in two dimensions is the
recovery of the density function x, with support in the unit square [0, 1]2, of a two-dimensional
random variable X from observations of the density function y of the two-dimensional random
variable Y := X̂ + X̄, where X, X̂, and X̄ are assumed to be independent and identically
distributed (i.i.d.).

The deautoconvolution problem in one dimension has been considered extensively in the
literature motivated by physical applications in spectroscopy; see, e.g., [5, 29]. Its mathematical
analysis has been comprehensively implemented in the last decades with focus on properties of
the specific forward operator, ill-posedness, and regularization based on the seminal paper [20].
In this context, we refer to [8, 10, 11, 13, 15, 16, 17, 23] for investigations concerning the stable
identification of real functions x on the unit interval [0, 1] from noisy data of its autoconvolution
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x∗x. A new series of interdisciplinary autoconvolution studies was developed by a cooperation
started in 2010 between a research group of the Max Born Institute for Nonlinear Optics and
Short Pulse Spectroscopy (Berlin) led by Prof. Günter Steinmeyer and the Chemnitz research
group on regularization. We refer to the publications [1, 9, 18, 19] for a presentation of the
output of this cooperation. The goal of this cooperation between mathematics and laser optics
was the extension of the one-dimensional deautoconvolution problem to complex-valued
functions combining amplitude and phase functions for characterizing ultrashort laser pulses.

In this article, in an L2-setting, we are considering a series of numerical case studies for
the nonlinear Volterra-type integral equation

(1.1) F (x) = y, with F (x) := x ∗ x,

the solution of which solves the deautoconvolution problem in two dimensions. Equation (1.1)
is a special case of a nonlinear operator equation

F (x) = y, F : D(F ) ⊆ X → Y,

with forward operator F mapping between real-valued Hilbert spaces X and Y with norms
‖ · ‖X and ‖ · ‖Y , respectively, and domain D(F ).

Depending on the data, we have to distinguish between the full and limited data cases. In
the first case the forward operator F : X = L2

(
[0, 1]2

)
→ Y = L2

(
[0, 2]2

)
is defined by

(1.2) [F (x)](s1, s2) :=

min(s2,1)∫
max(s2−1,0)

min(s1,1)∫
max(s1−1,0)

x(s1−t1, s2−t2)x(t1, t2) dt1 dt2 (0 ≤ s1, s2 ≤ 2)

and in the second case the forward operator F : X = L2
(
[0, 1]2

)
→ Y = L2

(
[0, 1]2

)
is

(1.3) [F (x)](s1, s2) :=

∫ s2

0

∫ s1

0

x(s1 − t1, s2 − t2)x(t1, t2) dt1 dt2 (0 ≤ s1, s2 ≤ 1).

In general, we consider D(F ) = X = L2
(
[0, 1]2

)
, but for the limited data case we partially

focus on non-negative solutions expressed by the domain D(F ) = D+ with

(1.4) D+ :=
{
x ∈ X = L2

(
[0, 1]2

)
: x ≥ 0 a.e. on [0, 1]2

}
.

For any function x ∈ L2
(
[0, 1]2

)
the autoconvolution products F (x) = x ∗ x and

F (−x) = (−x) ∗ (−x) coincide for both forward operator versions (1.2) and (1.3). However,
it is of interest whether, for y = x∗x, the elements x and−x are the only solutions of equation
(1.1) or not. Moreover, it is of interest whether in the limited data case the restriction of the
domain D(F ) to D+ from (1.4) leads to unique solutions. Some answers to those questions
will be given in the subsequent Section 2.

The remainder of the paper is organized as follows: Section 2 is devoted to assertions on
twofoldness and uniqueness for the deautoconvolution problem in two dimensions, preceded by
a subsection with relevant lemmas and definitions. As an inverse problem, deautoconvolution
tends to be ill-posed in the setting of infinite dimensional L2-spaces. After the presentation of
two functions defined over the unit square as basis for later numerical case studies, in Section 3,
the specific ill-posedness characteristics for the deautoconvolution of a real function of two
real variables with compact support is analyzed and illustrated. To suppress ill-posedness
phenomena, variants of variational and iterative regularization methods are used, which will
be introduced in Section 4. The numerical treatment, including discretization approaches of
forward operator and penalty functionals for the Tikhonov regularization as well as for the
iterative regularization by using the Fourier transform, is outlined in Section 5. Section 6
completes the article with comprehensive numerical case studies.
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2. Assertions on twofoldness and uniqueness for the deautoconvolution problem in
two dimensions. In this section we discuss the uniqueness of the solution of the deautoconvo-
lution problem in two dimensions.

2.1. Preliminaries. Assertions on twofoldness and uniqueness for the deautoconvolution
problem in one dimension have been formulated in the articles [20] for the limited data
case and in [19] for the full data case. The respective proofs are based on the Titchmarsh
convolution theorem from [31], which was formulated as [20, Lemma 3], and will be recalled
below, in a slightly reformulated form, as Lemma 2.1.

LEMMA 2.1. Let the functions f, g ∈ L2 (R) have compact supports supp(f) and
supp(g), respectively. Then, we have for the convolution that f ∗ g ∈ L2 (R) and that the
equation

inf supp(f ∗ g) = inf supp(f) + inf supp(g)

holds. In particular, if supp(f) and supp(g) are covered by the unit interval [0, 1], we
conclude, from

[f ∗ g](s) =

min(s,1)∫
max(s−1,0)

f(s− t) g(t) dt = 0 a.e. for s ∈ [0, γ] (γ ≤ 2),

that there are numbers γ1, γ2 ∈ [0, 1], with γ1 + γ2 ≥ γ, such that

f(t) = 0 a.e. for t ∈ [0, γ1] and g(t) = 0 a.e. for t ∈ [0, γ2].

For an extension of the Titchmarsh convolution theorem to two dimensions, we mention
the following Lemma 2.2; see [26, 27].

