The best constant in Sobolev's inequality

Louis Dupaigne, Institut Camille Jordan, UMR CNRS 5208, Lyon

joint work with I. Gentil (ICJ, Lyon) and S. Zugmeyer (UMPA, Lyon)

Sobolev's inequality

Aim : compute the best constant A > 0 in Sobolev's inequality

$$\|\varphi\|_{L^{2^*}(\mathbb{R}^d)} \leq A \|\nabla\varphi\|_{L^2(\mathbb{R}^d)}, \qquad \forall \varphi \in C^\infty_c(\mathbb{R}^d),$$

where $d \geq 3$ and $\frac{1}{2^*} = \frac{1}{2} - \frac{1}{d}$.

- ineq. [Sobolev, 38], simplified by [Gagliardo, 58] and [Nirenberg, 59]
- Best constant : [Bliss, 30] for radial functions, [Rodemich, 66], [Aubin, 76] and [Talenti, 76] for the g'al case, by symetrization

$$A^2 = \frac{4}{d(d-2)} |\mathbb{S}^d|^{-\frac{2}{d}}$$

A D N A 目 N A E N A E N A B N A C N

Plan of the talk

- 1. Sobolev's inequality
- 2. The Caffarelli-Kohn-Nirenberg inequality
- 3. Bakry-Emery's **Г**-calculus, curvature-dimension condition
- 4. Gradient flows in the Euclidean space \mathbb{R}^m
- 5. Wasserstein space, Otto's calculus
- 6. Gradient flows in the Wasserstein space: two Rényi entropies and a fast diffusion equation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1. Sobolev's inequality

(ロ)、(型)、(E)、(E)、 E) の(()

Enters the sphere

Recall that

$$A^2 = \frac{4}{d(d-2)} |\mathbb{S}^d|^{-\frac{2}{d}}$$

Why does the area of the sphere $|\mathbb{S}^d|$ enter in the optimal constant?

Stereographic projection

Source : Wikipedia.

The stereographic projection π is a **conformal map**. In addition,

$$g^{ij} = \frac{(1+|x|^2)^2}{4}\delta^{ij}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Using the conformal invariance of the inequality

Sobolev's inequality reads

$$\left(\int_{\mathbb{S}^d} |v|^{2^*} d\mu\right)^{\!\!\!2/2^*} \leq \frac{4}{d(d-2)} \int_{\mathbb{S}^d} |\nabla_{\mathbb{S}^d} v|^2 d\mu + \int_{\mathbb{S}^d} |v|^2 d\mu.$$

where $d\mu = \frac{1}{|\mathbb{S}^d|} d \operatorname{Vol}_g$ is the normalized volume on \mathbb{S}^d .

Since $2^* - 2 = \frac{2d}{d-2} - 2 = \frac{4}{d-2}$, we can rephrase as follows :

$$\frac{\frac{||v||^2_{L^{2^*}(\mathbb{S}^d)} - ||v||^2_{L^2(\mathbb{S}^d)}}{2^* - 2} \leq \frac{1}{d} ||\nabla v||^2_{L^2(\mathbb{S}^d)}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

From Sobolev to Beckner inequalities

Sobolev's inequality can be seen as a limiting case of a family of interpolation inequalities [Bidaut-Véron, Véron, 91], [Beckner, 93], [Demange, 04] : given $q \in [1, 2^*]$, $q \neq 2$,

$$\frac{1}{q-2}\left(||v||_{L^q(\mathbb{S}^d)}^2-||v||_{L^2(\mathbb{S}^d)}^2\right)\leq \frac{1}{d}||\nabla v||_{L^2(\mathbb{S}^d)}^2.$$

- When q = 1, this is Poincaré's inequality, achieved by $v(\omega) = \omega_1$
- When q ≠ 1, in the limit v = 1 + ew, e → 0, the inequality linearizes to Poincaré's inequality and so the constant 1/d is again optimal
- The limit $q \rightarrow 2$ yields the following log-Sobolev inequality

$$\int_{\mathbb{S}^d} v^2 \ln\left(\frac{v^2}{\|v\|_{L^2(\mathbb{S}^d)}^2}\right) d\mu \leq \frac{1}{d} ||\nabla v||_{L^2(\mathbb{S}^d)}^2.$$

