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Sobolev’s inequality

Aim : compute the best constant A > 0 in Sobolev’s inequality

‖ϕ‖L2∗ (Rd ) ≤ A‖∇ϕ‖L2(Rd ), ∀ϕ ∈ C∞c (Rd),

where d ≥ 3 and 1
2∗ = 1

2 −
1
d .

I ineq. [Sobolev, 38], simplified by [Gagliardo, 58] and [Nirenberg, 59]

I Best constant : [Bliss, 30] for radial functions, [Rodemich, 66],
[Aubin, 76] and [Talenti, 76] for the g’al case, by symetrization

A2 =
4

d(d − 2)
|Sd |− 2

d
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1. Sobolev’s inequality

2. The Caffarelli-Kohn-Nirenberg inequality

3. Bakry-Emery’s Γ-calculus, curvature-dimension condition
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1. Sobolev’s inequality



Enters the sphere
Recall that

A2 =
4

d(d − 2)
|Sd |− 2

d

Why does the area of the sphere |Sd | enter in the optimal constant ?



Stereographic projection

Source : Wikipedia.

The stereographic projection π is a conformal map. In addition,

g ij =
(1 + |x |2)2

4
δij



Using the conformal invariance of the inequality

Sobolev’s inequality reads

(ˆ
Sd
|v |2

∗
dµ

)2/2∗

≤ 4

d(d − 2)

ˆ
Sd
|∇Sd v |2dµ+

ˆ
Sd
|v |2dµ.

where dµ = 1
|Sd |dVolg is the normalized volume on Sd .

Since 2∗ − 2 = 2d
d−2 − 2 = 4

d−2 , we can rephrase as follows :

||v ||2
L2∗ (Sd )

− ||v ||2L2(Sd )

2∗ − 2
≤ 1

d
||∇v ||2L2(Sd ).



From Sobolev to Beckner inequalities

Sobolev’s inequality can be seen as a limiting case of a family of
interpolation inequalities [Bidaut-Véron, Véron, 91], [Beckner, 93],
[Demange, 04] : given q ∈ [1, 2∗], q 6= 2,

1

q − 2

(
||v ||2Lq(Sd ) − ||v ||

2
L2(Sd )

)
≤ 1

d
||∇v ||2L2(Sd ).

I When q = 1, this is Poincaré’s inequality, achieved by v(ω) = ω1

I When q 6= 1, in the limit v = 1 + εw , ε→ 0, the inequality linearizes
to Poincaré’s inequality and so the constant 1/d is again optimal

I The limit q → 2 yields the following log-Sobolev inequality

ˆ
Sd

v 2 ln

(
v 2

‖v‖2
L2(Sd )

)
dµ ≤ 1

d
||∇v ||2L2(Sd ).



From the sphere to its curvature

Theorem (Ilias, 83)
Let (M, g) be a smooth connected compact Riemannian manifold of
dimension d, d ≥ 3. Assume that its Ricci curvature is bounded below by
ρ > 0. Then, for every v ∈ C∞(M),

||v ||2
L2∗ (M)

− ||v ||2L2(M)

2∗ − 2
≤ 1

d

d − 1

ρ
||∇v ||2L2(M),

where we normalized the volume of M.

In other words, d and ρ are the only two parameters needed to obtain an
explicit constant in Sobolev’s inequality.

Could this be more general ?