LEMMA 2.2. Let the functions f, g ∈ L2
(
R2
)

have compact supports supp(f) and
supp(g), respectively. Then, we have, for the convolution, that f ∗ g ∈ L2

(
R2
)

and that the
equation

(2.1) ch supp(f ∗ g) = ch supp(f) + ch supp(g)

holds, where ch M denotes the convex hull of a set M ⊆ R2. In the special case that
supp(f ∗ g) = ∅ we have that at least one of the supports supp(f) or supp(g) is the empty
set.

DEFINITION 2.3. We call x† ∈ L2
(
[0, 1]2

)
, with supp(x†) ⊆ [0, 1]2, in the full data

case, a solution of the operator equation (1.1), for a given y ∈ L2
(
[0, 2]2

)
, if it satisfies the

condition

(2.2) [x† ∗ x†](s1, s2) = y(s1, s2) a.e. for (s1, s2) ∈ [0, 2]2.

DEFINITION 2.4. We call x† ∈ L2
(
[0, 1]2

)
, with supp(x†) ⊆ [0, 1]2, in the limited data

case, a solution to the operator equation (1.1), for a given y ∈ L2
(
[0, 1]2

)
, if it satisfies the

condition

(2.3) [x† ∗ x†](s1, s2) = y(s1, s2) a.e. for (s1, s2) ∈ [0, 1]2.

If x† ∈ D+, with D+ in (1.4), we call it a non-negative solution in the limited data case.
DEFINITION 2.5. We call x ∈ L2

(
[0, 1]2

)
, with supp(x) ⊆ [0, 1]2, satisfying (2.2) or

(2.3) a factored solution of equation (1.1) in the full data case or in the limited data case,
respectively, if it has the structure

x(t1, t2) = x1(t1)x2(t2) (0 ≤ t1, t2 ≤ 1),
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with xi ∈ L2 ([0, 1]), supp(xi) ⊆ [0, 1], for i = 1 and i = 2. If, moreover, xi ≥ 0 a.e. on
[0, 1] for i = 1 and i = 2, then we call it a non-negative factored solution in the respective
case.

2.2. Results for the full data case. Lemma 2.2 allows us to prove the following theorem
for the forward autoconvolution operator F : L2

(
[0, 1]2

)
→ L2

(
[0, 2]2

)
in (1.2). This result

is an extension of [19, Theorem 4.2] to the two-dimensional case of the deautoconvolution
problem.

THEOREM 2.6. If, for a given y ∈ L2
(
[0, 2]2

)
, the function x† ∈ L2

(
[0, 1]2

)
, with

supp(x†) ⊆ [0, 1]2 is a solution of (1.1) with F in (1.2), then x† and −x† are the only
solutions of this equation in the full data case.

Proof. Let x† ∈ L2
(
[0, 1]2

)
, with supp(x†) ⊆ [0, 1]2, and h ∈ L2

(
[0, 1]2

)
, with

supp(h) ⊆ [0, 1]2. Assume that x† and x† + h solve the equation (1.1), i.e.,

[x† ∗ x†](s1, s2) = [(x† + h) ∗ (x† + h)](s1, s2) a.e. for (s1, s2) ∈ [0, 2]2.

Therefore, we have

[(x†+h)∗(x†+h)−x†∗x†](s1, s2) = [h∗(2x†+h)](s1, s2) = 0 a.e. for (s1, s2) ∈ [0, 2]2.

We can apply Lemma 2.2 setting f := h and g := 2x† + h . Taking into account that
supp(h ∗ (2x† + h)) ⊆ [0, 2]2, we have supp(h ∗ (2x† + h)) = ∅ and, consequently,
ch supp(h ∗ (2x† + h)) = ∅. This implies, due to equation (2.1), that either supp(h) = ∅ or
supp(2x† + h) = ∅. On the one hand, supp(h) = ∅ leads to the solution x† itself. Whereas,
on the other hand, supp(2x† + h) = ∅ leads to [2x† + h](t1, t2) = 0 a.e. for (t1, t2) ∈ [0, 1]2

and, consequently, with h = −2x†, to the second solution −x†. Alternative solutions are thus
excluded, which proves the theorem.

2.3. Results for the limited data case. For solutions x† ∈ L2
(
[0, 1]2

)
of equation (1.1),

with supp(x†) ⊆ [0, 1]2, the condition 0 ∈ supp(x†) plays a prominent role in the limited
data case. This condition means that, for any ball Br(0) around the origin with arbitrary small
radius r > 0, there exists a set Mr ⊂ Br(0) ∩ [0, 1]2 with Lebesgue measure λ(Mr) > 0
such that x†(t1, t2) 6= 0 a.e. for (t1, t2) ∈Mr. Vice versa, for 0 /∈ supp(x†), we have some
sufficiently small radius r > 0 such that x†(t1, t2) = 0 a.e. for (t1, t2) ∈ Br(0) ∩ [0, 1]2.

First, we generalize in Theorem 2.7 those aspects of [20, Theorem 1] that concern the
strong non-injectivity of the autoconvolution operator in the limited data case.

THEOREM 2.7. If, for a given y ∈ L2
(
[0, 1]2

)
, the function x† ∈ L2

(
[0, 1]2

)
, with

supp(x†) ⊆ [0, 1]2, is a solution of (1.1), with F in (1.3), that fulfills the condition

(2.4) 0 /∈ supp(x†),

then, in the limited data case, there exists infinitely many other solutions x̂† ∈ L2
(
[0, 1]2

)
of (1.1), with supp(x̂†) ⊆ [0, 1]2.

Proof. If (2.4) holds, there exists some 0 < ε < 1/2 such that x†(t1, t2) = 0 a.e. for
(t1, t2) ∈ [0, ε]2. Then, for all elements h ∈ L2

(
[0, 1]2

)
, with supp(h) ⊆ [0, 1]2, satisfying

the condition

h(t1, t2) = 0 a.e. for (t1, t2) ∈ [0, 1]2 \ [1− ε, 1]2,

we have that x̂† = x† + h obeys the condition

[x̂† ∗ x̂†](s1, s2) = y(s1, s2) a.e. for (s1, s2) ∈ [0, 1]2.
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This is a consequence of the fact that [h ∗ (2x† + h)](s1, s2) = 0 a.e. for (s1, s2) ∈ [0, 1]2 is
true for each such element h.