A D N A 目 N A E N A E N A B N A C N

From the sphere to its curvature

Theorem (Ilias, 83)

Let (M, g) be a smooth connected compact Riemannian manifold of dimension d, $d \ge 3$. Assume that its Ricci curvature is bounded below by $\rho > 0$. Then, for every $v \in C^{\infty}(M)$,

$$\frac{||v||_{L^{2*}(M)}^2-||v||_{L^2(M)}^2}{2^*-2} \leq \frac{1}{d}\frac{d-1}{\rho}||\nabla v||_{L^2(M)}^2,$$

where we normalized the volume of M.

In other words, d and ρ are the only two parameters needed to obtain an explicit constant in Sobolev's inequality.

Could this be more general?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

2. The CKN inequality and the CKN spaces

Smooth metric measure spaces

Definition

A smooth metric measure space (M, g, μ) is a (compact) smooth Riemannian manifold (M, g) together with a weighted measure

$$d\mu = e^{-W} dV ol_g$$

We would like to define a (meaningful) notion of dimension $n \in \overline{\mathbb{R}}$ and curvature bound $\rho \in \overline{\mathbb{R}}$ on (M, g, μ) . First observe

Proposition

Let $L = \Delta - \nabla W \cdot \nabla$. Then,

$$\int_{M} u(-Lv) d\mu = \int_{M} \nabla u \cdot \nabla v \, d\mu$$

Indeed,

$$\int_{M} u(-Lv) d\mu = \int_{M} u(-\Delta v + \nabla W \cdot \nabla v) e^{-W} dV ol_{g} = \int_{M} u(-\nabla \cdot (e^{-W} \nabla v)) dV ol_{g} = \int_{M} \nabla u \cdot \nabla v \, d\mu$$

Example : the Caffarelli-Kohn-Nirenberg inequality For any $v \in C_c^{\infty}(\mathbb{R}^d)$,

$$\left(\int_{\mathbb{R}^d} \frac{|v|^p}{|x|^{bp}} dx\right)^{2/p} \leq C_{a,b} \int_{\mathbb{R}^d} \frac{|\nabla v|^2}{|x|^{2a}} dx,$$

 $d \ge 3$, $a \le b \le a+1$, $a < a_c = \frac{d-2}{2}$

where

and

$$p = \frac{2d}{d-2+2(b-a)} \le 2^* = \frac{2d}{d-2}$$

Define $n \ge d$ by

$$p=\frac{2n}{n-2}$$

- if a = b = 0, this is Sobolev's inequality
- if a = 0 and b = 1, then p = 2 and we find Hardy's inequality
- ▶ the value of p and the restriction a ≤ b ≤ a + 1 are necessary (just use scaling)
- ► the restriction $a < a_c = \frac{d-2}{2}$ is also needed for the integrals to be finite

The CKN Euclidean space

Consider the measure
$$d\hat{\mu} = |x|^{-bp} dx = e^{-W} dx$$
 so that
$$\int_{\mathbb{R}^d} \frac{|v|^p}{|x|^{bp}} dx = \int_{\mathbb{R}^d} |v|^p d\hat{\mu}$$

Conformally deform \mathbb{R}^d by setting for some α

$$\hat{\mathfrak{g}}^{ij} = |x|^{2(1-\alpha)} \delta^{ij}.$$

Then, $|\hat{\nabla}v|^2_{\hat{\mathfrak{g}}} = |x|^{2(1-\alpha)}|\nabla v|^2$, $dVol_{\hat{\mathfrak{g}}} = |x|^{d(\alpha-1)}dx$ and if $2(1-\alpha) - bp = -2a$,

$$\int_{\mathbb{R}^d} |\hat{\nabla} v|^2_{\hat{\mathfrak{g}}} d\hat{\mu} = \int_{\mathbb{R}^d} |x|^{2(1-\alpha)-bp} |\nabla v|^2 dx = \int_{\mathbb{R}^d} \frac{|\nabla v|^2}{|x|^{2s}} dx$$