2. The CKN inequality and the CKN spaces



Smooth metric measure spaces

Definition
A smooth metric measure space (M, g , µ) is a (compact) smooth
Riemannian manifold (M, g) together with a weighted measure

dµ = e−W dVolg

We would like to define a (meaningful) notion of dimension n ∈ R and
curvature bound ρ ∈ R on (M, g , µ). First observe

Proposition
Let L = ∆−∇W · ∇. Then,

ˆ
M

u(−Lv)dµ =

ˆ
M

∇u · ∇v dµ

Indeed,

ˆ
M

u(−Lv)dµ =

ˆ
M

u(−∆v +∇W · ∇v)e−W dVolg =

ˆ
M

u(−∇ · (e−W∇v))dVolg =

ˆ
M
∇u · ∇v dµ



Example : the Caffarelli-Kohn-Nirenberg inequality
For any v ∈ C∞c (Rd),(ˆ

Rd

|v |p

|x |bp
dx

)2/p

≤ Ca,b

ˆ
Rd

|∇v |2

|x |2a
dx ,

where d ≥ 3, a ≤ b ≤ a + 1, a < ac = d−2
2 and

p =
2d

d − 2 + 2(b − a)
≤ 2∗ =

2d

d − 2
.

Define n ≥ d by

p =
2n

n − 2

I if a = b = 0, this is Sobolev’s inequality

I if a = 0 and b = 1, then p = 2 and we find Hardy’s inequality

I the value of p and the restriction a ≤ b ≤ a + 1 are necessary (just
use scaling)

I the restriction a < ac = d−2
2 is also needed for the integrals to be

finite



The CKN Euclidean space

Consider the measure d µ̂ = |x |−bpdx =: e−W dx so that

ˆ
Rd

|v |p

|x |bp
dx =

ˆ
Rd

|v |pd µ̂

Conformally deform Rd by setting for some α

ĝij = |x |2(1−α)δij .

Then, |∇̂v |2ĝ = |x |2(1−α)|∇v |2, dVolĝ = |x |d(α−1)dx and if
2(1− α)− bp = −2a,

ˆ
Rd

|∇̂v |2ĝd µ̂ =

ˆ
Rd

|x |2(1−α)−bp|∇v |2dx =

ˆ
Rd

|∇v |2

|x |2a
dx

And so, CKN’s inequality is exactly Sobolev’s inequality on

the CKN Euclidean space (Rd , ĝ, d µ̂)



The CKN spherical and hyperbolic spaces

Recall that the classical Sobolev inequality was usefully rewritten on the
sphere. For CKN, we conformally deform Rd by setting

ḡij = |x |2(1−α) (1 + |x |2α)2

4
δij

and choosing the reference measure

d µ̄ =
|x |−bp

(1 + |x |2α)n
dx

the CKN spherical space is (Rd , ḡ, d µ̄)

Note that the CKN sphere is the round sphere in the case α = 1.
Similarly, the CKN hyperbolic space is defined by (B1, g̃, d µ̃) where

g̃ij = |x |2(1−α)(1− |x |2α)2δij , d µ̃ =
|x |−bp

(1− |x |2α)n
dx



Theorem (D-Gentil-Zugmeyer, 21)
Sobolev’s inequality holds on the three CKN spaces in the form(ˆ

|v |pdµ

)2/p

≤ C

[ˆ
Sv 2dµ+

ˆ
|∇v |2gdµ

]
,

where C is the optimal constant, S = 0 for the Euclidean CKN space,

S = n(n−2)
4 α2 for the CKN spherical space and S = − n(n−2)

4 α2 for the
CKN hyperbolic space. The test function v is supported in Rd \ {0} in
the Euclidean and spherical cases and in B1 in the hyperbolic case.



Theorem (Bakry-Gentil-Ledoux, 13)
Let (M, g, dµ) be a smooth metric measure space, n > 2 and γ ∈ R.
Then, there exists βn(γ), θn(γ) such that

Sγ(M, g, dµ) = θn(γ)[scg − γ∆gW + βn(γ)|∇gW |2g]

is an n-conformal invariant i.e. if p = 2n/(n − 2), the inequality(ˆ
|v |pdµ

)2/p

≤ C

(ˆ
Sγ(M, g, dµ)v 2dµ+

ˆ
|∇gu|2gdµ

)
,

is invariant under the transformation g→ c2g, µ→ c−nµ,
c ∈ C∞(M,R∗+).