To formulate uniqueness assertions for solutions x† of equation (1.1) in the limited data
case, we restrict our considerations now to non-negative solutions and the domainD(F ) = D+

in (1.4) for the forward operator F in (1.3). We present, in Theorem 2.8, a result that extends to
the two-dimensional autoconvolution operator F : D+ ⊂ L2

(
[0, 1]2

)
→ L2

(
[0, 1]2

)
in (1.3)

those aspects of [20, Theorem 1] that concern the solution uniqueness. More in details, we are
able to handle the special case of factored non-negative solutions in the sense of Definition 2.5.
This occurs, for instance, when x† is a density function for the two-dimensional random
variable X = (X1,X2), where X1 and X2 are uncorrelated one-dimensional random variables.

THEOREM 2.8. Let, for a given y ∈ L2
(
[0, 1]2

)
, x† be a non-negative factored solution

of equation (1.1) in the limited data case, which satisfies the condition

(2.5) 0 ∈ supp(x†).

Then, there are no other non-negative factored solutions.
Proof. For the factored situation, we have that the right-hand side y is also factored as

y(s1, s2) = y1(s1) y2(s2) (0 ≤ s1, s2 ≤ 1) and y1 = x†1 ∗ x
†
1, y2 = x†2 ∗ x

†
2.

Moreover, condition (2.5) implies that

(2.6) inf supp(x†1) = inf supp(x†2) = 0.

Otherwise, there would be a square [0, ε]2, with ε = max{inf supp(x†1), inf supp(x†2)} > 0,
on which x† vanishes almost everywhere such that 0 /∈ supp(x†). Now we suppose that, for
i = 1 and i = 2, quadratically integrable perturbations hi(ti) (0 ≤ ti ≤ 1) exist such that
x†i + hi ≥ 0 a.e. on [0, 1] and

(2.7) (x†1 + h1) ∗ (x†1 + h1) = y1 and (x†2 + h2) ∗ (x†2 + h2) = y2.

To complete the proof of the theorem we show that h1 and h2 have to vanish almost everywhere
on [0, 1]. This can be done with the help of Titchmarsh’s convolution theorem in the one-
dimensional case; see Lemma 2.1. From (2.7) we derive, for i = 1 and i = 2, that

[hi ∗ (2x†i + hi)](si) = 0 a.e. for si ∈ [0, 1],

where x†i + hi ≥ 0 implies that 2x†i + hi ≥ x†i and inf supp(2x†i + hi) = 0 as a consequence
of (2.6). Then, it follows, from Lemma 2.1, that

inf supp(hi) + inf supp(2x†i + hi) = inf supp(hi ∗ (2x†i + hi)) ≥ 1

and, hence, inf supp(hi) ≥ 1 for both i = 1, 2. This implies hi = 0 a.e. on [0, 1] and
completes the proof.

3. Examples and ill-posedness phenomena of deautoconvolution in two dimensions.
We now present two examples to illustrate the ill-posedness phenomena of deautoconvolution
in 2D.

3.1. Two examples. For the numerical case studies of deautoconvolution in 2D, we will
present two examples of solutions x† to the autoconvolution equation in 2D. The first one
refers to the function

(3.1) x†(t1, t2) =
(
−3t21 + 3t1 + 1

4

)
(sin(1.5πt2) + 1) (0 ≤ t1, t2 ≤ 1)
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FIGURE 3.1. Functions in the two considered example. The first line reports, from left to right, the smooth and
factored function x†(t1, t2) in (3.1), F (x†) with limited data, and F (x†) with full data. The second line reports,
from left to right, the non-smooth and non-factored function x†(t1, t2) in (3.2), F (x†) with limited data, and F (x†)
with full data.

to be reconstructed from its own autoconvolution F (x†) = x† ∗ x†. This smooth and non-
negative factored function x† is illustrated in the first line of Figure 3.1, alongside with the
F (x†)-images for the limited and full data case, respectively.

The second example refers to the non-smooth, non-factored, and non-negative solution

(3.2) x†(t1, t2) =

{
sin(1.5π(t1 + t2)) + 1 (0 ≤ t1 ≤ 0.5, 0 ≤ t2 ≤ 1),
1 (0.5 < t1 ≤ 1, 0 ≤ t2 ≤ 1),

which is illustrated in the second line of Figure 3.1, together with F (x†)-images for the limited
and full data case, respectively.

3.2. Ill-posedness phenomenon. As we will see in the numerical case studies presented
below, especially in the limited data case, least-squares solutions of the discretized two-
dimensional problem of deautoconvolution tend to become strongly oscillating even if the
noise level δ > 0, in the observed right-hand side yδ, is small. This indicates instability as
ill-conditioning phenomenon for a discretized variant of deautoconvolution and ill-posedness
for the underlying operator equation (1.1) in infinite dimensional L2-spaces. For a theoretical
verification we adopt the concept of local ill-posedness along the lines of [21, Def. 1.1] for
nonlinear operator equations, and we recall this concept in the following definition.

DEFINITION 3.1. An operator equation F (x) = y with nonlinear forward operator
F : D(F ) ⊆ X → Y between the Hilbert spaces X and Y with domain D(F ) is called
locally ill-posed at a solution point x† ∈ D(F ), if there exist, for all closed balls Br(x†) with
radius r > 0 and center x†, sequences {xn} ⊂ Br(x†) ∩ D(F ) satisfying the condition

‖F (xn)− F (x†)‖Y → 0 , but ‖xn − x†‖X 6→ 0 , as n→∞ .

Otherwise, the operator equation is called locally well-posed at x†.
Local ill-posedness everywhere on the non-negativity domain

D(F ) = {x ∈ X = L2 ([0, 1]) : x ≥ 0 a.e. on [0, 1]}

was proven for the one-dimensional deautoconvolution problem in the limited data case in
[20, Lemma 6]. With the following proposition we extend, by using similar proof ideas, this
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assertion to the two-dimensional case and D(F ) = D+, with D+ in (1.4). We should mention,
as an overall consequence of the observed ill-posedness, that the stable approximate solution
of the two-dimensional deautoconvolution problem requires the use of variational or iterative
regularization methods.