And so, CKN's inequality is exactly Sobolev's inequality on

the CKN Euclidean space $(\mathbb{R}^d, \hat{\mathfrak{g}}, d\hat{\mu})$

The CKN spherical and hyperbolic spaces

Recall that the classical Sobolev inequality was usefully rewritten on the sphere. For CKN, we conformally deform \mathbb{R}^d by setting

$$\bar{\mathfrak{g}}^{ij} = |x|^{2(1-\alpha)} \frac{(1+|x|^{2\alpha})^2}{4} \delta^{ij}$$

and choosing the reference measure

$$d\bar{\mu} = \frac{|x|^{-bp}}{(1+|x|^{2\alpha})^n} dx$$

the CKN spherical space is
$$(\mathbb{R}^d, \overline{\mathfrak{g}}, d\overline{\mu})$$

Note that the CKN sphere is the round sphere in the case $\alpha = 1$. Similarly, the CKN hyperbolic space is defined by $(B_1, \tilde{g}, d\tilde{\mu})$ where

$$ilde{\mathfrak{g}}^{ij} = |x|^{2(1-lpha)} (1-|x|^{2lpha})^2 \delta^{ij}, \qquad d ilde{\mu} = rac{|x|^{-bp}}{(1-|x|^{2lpha})^n} dx$$

Theorem (D-Gentil-Zugmeyer, 21)

Sobolev's inequality holds on the three CKN spaces in the form

$$\left(\int |v|^{p} d\mu\right)^{2/p} \leq C \left[\int Sv^{2} d\mu + \int |\nabla v|_{\mathfrak{g}}^{2} d\mu\right],$$

where C is the optimal constant, S = 0 for the Euclidean CKN space, $S = \frac{n(n-2)}{4}\alpha^2$ for the CKN spherical space and $S = -\frac{n(n-2)}{4}\alpha^2$ for the CKN hyperbolic space. The test function v is supported in $\mathbb{R}^d \setminus \{0\}$ in the Euclidean and spherical cases and in B_1 in the hyperbolic case.

Theorem (Bakry-Gentil-Ledoux, 13)

Let $(M, \mathfrak{g}, d\mu)$ be a smooth metric measure space, n > 2 and $\gamma \in \mathbb{R}$. Then, there exists $\beta_n(\gamma), \theta_n(\gamma)$ such that

$$S_{\gamma}(M,\mathfrak{g},d\mu)= heta_n(\gamma)[sc_{\mathfrak{g}}-\gamma\Delta_{\mathfrak{g}}W+eta_n(\gamma)|
abla_{\mathfrak{g}}W|^2_{\mathfrak{g}}]$$

is an n-conformal invariant i.e. if p = 2n/(n-2), the inequality

$$\left(\int |v|^{p} d\mu\right)^{2/p} \leq C\left(\int S_{\gamma}(M,\mathfrak{g},d\mu)v^{2} d\mu + \int |\nabla_{\mathfrak{g}}u|_{\mathfrak{g}}^{2} d\mu\right),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is invariant under the transformation $\mathfrak{g} \to c^2 \mathfrak{g}$, $\mu \to c^{-n} \mu$, $c \in C^{\infty}(M, \mathbb{R}^*_+)$.

Theorem (D-Gentil-Zugmeyer, 21) Let $(M, \hat{\mathfrak{g}}, d\hat{\mu})$ be the CKN Euclidean space. There exists $\gamma \in \mathbb{R}$ s.t. $\overline{S_{\gamma}(M, \hat{\mathfrak{g}}, d\hat{\mu}) = 0}$. And so, $S_{\gamma}(M, \overline{\mathfrak{g}}, d\overline{\mu}) = \frac{n(n-2)}{4}\alpha^2$ and $S_{\gamma}(M, \widetilde{\mathfrak{g}}, d\widetilde{\mu}) = -\frac{n(n-2)}{4}\alpha^2$.

All the inequalities are equivalent but we have proved none of them yet!