Theorem (D-Gentil-Zugmeyer, 21)
Let (M, ĝ, d µ̂) be the CKN Euclidean space. There exists γ ∈ R s.t.

Sγ(M, ĝ, d µ̂) = 0 . And so, Sγ(M, ḡ, d µ̄) = n(n−2)
4 α2 and

Sγ(M, g̃, d µ̃) = − n(n−2)
4 α2.



All the inequalities are equivalent but we have proved none of them yet !



3. Bakry-Emery’s Γ-calculus, curvature-dimension condition



Γ-calculus and the Bochner formula
In Rd , the Laplacian of the product of two functions is given by

∆v 2 = 2v∆v + 2|∇v |2

In other words, the Laplacian fails to satisfy the chain rule and the defect
is measured by the carré du champ

Γ(v) :=
1

2
∆(v 2)− v∆v = |∇v |2

Repeat this once more and measure the defect in the chain rule applied
to the quadratic form Γ. We get the iterated carré du champ

Γ2(v) :=
1

2
∆(Γ(v))− Γ(v ,∆v)

=
1

2
∆(|∇v |2)−∇v · ∇∆v

= ∇ · (∇2v∇v)−∇v · ∇∆v = ‖∇2v‖2
H.S.

On a Riemannian manifold, the Bochner-Lichnerowitz-Weizenboch
formula states that

Γ2(v) = Ricg (∇v ,∇v) + ‖∇2v‖2
H.S.



Γ-calculus and the Bochner formula

Recall that
Γ2(v) = Ricg (∇v ,∇v) + ‖∇2v‖2

H.S.

If Ricg ≥ ρg , Cauchy’s inequality implies that

Γ2(v) ≥ ρ|∇v |2g +
1

d
(∆gv)2

More generally, consider a smooth metric measure space (M, g , µ) and
the associated elliptic operator L = ∆−∇W · ∇. Define its carré du
champ and iterated carré du champ by

Γ(v) =
1

2
L(v 2)− vLv , Γ2(v) =

1

2
L(Γv)− Γ(v , Lv)

(M, g , µ) satisfies the CD(ρ, n) curvature-dimension condition if

Γ2(v) ≥ ρΓ(v) +
1

n
(Lv)2



A basic example : the Gaussian space

Example 1 : consider (Rd , δij , e
−W dx) with W (x) = |x |2/2. Then,

L = ∆− x · ∇ on M = Rd , Γ(v) = |∇v |2 and

Γ2(v) :=
1

2
L(Γ(v))− Γ(v , Lv)

= ‖∇2v‖2
H.S. −

1

2
x · ∇|∇v |2 +∇v · ∇(x · ∇v)

= ‖∇2v‖2
H.S. + |∇v |2 ≥ 1 · |∇v |2 +

1

∞
(Lv)2

In this example, whereas (Rd , δij , dx) is flat, the potential W (x) = |x |2/2
is confining, yielding the curvature bound ρ = 1.

Note : regarding dimension, the Gaussian space can be seen as the limit
of a (d + m)-dimensional sphere (of normalized radius), as m→ +∞.



The Sobolev inequality on smooth metric measure spaces

Theorem (Bakry-Ledoux, 96)
Assume that (M, g, dµ) verifies the curvature-dimension condition
CD(ρ, n) for some ρ > 0 and n ∈ [d ,+∞), n > 2. Then,

||v ||2
L

2n
n−2 (M)

≤ 4

n(n − 2)

n − 1

ρ
||∇v ||2L2(M) + ||v ||2L2(M),

under the normalization µ(M) = 1.

Remark
The result extends to the nonsmooth setting : [Profeta, 15] for
RCD∗(K ,N)-spaces, [Cavaletti-Mondino, 17] for CD∗(K ,N)-spaces.