PROPOSITION 3.2. Let X = Y = L2
(
[0, 1]2

)
. For the limited data case, the operator

equation (1.1) with forward operator F in (1.3) restricted to the non-negativity domain
D(F ) = D+ in (1.4), is locally ill-posed everywhere on D+.

Proof. Let x† ∈ D+ be a solution of the operator equation under consideration here.
To show local ill-posedness at x† we introduce, for a fixed r > 0, a sequence {hn}∞n=3 of
perturbations of the form

hn(t1, t2) :=

{
nr for (t1, t2) ∈ [1− 1

n , 1]2,
0 for (t1, t2) ∈ [0, 1]2 \ [1− 1

n , 1]2.

Let xn := x† + hn ∈ D+, ‖hn‖L2([0,1]2) = r, and, consequently, xn ∈ Br(x†) ∩ D+

for all n ≥ 3. To complete the proof of the proposition we need to show that the norm
‖F (xn)− F (x†)‖L2([0,1]2) tends to zero as n tends to infinity. Due to the facts that

F (xn)− F (x†) = 2x† ∗ hn + hn ∗ hn and ‖hn ∗ hn‖L2([0,1]2) = 0,

it is sufficient to show the limit condition

‖x† ∗ hn‖L2([0,1]2) → 0 as n→∞.

Evidently, the non-negative values

[x† ∗ hn](s1, s2) =

∫ s2

0

∫ s1

0

hn(s1 − t1, s2 − t2)x†(t1, t2) dt1 dt2

can be different from zero only for the pairs (s1, s2) ∈ [1− 1
n , 1]2. Using the Cauchy-Schwarz

inequality and taking into account that x† ∈ D+, we have for those pairs the estimate

[x† ∗ hn](s1, s2) = n r

s2−(1− 1
n )∫

0

s1−(1− 1
n )∫

0

x†(t1, t2) dt1 dt2 ≤ r ‖x†‖L2([0,1]2).

This, however, yields

‖x† ∗ hn‖L2([0,1]2) ≤ r ‖x†‖L2([0,1]2)

 1∫
1− 1

n

1∫
1− 1

n

ds1 ds2


1/2

=
r ‖x†‖L2([0,1]2)

n

tending to zero as n tends to infinity, which completes the proof.
In the full data case of one-dimensional deautocovolution, local ill-posedness everywhere

has been shown in [17, Proposition 2.3]. The used counterexample, however, is much more
sophisticated and requires perturbations with weak poles at the origin. This seems to indicate
the significantly lower strength of ill-posedness for the full data case compared to the limited
data case. For factored solutions, the counterexample from [17] can also be exploited to prove
local ill-posedness for the two-dimensional deautoconvolution problem in the full data case.
Numerical case studies confirm the lower level of instability in the full data case of the 2D
deautoconvolution compared to the limited data case; see Figure 3.2.
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FIGURE 3.2. Ill-posedness phenomenon of deautoconvolution for the example (1.2).

Considering the deterministic noise model

‖yδ − y‖Y ≤ δ,

we have calculated discretized least-square solutions xls of the deautoconvolution problem
for the first example x† given in (3.1). A discretization with 21 × 21 grid points over the
unit square has been exploited for minimizing the Euclidean norm squares of the discretized
residuals F (x†)− yδ. Setting a noise level δ > 0 that corresponds to a relative data error of
0.8%, Figure 3.2 shows a comparison between the least squares solutions for Y := L2

(
[0, 2]2

)
of the full data case with F defined in (1.3) and for Y := L2

(
[0, 1]2

)
of the limited data case

with F defined in (1.2).
As a consequence of the ill-posedness phenomenon of the deautoconvolution problem

in 2D, we observe in Figure 3.2 the occurrence of strong oscillations in both cases. The
oscillations, however, are much heavier for the limited data case (left-hand graph) than for
the full data case (right-hand graph). The difference is particularly pronounced for function
values on the rear square half of the underlying unit square. The discretized L2-norms of the
deviation xls − x† correspond to relative errors of 34.54% (left) and 13.92% (right).

4. Regularization methods. This section presents two regularization methods for the
solution of the deautoconvolution problem in two dimensions.

4.1. Tikhonov regularization and regularization parameter choices. As a first ap-
proach to overcome the ill-posedness of the two-dimensional deautoconvolution problem, we
adopt the variational (Tikhonov-type) regularization, which is well-developed for solving ill-
posed nonlinear operator equations. The stable approximate solutions (regularized solutions)
xδα are the global minimizers of the optimization problem

(4.1) T δα(x) := ‖F (x)− yδ‖2Y + αR(x)→ min
x∈D(F )⊆X

,

with regularization parameter α > 0 and some penalty functional R : X → [0,+∞] with
domainD(R) := {x ∈ X = L2

(
[0, 1]2

)
: R(x) <∞}. The penalty functional is assumed to

be stabilizing, convex, and weakly sequentially continuous. For the autoconvolution operator
F , which is weakly sequentially closed, the general theory of variational regularization (see,
e.g, [30, Section 4.1] and [14, 28]) with respect to existence, stability, and convergence of
the Tikhonov-regularized solutions xδα ∈ D(F ) ∩ D(R) applies. The following three penalty
functionals are under consideration in this study.

• Classical norm square penalty

R1(x) := ‖x− x̄‖2X ,
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with prescribed reference element x̄ ∈ X and D(R1) = X . Notably, x̄ ∈ X
expresses some a priori knowledge about the potential solution.

• Gradient norm square penalty

R2(x) :=

∫
[0,1]2

‖∇x‖22 dt1dt2,

where ∇x =
(
∂x
∂t1
, ∂x∂t2

)
denotes the gradient with respect to both variables t1, t2

and ‖ · ‖2 is the Euclidean norm. Here, we have D(R2) = H1([0, 1]2). For this
setting, the solution is assumed to have a certain smoothness.