・ロト・日本・ヨト・ヨー うへの

3. Bakry-Emery's **Г**-calculus, curvature-dimension condition

Γ-calculus and the Bochner formula

In \mathbb{R}^d , the Laplacian of the product of two functions is given by

$$\Delta v^2 = 2v\Delta v + 2|\nabla v|^2$$

In other words, the Laplacian fails to satisfy the chain rule and the defect is measured by the **carré du champ**

$$\Gamma(v) := \frac{1}{2}\Delta(v^2) - v\Delta v = |\nabla v|^2$$

Repeat this once more and measure the defect in the chain rule applied to the quadratic form Γ . We get the **iterated carré du champ**

$$egin{aligned} & \mathsf{\Gamma}_2(\mathbf{v}) \coloneqq = rac{1}{2}\Delta(\mathsf{\Gamma}(\mathbf{v})) - \mathsf{\Gamma}(\mathbf{v},\Delta\mathbf{v}) \ & = rac{1}{2}\Delta(|
abla v|^2) -
abla \mathbf{v} \cdot
abla \Delta\mathbf{v} \ & =
abla \cdot (
abla^2 \mathbf{v}
abla \mathbf{v}) -
abla \mathbf{v} \cdot
abla \Delta\mathbf{v} = \|
abla^2 \mathbf{v}\|_{H.S.}^2 \end{aligned}$$

On a Riemannian manifold, the Bochner-Lichnerowitz-Weizenboch formula states that

$$\Gamma_2(v) = \operatorname{Ric}_g(\nabla v, \nabla v) + \|\nabla^2 v\|_{H.S.}^2$$

Γ-calculus and the Bochner formula

Recall that

$$\Gamma_2(\mathbf{v}) = \operatorname{Ric}_g(\nabla \mathbf{v}, \nabla \mathbf{v}) + \|\nabla^2 \mathbf{v}\|_{H.S.}^2$$

If $\operatorname{Ric}_{\mathbf{g}} \geq \rho \mathbf{g}$, Cauchy's inequality implies that

$$\Gamma_2(v) \geq
ho |
abla v|_g^2 + rac{1}{d} (\Delta_g v)^2$$

More generally, consider a smooth metric measure space (M, g, μ) and the associated elliptic operator $L = \Delta - \nabla W \cdot \nabla$. Define its carré du champ and iterated carré du champ by

$$\Gamma(v) = \frac{1}{2}L(v^2) - vLv, \qquad \Gamma_2(v) = \frac{1}{2}L(\Gamma v) - \Gamma(v, Lv)$$

 (M, g, μ) satisfies the $\left| \ {\it CD}(
ho, n)
ight|$ curvature-dimension condition ight| if

$$\Gamma_2(v) \ge
ho \Gamma(v) + rac{1}{n} (Lv)^2$$

A basic example : the Gaussian space

Example 1 : consider $(\mathbb{R}^d, \delta_{ij}, e^{-W} dx)$ with $W(x) = |x|^2/2$. Then, $L = \Delta - x \cdot \nabla$ on $M = \mathbb{R}^d$, $\Gamma(v) = |\nabla v|^2$ and

$$\begin{split} \Gamma_2(v) &:= \frac{1}{2} \mathcal{L}(\Gamma(v)) - \Gamma(v, \mathcal{L}v) \\ &= \|\nabla^2 v\|_{\mathcal{H}.S.}^2 - \frac{1}{2} x \cdot \nabla |\nabla v|^2 + \nabla v \cdot \nabla (x \cdot \nabla v) \\ &= \|\nabla^2 v\|_{\mathcal{H}.S.}^2 + |\nabla v|^2 \ge 1 \cdot |\nabla v|^2 + \frac{1}{\infty} (\mathcal{L}v)^2 \end{split}$$

In this example, whereas $(\mathbb{R}^d, \delta_{ij}, dx)$ is flat, the potential $W(x) = |x|^2/2$ is confining, yielding the curvature bound $\rho = 1$.

Note : regarding dimension, the Gaussian space can be seen as the limit of a (d + m)-dimensional sphere (of normalized radius), as $m \to +\infty$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Sobolev inequality on smooth metric measure spaces

Theorem (Bakry-Ledoux, 96)

Assume that $(M, \mathfrak{g}, d\mu)$ verifies the curvature-dimension condition $CD(\rho, n)$ for some $\rho > 0$ and $n \in [d, +\infty)$, n > 2. Then,

$$||v||_{L^{\frac{2n}{n-2}}(M)}^{2} \leq \frac{4}{n(n-2)} \frac{n-1}{\rho} ||\nabla v||_{L^{2}(M)}^{2} + ||v||_{L^{2}(M)}^{2},$$

under the normalization $\mu(M) = 1$.