Liouville-type theorem

Theorem (D-Gentil-Zugmeyer, 20)
Assume (M, g, dµ) verifies the curvature-dimension condition CD(ρ, n)
for some ρ > 0 and n ∈ [d ,+∞), n > 2. Set q = 2n

n−2 . Let A > 0 and

f ∈ C 1(R∗+;R∗+) nonincreasing.
Assume that v ∈ C 2(M), v > 0 is a nonconstant solution to

−A Lv + v = vq−1f (v) in M,

Then, A ≤ A∗ := 4(n−1)
n(n−2)ρ .

If A = A∗, then f = cste and if W = 0, Φ = v−
q−2

2 solves ∇2Φ = ∆Φ
d g.

Theorem (Tashiro 65, Obata 71, Nobili-Violo 21)
Assume A = A∗, W = 0. Then, (M, g) is isometric to the round sphere
and for some λ > 1 and x0 ∈ M,

v(x) = (λ− cos r)−
d−2

2 , where r = d(x , x0).



Curvature-dimension condition for the CKN sphere

Theorem (D-Gentil-Zugmeyer, 21)
When

α2 ≤ d − 2

n − 2

is nonnegative, the CKN sphere satisfies the CD(ρ, n) condition with

ρ = α2(n − 1).

Remark
The above parameter zone does not coincide with the known region for
symmetry for extremals of the inequality. In fact, as we shall see, only an
integrated version of CD(ρ, n) is needed to prove sharp inequalities,
which holds true if and only if

α2 ≤ d − 1

n − 1

Surprise, this is equivalent to 0 ≤ α ≤ 1 !



3. Gradient flows in Euclidean space



Gradient flows in Euclidean space

Let F : Rm 7→ R of class C 2, strictly convex and coercive i.e.
lim|x|→+∞ F (x) = +∞. Then, F has a unique critical point x∗. in
addition,

F (x∗) = inf
x∈Rm

F (x).

In order to locate the point of minimum x∗, start from an arbitrary point
x ∈ Rm and follow the gradient flow of F :{

d

dt
St(x) = −∇F (St(x))

S0(x) = x .

Since

d

dt
F (St(x)) = ∇F (St(x)) · d

dt
St(x) = −|∇F (St(x))|2 ≤ 0

one proves easily that
lim
t→∞

St(x) = x∗.



Entropy-entropy production inequality
If in addition F is strongly convex, i.e. ∇2F ≥ ρ Id where ρ > 0, then we
obtain the optimal speed of convergence to equilibrium of the entropy F

along its gradient flow : compute d2

dt2 F (St(x)) and easily get

F (St(x))− F (x∗) ≤ e−2ρt (F (x)− F (x∗))

Since equality holds when t = 0, we can differentiate the inequality at
t = 0 and deduce that

F (x)− F (x∗) ≤ 1

2ρ
|∇F (x)|2

This entropy-entropy production inequality is optimal, in the sense
that F (x) = ρ|x |2/2 saturates it. More generally,

G (x∗) ≤ 1

2ρ
|∇F (x)|2 + G (x),

under the assumption

∇F · ∇2F ∇F ≥ −ρ∇F · ∇G



4. Wasserstein space, Otto’s calculus



Wasserstein space
Equip the set of prob. measures P2(M) with the Wasserstein distance

W2(µ, ν) = inf

√¨
d(x , y)2dπ(x , y),

where the inf. is taken on all transport plans π ∈ P(M ×M) with
marginals µ and ν and where d is the Riemannian distance on M.
A path [0, 1] 3 t 7→ νt ∈ P2(M) is a.c. w.r.t W2 if

|ν̇t | := lim sup
s→t

W2(νt , νs)

|t − s|
∈ L1([0, 1]).

Theorem (Ambrosio-Gigli-Savaré, 08)
Given any a.c. path, there exists a unique vector field (t, x) 7→ Vt(x) s.t.´
|Vt |2dνt <∞ and |ν̇t |2 =

´
|Vt |2dνt a.e. in [0, 1]. In addition, Vt is the

limit of a sequence (∇ϕn) in L2(νt) and

∂tνt +∇ · (νtVt) = 0 in D′(M × (0, 1)).