• Total variation penalty

R3(x) := ‖x‖TV ([0,1]2) =

∫
[0,1]2

‖∇x‖2 dt1dt2,

where D(R3) = BV ([0, 1]2) := {x ∈ L1([0, 1]2) : ‖x‖TV ([0,1]2) < ∞} is the
space of bounded variation over the unit square [0, 1]2. This approach was originally
introduced for image restoration with the special aim of retaining the information on
edges in an image, i.e., the penalty should work for solutions possessing jumps. A
detailed analysis of TV-regularization can be found, for example, in [7, 32].

In a first step, we want to choose the optimal regularization parameter αopt for each input
noise level δ and corresponding yδ according to

αopt(δ) = argmin
α>0

‖xδα − x†‖X .

It is well-known that for the practical use of a priori choices for finding the regularization
parameter α = α(δ), some smoothness information about the exact solution x† is required,
which is normally not available. Therefore, a posteriori choices α = α(δ, yδ), exploiting
the measured noisy data yδ in combination with knowledge of the noise level δ > 0, are an
appropriate alternative; see [14, Sect. 3.1]. Under the limit conditions

(4.2) α
(
δ, yδ

)
→ 0 and

δ2

α (δ, yδ)
→ 0 as δ → 0,

the regularized solutions xδα solving the optimization problem (4.1) may possess a subsequence
which converges to an exact solution x† as δ → 0. Due to the Fréchet differentiability of the
autoconvolution operator F and convexity of the penalty functionalsR(x), for the numerical
experiment below, we implement, as a second step, the sequential discrepancy principle (SDP)
which was analyzed, for example, in [2].

DEFINITION 4.1. For given τ > 1, α0 > 0, and 0 < q < 1, a parameter αSDP is
chosen from the set ∆q := {αl : αl = qlα0, l ∈ Z} according to the sequential discrepancy
principle (SDP), if∥∥F (xδαSDP )− yδ∥∥Y ≤ τδ < ∥∥∥F (xδαSDP /q)− yδ∥∥∥Y
holds true.

We can directly apply [2, Theorem 1] to our autoconvolution problem and conclude that,
with some δ̄ > 0, the regularization parameters αSDP = αSDP

(
δ, yδ

)
, chosen according

to SDP, exist for 0 < δ < δ̄ and satisfy the limit conditions (4.2). Then, the associated
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regularized solutions xδαSDP (δ,yδ) converge (at least in the sense of subsequences) to exact

solutions x† as δ → 0 and, moreover, lim
δ→0
R
(
xδαSDP (δ,yδ)

)
= R(x†).

In a third step we search for heuristic choices of the regularization parameter α > 0
assuming that the noise level δ > 0 is not available or reliable. In our numerical case studies
we focus only on the quasi-optimality criterion to find αqo = αqo(y

δ); see [3, 4, 25] and
references therein.

DEFINITION 4.2. For sufficiently large α0 > 0 and for some 0 < q < 1, we call the
parameter αqo chosen from the set ∆q :=

{
αl : αl = qlα0, l ∈ N

}
according to

αqo(y
δ) = argmin

αl∈∆q

∥∥∥xδαl − xδαl+1

∥∥∥
X

quasi-optimal regularization parameter.

4.2. An iteratively regularized Gauss–Newton method. As an alternative to Tikhonov
regularization we can consider the iteratively regularized Gauss–Newton method (IRGNM)
and find the minimizers of the functional

(4.3) Jδαn(x) := ‖F (xδn) + F ′(xδn)(x− xδn)− yδ‖2Y + αnR(x)→ min
x∈D(F )⊆X

,

with some initial guess xδ0 ∈ X for a fixed noise level δ > 0. Here F ′(x) : X → Y is the
Fréchet derivative of F at x ∈ X and the sequence {αn}∞n=1 of regularization parameters
satisfies

1 ≤ αn
αn+1

≤ C,

for some constant C > 0. The central advantage of (4.3) over (4.1) is that xδn+1 is defined
as the solution of (due to the linearity of F ′(xδn)) a convex optimization problem, which can
efficiently be tackled by algorithms such as Chambolle-Pock [12] or FISTA [6]. When the
norm square penaltyR1(x) is considered, (4.3) can be solved explicitly as

(4.4)
(
F ′(xδn)∗

[
F ′(xδn)

]
+ αnI

)
x = F ′(xδn)∗

[
F ′(xδn)xδn + yδ − F (xδn)

]
+ αnx̄.

Since the gradient operator is also linear, we can solve the linear equation

(4.5)
(
F ′(xδn)?

[
F ′(xδn)

]
+ αn∇?∇

)
x = F ′(xδn)?

[
F ′(xδn)xδn + yδ − F (xδn)

]
,

for the gradient norm square penaltyR2(x).
As a computational drawback, however, a full sequence of minimization problems (or

linear equations) has to be solved. A convegence analysis for the IRGNM as depicted in (4.3)
can, e.g., be found in [22, 33].

Note that a similar approach has been proposed in [29], where the least-squares residuum
‖F (x) − yδ‖2Y is minimized over a finite dimensional ansatz space x ∈ span {µ1, ..., µn},
e.g., consisting of splines, by linearization and iterative updating. In contrast to (4.1) and
(4.3), regularization is there obtained by restriction to a finite-dimensional space, but the
computational procedure is comparable to our update formula in (4.3).

Instead of choosing a regularization parameter α in Tikhonov regularization, here we
have to select an appropriate stopping index n ∈ N0. This can, in principle, be done by the
same rules as discussed in Section 4.1. The running index n ∈ N0 can be selected by this two
approaches.
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• In the best case as nopt with

nopt(δ) = argmin
n∈N0

‖xδn − x†‖X .

• According to a posteriori sequential discrepancy principle for a given constant pa-
rameter τ > 1 as nSDP , if

‖F (xδnSDP )− yδ‖Y ≤ τδ < ‖F (xδnSDP−1)− yδ‖Y
holds true; see [24] and the references therein.