Remark

The result extends to the nonsmooth setting : [Profeta, 15] for $RCD^*(K, N)$ -spaces, [Cavaletti-Mondino, 17] for $CD^*(K, N)$ -spaces.

A D N A 目 N A E N A E N A B N A C N

Liouville-type theorem

Theorem (D-Gentil-Zugmeyer, 20)

Assume $(M, \mathfrak{g}, d\mu)$ verifies the curvature-dimension condition $CD(\rho, n)$ for some $\rho > 0$ and $n \in [d, +\infty)$, n > 2. Set $q = \frac{2n}{n-2}$. Let A > 0 and $f \in C^1(\mathbb{R}^*_+; \mathbb{R}^*_+)$ nonincreasing. Assume that $v \in C^2(M)$, v > 0 is a nonconstant solution to

$$-ALv + v = v^{q-1}f(v) \quad in \ M,$$

Then, $A \le A^* := \frac{4(n-1)}{n(n-2)\rho}$. If $A = A^*$, then f = cste and if W = 0, $\Phi = v^{-\frac{q-2}{2}}$ solves $\nabla^2 \Phi = \frac{\Delta \Phi}{d}g$.

Theorem (Tashiro 65, Obata 71, Nobili-Violo 21) Assume $A = A^*$, W = 0. Then, (M, g) is isometric to the round sphere and for some $\lambda > 1$ and $x_0 \in M$,

$$v(x) = (\lambda - \cos r)^{-\frac{d-2}{2}}, \qquad \text{where } r = d(x, x_0).$$

Curvature-dimension condition for the CKN sphere

$$\alpha^2 \le \frac{d-2}{n-2}$$

is nonnegative, the CKN sphere satisfies the $CD(\rho, n)$ condition with

$$\rho = \alpha^2 (n-1).$$

Remark

The above parameter zone does not coincide with the known region for symmetry for extremals of the inequality. In fact, as we shall see, only an integrated version of $CD(\rho, n)$ is needed to prove sharp inequalities, which holds true if and only if

$$\alpha^2 \le \frac{d-1}{n-1}$$

Surprise, this is equivalent to $0 \le \alpha \le 1$!

3. Gradient flows in Euclidean space

Gradient flows in Euclidean space

Let $F : \mathbb{R}^m \to \mathbb{R}$ of class C^2 , strictly convex and coercive i.e. $\lim_{|x|\to+\infty} F(x) = +\infty$. Then, F has a unique critical point x^* . in addition,

$$F(x^*) = \inf_{x \in \mathbb{R}^m} F(x).$$

In order to locate the point of minimum x^* , start from an arbitrary point $x \in \mathbb{R}^m$ and follow the gradient flow of F:

$$\begin{cases} \frac{d}{dt}S_t(x) = -\nabla F(S_t(x))\\ S_0(x) = x. \end{cases}$$

Since

$$\frac{d}{dt}F(S_t(x)) = \nabla F(S_t(x)) \cdot \frac{d}{dt}S_t(x) = -|\nabla F(S_t(x))|^2 \le 0$$

one proves easily that

$$\lim_{t\to\infty}S_t(x)=x^*.$$

Entropy-entropy production inequality

If in addition F is strongly convex, i.e. $\nabla^2 F \ge \rho \operatorname{Id}$ where $\rho > 0$, then we obtain the optimal speed of convergence to equilibrium of the **entropy** F along its gradient flow : compute $\frac{d^2}{dt^2}F(S_t(x))$ and easily get

$$F(S_t(x)) - F(x^*) \le e^{-2\rho t} (F(x) - F(x^*))$$

Since equality holds when t = 0, we can differentiate the inequality at t = 0 and deduce that

$$F(x) - F(x^*) \leq \frac{1}{2\rho} |\nabla F(x)|^2$$

This entropy-entropy production inequality is optimal, in the sense that $F(x) = \rho |x|^2/2$ saturates it. More generally,

