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Sobolev's inequality

Aim : compute the best constant A > 0 in Sobolev’s inequality

@) < AlVell ey, Vi € C°(RY),

el

where d > 3 and % =
> ineq. [Sobolev, 38], simplified by [Gagliardo, 58] and [Nirenberg, 59]

> Best constant : [Bliss, 30] for radial functions, [Rodemich, 66],
[Aubin, 76] and [Talenti, 76] for the g'al case, by symetrization
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1. Sobolev's inequality



Enters the sphere

Recall that 4
2 d|—2
=— S
ad—2>""

Why does the area of the sphere |SY| enter in the optimal constant ?
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Stereographic projection

Source : Wikipedia.

The stereographic projection 7 is a conformal map. In addition,

(1 + |X|2)2 5(]

ij:
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Using the conformal invariance of the inequality

Sobolev's inequality reads

2/2* 4
2* < 2 2 )
( [y du) < gz | Tevdut [ v

where dp = ‘S—ld‘d\/olg is the normalized volume on S¢.

Since 2 — 2 = fz —-2= d42, we can rephrase as follows :

||V| 2% (s9) ||V||%2(Sd)

2* =2

< g\|vv||i2(sd)~




From Sobolev to Beckner inequalities

Sobolev's inequality can be seen as a limiting case of a family of
interpolation inequalities [Bidaut-Véron, Véron, 91], [Beckner, 93],
[Demange, 04] : given g € [1,2*], g # 2,

1 1
=5 (Ml = VIRes) < GI9VIRe

> When g = 1, this is Poincaré’s inequality, achieved by v(w) = w;

» When g # 1, in the limit v = 1+ ew, € — 0, the inequality linearizes
to Poincaré's inequality and so the constant 1/d is again optimal

» The limit g — 2 yields the following log-Sobolev inequality

1
/ vZIn dp < S||V[fsay-
IvI1Z2 50 ||Lz 59) d



From the sphere to its curvature

Theorem (llias, 83)

Let (M, g) be a smooth connected compact Riemannian manifold of
dimension d, d > 3. Assume that its Ricci curvature is bounded below by
p > 0. Then, for every v € C*®(M),

IvITer vy = 1VI2my  1d—1 )
> 5 S P [V VIL2(m)

where we normalized the volume of M.

In other words, d and p are the only two parameters needed to obtain an
explicit constant in Sobolev's inequality.

Could this be more general ?



2. The CKN inequality and the CKN spaces



Smooth metric measure spaces

Definition
A smooth metric measure space (M, g, i) is a (compact) smooth
Riemannian manifold (M, g) together with a weighted measure

dp = e "dVol,

We would like to define a (meaningful) notion of dimension n € R and
curvature bound p € R on (M, g, ut). First observe

Proposition
Let L=A—-VW.-V. Then,

/u(va)du:/ Vu-Vvdu
M M

Indeed,

/ u(—Lv)du:/ W=Dy + YW - Tv)e™ Y dVol :/ u(7v4(e*WvV))de/g:/ Vu.Vvdu
M M M M



Example : the Caffarelli-Kohn-Nirenberg inequality
For any v € C*(RY),

2
/ P ) < b/ Vv
Re [X]%P e |X|2‘g o

where d >3, a<b<a+l, a<acz% and
2d . 2d
P=d2tab-a) =% "d-2
Define n > d by
_2n
P= n—2

» if a= b =0, this is Sobolev’s inequality
» if a=0and b=1, then p=2 and we find Hardy's inequality

> the value of p and the restriction a < b < a+ 1 are necessary (just
use scaling)

> the restriction a < a. = % is also needed for the integrals to be

finite



The CKN Euclidean space

Consider the measure | dji = |x|"?Pdx | =: e=Wdx so that

[v|? N
o dx = [vIPdp
re |X|%P RY

Conformally deform RY by setting for some o

@ij — |X|2(1—a)5ij.

Then, [Vv[2 = [x]20=)|Vv|2, dVoly = [x|¥Vdx and if
2(1—a) — bp=-2a,

2
/ |@v\%dﬂ:/ |X|2(1_°‘)_bp|Vv|2dx:/ V] dx
RY ¢ R re X%

And so, CKN’s inequality is exactly Sobolev’s inequality on

the CKN Euclidean space (R, §, dji)




The CKN spherical and hyperbolic spaces

Recall that the classical Sobolev inequality was usefully rewritten on the
sphere. For CKN, we conformally deform RY by setting

. 1 2a)2
ﬁl_/ _ ‘X|2(1_a)( + ‘:| ) 5

and choosing the reference measure

x|

dip = (1+|X|2a)n X

the CKN spherical space is  (RY, g, dji)

Note that the CKN sphere is the round sphere in the case a = 1.
Similarly, the CKN hyperbolic space is defined by (By, §, dfi) where

[x|~*

/- 2(1—a) 1— 2 25ij dii =
= P R, di=

dx



Theorem (D-Gentil-Zugmeyer, 21)
Sobolev’s inequality holds on the three CKN spaces in the form

2/p
(/|deu) <C {/5v2du+/v\/|§d4,

where C is the optimal constant, S = 0 for the Euclidean CKN space,
S= @c@ for the CKN spherical space and S = —@oﬂ for the
CKN hyperbolic space. The test function v is supported in R\ {0} in
the Euclidean and spherical cases and in By in the hyperbolic case.