5. Numerical treatment. We now discuss how we discretize problem (1.1) and how we
numerically solve it.

5.1. Discretization via the composite midpoint rule. To discretize the continuous
problem, we consider two different approaches. The first option is to divide each direction of
the unit square equidistantly in n partitions with the uniform length h := 1/n. To discretize
the nonlinear convolution equation or deduce the discretized forward operator, it is reasonable
to replace the function values x(t1, t2) and y(s1, s2) by countable values xi,j and yk,l with

xi,j := x( 1
2 (i+ (i− 1))h, 1

2 (j + (j − 1))h), yk,l = y(kh, lh)

for all i, j = 1, . . . , n and k, l = 1, . . . , n, respectively.

5.1.1. Discretization of forward operator for the limited data case. The autoconvo-
lution equation in the limited data case can be approximated, by means of the composite
midpoint rule, by the discrete equations

l∑
j=1

k∑
i=1

h2xk−i+1,l−j+1xi,j = yk,l.

Since the function x does not vanish only for 0 ≤ t1 ≤ s1 and 0 ≤ t2 ≤ s2, only the indices
i ≤ k and j ≤ l need to be taken into account in the discretized version. Collecting the values
xi,j and yk,l into vectors x := (x1, . . . , xp, . . . , xn2)T and y := (y1, . . . , yq, . . . , yn2)T ,
respectively, with p := (i − 1) · n + j and q := (k − 1) · n + l for all p, q = 1, . . . , n2, we
can rewrite the weakly nonlinear forward operator of autoconvolution as

F1(x) := h2M1(x)x,

where M1(x) ∈ Rn2×n2

is a lower triangular block matrix and has the structure

M1(x) :=


B1 0 · · · 0
B2 B1 · · · 0
...

. . . . . .
...

Bn Bn−1 · · · B1

 ,
with

Bm =


x(m−1)n+1 0 · · · 0

x(m−1)n+2 x(m−1)n+1

. . . 0
...

. . . . . .
...

xmn xmn−1 · · · x(m−1)n+1

 ,
for 1 ≤ m ≤ n. The first derivative of F1(x) can be easily obtained as

F ′1(x) = 2h2M1(x).
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5.1.2. Discretization of forward operator for the full data case. In the full data case,
the discrete forward operator of the autoconvolution equation can be derived in a similar
manner. On four subareas [0, 1]

2, [0, 1] × (1, 2), (1, 2) × [0, 1], and (1, 2)
2 we write the

discrete equations

l∑
j=1

k∑
i=1

h2xk−i+1,l−j+1xi,j = yk,l, for 1 ≤ k, l ≤ n,

n−1∑
j=l−n

k∑
i=1

h2xk−i+1,l−jxi,j+1 = yk,l, for 1 ≤ k ≤ n and n+ 1 ≤ l ≤ 2n− 1,

l∑
j=1

n−1∑
i=k−n

h2xk−i,l−j+1xi+1,j = yk,l, for n+ 1 ≤ k ≤ 2n− 1 and 1 ≤ l ≤ n,

n−1∑
j=l−n

n−1∑
i=k−n

h2xk−i,l−jxi+1,j+1 = yk,l, for n+ 1 ≤ k, l ≤ 2n− 1.

On the boundary of [0, 2]× [0, 2], i.e., for either k = 2n or l = 2n, y vanishes. Note that the
grid width remains h = 1/n. The discretized forward operator can be written as

F2(x) := h2M2(x)x

with an extended block matrix M2(x) ∈ R4n2×n2

, where

M2(x) :=



B1 0 · · · . . . 0
C1 0 · · · . . . 0
B2 B1 · · · . . . 0
C2 C1 · · · . . . 0
...

. . . . . . . . .
...

Bn Bn−1 · · · · · · B1

Cn Cn−1 · · · · · · C1

0 Bn Bn−1 · · · B2

0 Cn Cn−1 · · · C2

...
. . . . . . . . .

...
0 0 0 · · · Bn
0 0 0 · · · Cn
0 0 0 · · · 0
0 0 0 · · · 0



,

with

Cm =


0 xmn xmn−1 · · · x(m−1)n+2

0 0 xmn
. . . x(m−1)n+3

...
. . . . . .

...
0 0 0 · · · xmn
0 0 0 · · · 0


and Bm as above, for 1 ≤ m ≤ n.

The first derivative of the extended forward operator is given by

F ′2(x) = 2h2M2(x).
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5.1.3. Discretization of the penalty functionals. The penalty functionalsR1 andR2

can be discretized in a straightforward manner, while the derivatives of ∇x are approximated
by finite differences. However, to ensure differentiability of the discretization of R3 for
the Euclidean norm ‖w‖2 =

√
|w1|2 + |w2|2 of an arbitrary vector w = (w1, w2), we take,

similarly to [32, Chapt. 8], the approximation ‖w‖2,β :=
√
|w1|2 + |w2|2 + β2, with a proper

small positive parameter β ∈ (0, 1). This leads to the discretization

(5.1)

R3(x) ≈ h

n−1∑
i=1

n−1∑
j=1

√
(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2 + h2β2

+

n−1∑
i=1

√
(xi+1,n − xi,n)2 + h2β2 +

n−1∑
j=1

√
(xn,j+1 − xn,j)2 + h2β2

 .

5.2. Discretization of forward operator via Fourier transform. If we assume that the
function x ∈ L2

(
(0, 1)2

)
can be extended on the whole domain R2, with the support of x

given by supp(x) ⊂ [0, 1]× [0, 1], i.e., x(t) = 0 for t = (t1, t2) /∈ [0, 1]2, then, the Fourier
transform of x is

F(x)(ω) :=
1√
2π

∫
[0,1]2

x(t)eiωtdt, ω ∈ R2.

According to the convolution theorem, the autoconvolution operator can be represented by

(5.2) F (x) = F−1(F(x)2).

Since the Fourier transform operator F is linear w.r.t. x, we can easily obtain the Fréchet
derivative and the adjoint operator of the autoconvolution forward operator as

(5.3)
F ′(x)(u) = F−1(2F(x)F(u)),

F ′(x)?(v) = F−1(2F(x)F(v)),

where u ∈ X , v ∈ Y , and z denotes the conjugate complex value of z.
A discretization of the above formulas is directly available by means of the Fast Fourier

Transform (FFT) and its inverse (IFFT). However, we should take into account that they
consider periodic functions, and, hence, the corresponding discretization will be inaccurate
especially close to the boundary. Moreover, it is not able to distinguish between the limited
and the full data case.