$$G(x^*) \leq \frac{1}{2\rho} |\nabla F(x)|^2 + G(x),$$

under the assumption

$$\nabla F \cdot \nabla^2 F \, \nabla F \geq -\rho \nabla F \cdot \nabla G$$

4. Wasserstein space, Otto's calculus

Wasserstein space

Equip the set of prob. measures $\mathcal{P}_2(M)$ with the Wasserstein distance

$$W_2(\mu,
u) = \inf \sqrt{\iint \mathbf{d}(x,y)^2 d\pi(x,y)},$$

where the inf. is taken on all transport plans $\pi \in \mathcal{P}(M \times M)$ with marginals μ and ν and where **d** is the Riemannian distance on M. A path $[0,1] \ni t \mapsto \nu_t \in \mathcal{P}_2(M)$ is a.c. w.r.t W_2 if

$$|\dot{
u}_t|:=\limsup_{s
ightarrow t}rac{W_2(
u_t,
u_s)}{|t-s|}\in L^1([0,1]).$$

Theorem (Ambrosio-Gigli-Savaré, 08)

Given any a.c. path, there exists a unique vector field $(t, x) \mapsto V_t(x)$ s.t. $\int |V_t|^2 d\nu_t < \infty$ and $|\dot{\nu}_t|^2 = \int |V_t|^2 d\nu_t$ a.e. in [0, 1]. In addition, V_t is the limit of a sequence $(\nabla \varphi_n)$ in $L^2(\nu_t)$ and

$$\partial_t \nu_t + \nabla \cdot (\nu_t V_t) = 0$$
 in $\mathcal{D}'(M \times (0,1))$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Tangent space, Otto's metric

In other words, for a.e. $t \in [0, 1]$, V_t identifies with a tangent vector to the path $(\nu_t)_{t \in [0,1]}$. We write

$$\dot{\nu}_t := V_t$$

and we call $\dot{\nu}_t$ the velocity of the path $(\nu_t)_{t \in [0,1]}$ at time t. The tangent space at the point $\mu \in \mathcal{P}_2(M)$ is thus defined by

$$T_{\mu}\mathcal{P}_{2}(M) = \overline{\{\nabla\varphi, \ \varphi: M \mapsto \mathbb{R}, \varphi \in C^{\infty}(M)\}}^{L^{2}(\mu)}$$

and a natural Riemannian metric is the following

$$\langle
abla arphi,
abla \psi
angle_{\mu} = \int
abla arphi \cdot
abla \psi \ d\mu = \int \Gamma(arphi, \psi) d\mu \ , \quad ext{ for }
abla arphi,
abla \psi \in T_{\mu} \mathcal{P}_2(\mathcal{M}).$$

5. Gradient flows in Wasserstein space : Rényi entropies and fast diffusion eq.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Fast diffusion is...

Let $(\mu_t)_{t\geq 0}$ s.t. $\mu_0 = \mu$ eand

$$\partial_t \mu_t = \frac{1}{\alpha} \Delta \mu_t^{\alpha} = \nabla \cdot \left(\mu_t \frac{1}{\alpha - 1} \nabla \mu_t^{\alpha - 1} \right),$$

with $\alpha >$ 0, $\alpha \neq 1.$ By the continuity eq., the velocity of the flow is

$$\dot{\mu}_t = -\frac{1}{\alpha - 1} \nabla \mu_t^{\alpha - 1}$$

Consider Rényi's entropy

$$\mathcal{R}_{lpha}(\mu) = rac{1}{lpha(lpha-1)}\int \mu^{lpha}$$

and differentiate \mathcal{R}_{α} along the flow.

$$\frac{d}{dt}\mathcal{R}_{\alpha}(\mu_{t}) = \frac{1}{(\alpha-1)}\int \mu_{t}^{\alpha-1}\partial_{t}\mu_{t} = \frac{1}{\alpha-1}\int \mu_{t}^{\alpha-1}\nabla\cdot\left(\mu_{t}\frac{1}{\alpha-1}\nabla\mu_{t}^{\alpha-1}\right) \\
= \int \left(\nabla\frac{\mu_{t}^{\alpha-1}}{\alpha-1}\right)\cdot\dot{\mu}_{t} \ d\mu_{t} = \left\langle\frac{1}{\alpha-1}\nabla\mu_{t}^{\alpha-1},\dot{\mu}_{t}\right\rangle_{\mu_{t}}$$