Tangent space, Otto’s metric

In other words, for a.e. t ∈ [0, 1], Vt identifies with a tangent vector to
the path (νt)t∈[0,1]. We write

ν̇t := Vt

and we call ν̇t the velocity of the path (νt)t∈[0,1] at time t. The tangent
space at the point µ ∈ P2(M) is thus defined by

TµP2(M) = {∇ϕ, ϕ : M 7→ R, ϕ ∈ C∞(M)}
L2(µ)

and a natural Riemannian metric is the following

〈∇ϕ,∇ψ〉µ =

ˆ
∇ϕ · ∇ψ dµ =

ˆ
Γ(ϕ,ψ)dµ , for ∇ϕ,∇ψ ∈ TµP2(M).



5. Gradient flows in Wasserstein space : Rényi entropies and fast
diffusion eq.



Fast diffusion is...
Let (µt)t≥0 s.t. µ0 = µ eand

∂tµt =
1

α
∆µαt = ∇ ·

(
µt

1

α− 1
∇µα−1

t

)
,

with α > 0, α 6= 1. By the continuity eq., the velocity of the flow is

µ̇t = − 1

α− 1
∇µα−1

t

Consider Rényi’s entropy

Rα(µ) =
1

α(α− 1)

ˆ
µα

and differentiate Rα along the flow.

d

dt
Rα(µt) =

1

(α− 1)

ˆ
µα−1
t ∂tµt =

1

α− 1

ˆ
µα−1
t ∇·

(
µt

1

α− 1
∇µα−1

t

)
=

ˆ (
∇ µ

α−1
t

α− 1

)
· µ̇t dµt =

〈 1

α− 1
∇µα−1

t , µ̇t

〉
µt



...a gradient flow in Wasserstein space

The gradient of Rα is thus given by

gradµRα :=
1

α− 1
∇µα−1

and the fast diffusion eq. is the gradient flow of the Rényi entropy in
Wasserstein space :

µ̇t = −gradµt
Rα

Differentiating twice, one finds that

HessµRα(∇φ,∇φ) =
1

α

ˆ [
(α− 1)(∆φ)2 + Γ2(φ)

]
µα,



Rényi entropy
Apply the computations in the finite dimensional setting with

F ≡ Rα, α = 1− 1

d
and G ≡ −Rβ , β = 1− 2

d
.

Then, letting the pressure function be Φ = 1
α−1µ

α−1, we find under
CD(ρ, d)

HessµRα(gradµRα, gradµRα)

=
1

α

ˆ [
(α− 1)(∆Φ)2 + Γ2(Φ)

]
µα ≥ ρ

α

ˆ
Γ(Φ)µα

And since β − 3 = 2α− 4,

− 〈gradµRα, gradµ(−Rβ)〉µ =
1

(α− 1)(β − 1)

ˆ
∇µα−1∇µβ−1dµ

=

ˆ
µα+β−3|∇µ|2 =

ˆ
Γ(Φ)µα

and so

HessµRα(gradµRα, gradµRα) ≥ − ρ
α
〈gradµRα, gradµ(−Rβ)〉µ



Sobolev’s inequality, finally !

As in the finite dimensional case, the previous convexity inequality implies
that

−Rβ(µ∗) ≤ α

2ρ
|gradµRα|2µ −Rβ(µ).

By definition of Rα, Rβ , α, β and Φ, we find

1 ≤ 4(d − 1)

ρd(d − 2)

ˆ
Γ(µ

d−2
2d ) +

ˆ
µ

d−2
d ,

Letting at last |v | = µ
d−2

2d , it follows that

1 ≤ 4(d − 1)

ρd(d − 2)

ˆ
Γ(v) +

ˆ
v 2,

under the normalization ‖v‖2∗ = 1 (so that µ is a prob. measure).
This is Sobolev’s inequality.