For the limited data case we perform a zero-padding , i.e., we replace the discretization
x ∈ Rn×n by an extended matrix xz ∈ R2n×2n of the form

xz =

[
x 0
0 0

]
.

More precisely, if we denote the zero-padding operator by Z : Rn×n → R2n×2n and
the corresponding left-inverse (restriction) by R : R2n×2n → Rn×n, then we obtain the
discretization of (5.2) as

F (x) ≈ R
(
IFFT

(
FFT(Z(x))2

))
.

and the corresponding discretizations of (5.3) as

F ′(x)(u) ≈ R (IFFT(2FFT(Z(x))FFT(Z(u))))

F ′(x)?(v) ≈ R
(

IFFT(2FFT(Z(x))FFT(Z(v)))
)
.
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The only difference between the limited data and the full data case is whether the restric-
tion R as to be applied as a very last step or not.

5.3. Computational implementation. To tackle the autoconvolution problem in a stable
way, we can either solve the Tikhonov regularized problem (4.1) with different penalty
functionals or solve the iteratively regularized problem (4.3) equipped with norm square
penalty R1(x) or gradient norm square penalty R2(x). For both approaches, we need to
initialize the regularization parameter α0 and set the iteration step q ∈ (0, 1), with αl = qlα0,
for l = 1, 2, 3, . . . .

To solve the Tikhonov regularized problem (4.1) with α := αl, we use the discretization
via the composite midpoint rule and consider its first-order optimality condition

(5.4) 2h2(M(x))T (h2M(x)x− yδ) + αR′(x) = 0,

which will be solved using a damped Newton method. In this nonlinear equation, either
M := M1, for the limited data case, or M := M2, in the full data case. Note that the
Newton-type method for solving (5.4) is also an iterative procedure and needs initialization of
the solution as well.

For our academical experiments (x† is known), we carry out the process according to
Algorithm 1.

Algorithm 1 Conceptional algorithm for solving (4.1)
S0: Let {δk}k∈N be a finite sequence of positive noise levels tending to 0 as k →∞. Fix
α0 > 0 and 0 < q < 1. Set x0 be a starting point, l := 0, k := 0 and xδkαl := x0.
S1: Compute the error Ekl = ‖xδkαl − x

†‖X .
S2: Solve the discretized problem (5.4) for fixed δ := δk and α := αl using a damped
Newton method with starting point xδkαl . Let xδkαl+1

be the associated solution and compute
the error Ekl+1 = ‖xδkαl+1

− x†‖X .
S3: If Ekl+1 < Ekl , then αl+1 := qαl, l := l + 1 and go to S2. Otherwise save xδkαl and go
to S4.
S4: Set xδk+1

α0 := xδkαl , l := 0, k := k + 1 and go to S2.

Note that this algorithm can be efficiently implemented due to the square rate of conver-
gence of Newton-type method. However, the derivation of the first and second derivative of
the autoconvolution operator and penalty functionals are computationally expensive.

To solve the iteratively regularized problem (4.3), with either R := R1 or R := R2,
more precisely, to solve the linear equations (4.4) and (4.5), we use the Fourier transform
technique to discretize the forward operator and apply the Conjugate Gradient (CG) method.
Besides benefiting from the fast computational time, we can also avoid the computation of the
second derivative matrices of all functionals. Actually, the associated algorithm is similar to
Algorithm 1. The notation xδkαl in Algorithm 1 corresponds to the solution of (4.4) and (4.5)
on the step n := l for δ := δk.

6. Numerical experiments. In this section, we present numerical experiments based
on both the examples that have been introduced in Section 3.1. For all three penalties
Ri(x) (i = 1, 2, 3) introduced above, properties and accuracy of regularized solutions
are compared and illustrated for various regularization parameter choice rules. We define
a sequence of finite discrete noise levels {δk}k∈N with corresponding relative noise levels
between 10% and 0.05%. Let input data yδk ∈ Y satisfy ‖yδk−y‖Y = δk. To find appropriate
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FIGURE 6.1. Comparison of relative error norms of regularized solutions xδkαopt with optimal regularization
parameter for example 1.

regularization parameters α for each fixed δk, we set for the sequence (αl)l∈N the starting
value α0 = 1, step size q = 0.5, and, thus, αl+1 = αl/2; see Algorithm 1. On the discretized
domain, with discretization level n = 20, we solve the nonlinear equation (5.4), discretized
counterpart of the linear equations (4.4) and (4.5), for each δk and regularization parameter
αl. Additionally, the constant function x0 ≡ 1 is set as initialization for all computations. For
the penalty termR1(x), the reference element is set as a constant function x̄ = 0.5. If we set
x̄ = −0.5, the solutions xδkαl will converge to −x† for both examples. For the SDP choosing
rule to determine the regularization parameters αδSDP in Tikhonov regularized problem or
the running index nSDP in iteratively regularized problem, the constant parameter τ = 1.2
is fixed in our experiments. The smoothing parameter β is fixed to 0.1 in the discretized TV
penalty (5.1).

6.1. Results for Example 1. First, we compare in Figure 6.1 the relative output errors
of the regularized solutions xδkαopt obtained using different penalties and by distinguishing
the full data case and the limited data case. Since, for all penalties, the accuracies obtained
with the full input data are uniformly better than those obtained with limited input data, we
have illustrated in Figure 6.1, for the full data case, only the accuracies related to theR1(x)
penalty with Tikhonov regularization. On the other hand, results for all penalties and both
regularization methods are displayed for the limited data case.

Obviously, the reconstruction with the full input data achieves the smallest and best output
error. For the limited data case, the gradient norm square penalty is the most suitable for this
example. A perspicuous reason is the high level of smoothness of the exact solution x†. The
quality of Tikhonov-regularized solutions based on the classical norm square penaltyR1 and
of the TV-penalty R3 is almost indiscernible. Moreover, when using this gradient penalty
R2, the quality of results for Tikhonov regularization and iterative regularization are nearly
indistinguishable.