...a gradient flow in Wasserstein space

The gradient of \mathcal{R}_{α} is thus given by

$$\operatorname{grad}_{\mu}\mathcal{R}_{\alpha} := \frac{1}{\alpha - 1} \nabla \mu^{\alpha - 1}$$

and the fast diffusion eq. is the gradient flow of the Rényi entropy in Wasserstein space :

$$\dot{\mu}_t = -\mathrm{grad}_{\mu_t} \mathcal{R}_{\alpha}$$

Differentiating twice, one finds that

$$\mathrm{Hess}_{\mu}\mathcal{R}_{lpha}(
abla\phi,
abla\phi)=rac{1}{lpha}\intig[(lpha-1)(\Delta\phi)^2+\mathsf{F}_2(\phi)ig]\mu^{lpha},$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Rényi entropy

Apply the computations in the finite dimensional setting with

$$F \equiv R_{lpha}, \quad lpha = 1 - rac{1}{d} \quad ext{and} \quad G \equiv -R_{eta}, \quad eta = 1 - rac{2}{d}.$$

Then, letting the pressure function be $\Phi = \frac{1}{\alpha - 1} \mu^{\alpha - 1}$, we find under $CD(\rho, d)$

$$egin{aligned} &\operatorname{Hess}_{\mu}\mathcal{R}_{lpha}(\operatorname{grad}_{\mu}\mathcal{R}_{lpha},\operatorname{grad}_{\mu}\mathcal{R}_{lpha}) \ &= rac{1}{lpha}\intigg[(lpha-1)(\Delta\Phi)^2+\mathsf{\Gamma}_2(\Phi)igg]\mu^{lpha}\geq rac{
ho}{lpha}\int\mathsf{\Gamma}(\Phi)\mu^{lpha} \end{aligned}$$

And since $\beta - 3 = 2\alpha - 4$,

$$\begin{split} -\langle \operatorname{grad}_{\mu} \mathcal{R}_{\alpha}, \operatorname{grad}_{\mu} (-\mathcal{R}_{\beta}) \rangle_{\mu} &= \frac{1}{(\alpha - 1)(\beta - 1)} \int \nabla \mu^{\alpha - 1} \nabla \mu^{\beta - 1} d\mu \\ &= \int \mu^{\alpha + \beta - 3} |\nabla \mu|^{2} = \int \Gamma(\Phi) \mu^{\alpha} \end{split}$$

and so

$$\operatorname{Hess}_{\mu}\mathcal{R}_{\alpha}(\operatorname{grad}_{\mu}\mathcal{R}_{\alpha},\operatorname{grad}_{\mu}\mathcal{R}_{\alpha}) \geq -\frac{\rho}{\alpha}\langle \operatorname{grad}_{\mu}\mathcal{R}_{\alpha},\operatorname{grad}_{\mu}(-\mathcal{R}_{\beta})\rangle_{\mu}$$

Sobolev's inequality, finally !

As in the finite dimensional case, the previous convexity inequality implies that

$$-\mathcal{R}_{eta}(\mu^*) \leq rac{lpha}{2
ho} |\mathrm{grad}_{\mu}\mathcal{R}_{lpha}|_{\mu}^2 - \mathcal{R}_{eta}(\mu).$$

By definition of \mathcal{R}_{α} , \mathcal{R}_{β} , α , β and Φ , we find

$$1 \leq \frac{4(d-1)}{\rho d(d-2)} \int \Gamma(\mu^{\frac{d-2}{2d}}) + \int \mu^{\frac{d-2}{d}},$$

Letting at last $|v| = \mu^{\frac{d-2}{2d}}$, it follows that

$$1 \leq \frac{4(d-1)}{\rho d(d-2)} \int \Gamma(v) + \int v^2,$$

under the normalization $\|v\|_{2^*} = 1$ (so that μ is a prob. measure). This is Sobolev's inequality.

うせん 川田 ふぼや 小田 そうそう