In Table 6.1 we present Hölder exponents κ ∈ (0, 1), estimated by regression from a series
of δ-values, which emulate numerically convergence rates results for regularized solutions
with the best possible regularization parameter αopt for each δ. More in details, we have listed
the exponents κ such that approximately ‖xδαopt − x

†‖X ∼ δκ as δ → 0.
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FIGURE 6.2. Regularized solutions with optimal regularization parameter for the limited and the full data case
for example 1.

TABLE 6.1
Estimated Hölder exponents κ ∈ (0, 1) for Hölder convergence rates ‖xδαopt − x

†‖X ∼ δκ as δ → 0 in
example 1.

Data Penalty Tikhonov reg. Iterative reg.

Y = L2
(
[0, 2]2

) R1(x) 0.6946 0.7184
R2(x) 0.6638 0.6936
R3(x) 0.4685 –

Y = L2
(
[0, 1]2

) R1(x) 0.3118 0.4088
R2(x) 0.6015 0.6183
R3(x) 0.3919 –

For the limited data case, the gradient norm square penalty also delivers the largest Hölder
rate exponent for the regularized solutions with best possible regularization parameter, which
is consistent with the insights from Figure 6.1. Partially, the rate exponents for the iterative
regularization method seems to be higher than in case of Tikhonov regularization.

Next, we compare in Table 6.2 the regularized solutions with respect to different regular-
ization parameter choice rules, for a fixed noise level δ of a relative input error ‖y

δ−y‖Y
‖y‖Y = 1%.

TABLE 6.2
Comparison of relative error norms of regularized solutions for a fixed relative input error 1% for example 1.

Method Data Penalty
‖xδαopt−x

†‖X
‖x†‖X

‖xδαSDP−x
†‖X

‖x†‖X
‖xδαqo−x

†‖X
‖x†‖X

Tikhonov reg.

Y = L2
(
[0, 2]2

)
R1(x) 2.56% 2.71% 2.71%

Y = L2
(
[0, 1]2

) R1(x) 7.49% 9.12% 9.12%
R2(x) 4.32% 9.91% 4.39%
R3(x) 9.28% 13.77% 10.30%

Iterative reg. Y = L2
(
[0, 1]2

) R1(x) 6.56% 9.07% –
R2(x) 4.19% 9.88% –

The regularized solutions with the regularization parameters via discrepancy principle
can be obtained in a more stable way than the use of quasi-optimality criterion, especially in
the case of iteratively regularized Gauss–Newton method.
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FIGURE 6.3. Comparison of relative error norms of regularized solutions xδkαopt with optimal regularization
parameter for example 2.

For a visual comparison of regularized solutions with least-square solutions, which have
been presented in Figure 3.2, we report the Tikhonov regularized solutions with the best
possible regularization parameter, obtained with classical norm square penaltyR1(x) for the
same noise level of 0.8%, in Figure 6.2 in the limited and in the full data case, respectively.

We can observe that there are almost no longer oscillations in the solutions. However, we
can still notice the deviation of xδαopt from the exact x† on the far back corner of the underlying
unit square for the limited data case. These deviations can be eliminated with the use of full
input data.

6.2. Results for Example 2. In Figure 6.3 we present analog results for Example 2 with
x† from (3.2), which represents a non-smooth and non-factored function.

From the results in Table 6.3 we can observe that the Total Variation penalty R3(x) yields
the best results among all penalties. Intuitively this is due to the fact that the function x† of
Example 2 presents jumps and is less smooth than the one in Example 1.

Figure 6.4 shows the Tikhonov-regularized solutions with best possible regularization
parameters, calculated for different penalties and limited input data with a relative noise level
of 0.8%. The improvement obtained using the TV penaltyR3(x) can be especially observed
on the rear area, where the function values tend to be constant. By contrast, the gradient norm
square penaltyR2(x) makes the associated regularized solution smoother on the front area.

FIGURE 6.4. Regularized solutions for example 2 obtained with optimal regularization parameter for different
penalties.
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Similarly to the previous example we present the estimated Hölder exponents κ for
regularized solutions xδkαopt with optimal regularization parameter in Table 6.3.

TABLE 6.3
Estimated Hölder exponents κ ∈ (0, 1) for Hölder convergence rates ‖xδαopt − x

†‖X ∼ δκ as δ → 0.

Data Penalty Tikhonov reg. Iterative reg.

Y = L2
(
[0, 2]2

) R1(x) 0.6059 0.6699
R2(x) 0.6320 0.6705
R3(x) 0.5083 –

Y = L2
(
[0, 1]2

) R1(x) 0.3753 0.4164
R2(x) 0.4522 0.4505
R3(x) 0.3787 –

Regarding the convergence rates of xδαopt converging to x† as δ → 0, for both penalties
R1 andR2, the iterative regularization approach proves to be advantageous.

We list in Table 6.4 the relative output errors of regularized solutions xδαopt , x
δ
αSDP and

xδαqo for the fixed noise level δ of relative input error 1%.

TABLE 6.4
Comparison of relative error norms of regularized solutions for a fixed relative input error 1%.

Method Data Penalty
‖xδαopt−x

†‖X
‖x†‖X

‖xδαSDP−x
†‖X

‖x†‖X
‖xδαqo−x

†‖X
‖x†‖X

Tikhonov reg.

Y = L2
(
[0, 2]2

)
R1(x) 3.22% 5.75% 3.47%

Y = L2
(
[0, 1]2

) R1(x) 6.43% 8.59% 7.23%
R2(x) 4.68% 7.75% 5.83%
R3(x) 6.01% 10.60% 6.01%

Iterative reg. Y = L2
(
[0, 1]2

) R1(x) 5.83% 9.06% –
R2(x) 4.64% 8.92% –

Summarizing, we can state that it is always possible to solve the two-dimensional deauto-
convolution problem in a rather stable way by either Tikhonov or iterative regularization. In this
context, we also obtain a reasonable accuracy for an appropriate choice of the regularization
parameter.
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