Theorem (Bakry-Gentil-Ledoux, 13)

Let (M, g,du) be a smooth metric measure space, n > 2 and v € R.
Then, there exists B,(7), 0,(7) such that

S,(M. g, dp) = 0,(7)[scg — YAGW + Ba(7)| Vg W3]

is an n-conformal invariant i.e. if p = 2n/(n — 2), the inequality

2/p
(/vpdu) < C(/SW(M,g,du)vzdﬂJr/Vgu@du),

is invariant under the transformation g — czg, w—=c ",

c e C®(M,R%).

Theorem (D-Gentil-Zugmeyer, 21)

Let (M, §,dpr) be the CKN Euclidean space. There exists v € R s.t.
] S,(M.,§,dp) = 0| And so, S,(M,§,dfi) = ""=2a2 and

4
S (M, §, dfi) = — 12202,




All the inequalities are equivalent but we have proved none of them yet !



3. Bakry-Emery's '-calculus, curvature-dimension condition



[-calculus and the Bochner formula
In RY, the Laplacian of the product of two functions is given by

Av? =2vAv +2|Vv|?
In other words, the Laplacian fails to satisfy the chain rule and the defect
is measured by the carré du champ

Mv):= %A(vz) —vAv = |Vv]?

Repeat this once more and measure the defect in the chain rule applied
to the quadratic form I'. We get the iterated carré du champ
1

Ma(v) := EA(F(V)) —T(v,Av)

1
= 5A(\vv|2) —Vv-VAv
= V- (V2/VWv) - Vv VAv = |[V2v|3 .

On a Riemannian manifold, the Bochner-Lichnerowitz-Weizenboch
formula states that

M2(v) = Ricg(Vv, Vv) + [|[V2V|3 s,




[-calculus and the Bochner formula

Recall that
2(v) = Ricg(Vv, Vv) + |[V2v|Fs.

If Ric; > pg, Cauchy’s inequality implies that

1
ra(v) 2 ATV + = (Agv)?

More generally, consider a smooth metric measure space (M, g, 1) and
the associated elliptic operator L = A — VW - V. Define its carré du
champ and iterated carré du champ by

M(v) = %L(ﬂ) Sy, Fa(v) = %L(Fv) (v, Lv)

(M, g, ) satisfies the‘ CD(p, n) curvature-dimension condition ‘ if

Fa(v) > pF(v) + = (Lv)?

n




A basic example : the Gaussian space

Example 1 : consider (R9, §;;, e=Wdx) with W(x) = [x[>/2. Then,
L=A-x-VonM=RI T(v)=|Vv|? and
1

Ma(v) := EL(F(V)) —I(v,Lv)

1
= IV} s — 5% VIVv]2+ Vv -V(x-Vv)

= V2viffs + Vv > 1 [Vvf? + —(Lv)?

1
00
In this example, whereas (R, §;;, dx) is flat, the potential W(x) = |x|?/2
is confining, yielding the curvature bound p = 1.

Note : regarding dimension, the Gaussian space can be seen as the limit
of a (d + m)-dimensional sphere (of normalized radius), as m — +cc.



The Sobolev inequality on smooth metric measure spaces

Theorem (Bakry-Ledoux, 96)

Assume that (M, g, du) verifies the curvature-dimension condition
CD(p, n) for some p >0 and n € [d,400), n > 2. Then,

4 n—1
2 < vl 2
||VHL”2_2(M) Sain-2) » IV Vo) + VI (M)

under the normalization u(M) = 1.

Remark
The result extends to the nonsmooth setting : [Profeta, 15] for
RCD*(K, N)-spaces, [Cavaletti-Mondino, 17] for CD*(K, N)-spaces.



Liouville-type theorem

Theorem (D-Gentil-Zugmeyer, 20)

Assume (M, g, du) verifies the curvature-dimension condition CD(p, n)
for some p >0 and n € [d,+00), n > 2. Set q = 2% Let A> 0 and
f € CY(R*;R%) nonincreasing.

Assume that v € C?>(M), v > 0 is a nonconstant solution to

—ALv+v=viY(v) inM,

% . 4(n=1)
Then, A< A* .= (=2 i

If A= A*, then f = cste and if W =0, ¢ = v*qu solves V2¢ = d g.

Theorem (Tashiro 65, Obata 71, Nobili-Violo 21)

Assume A= A*, W = 0. Then, (M, g) is isometric to the round sphere
and for some A > 1 and xo € M,

v(x) = (A — cos r)*%, where r = d(x, xp).



Curvature-dimension condition for the CKN sphere

Theorem (D-Gentil-Zugmeyer, 21)

When
5 d—=2
<

~n-2
is nonnegative, the CKN sphere satisfies the CD(p, n) condition with

[e%

p=a(n—1).

Remark

The above parameter zone does not coincide with the known region for
symmetry for extremals of the inequality. In fact, as we shall see, only an
integrated version of CD(p, n) is needed to prove sharp inequalities,
which holds true if and only if

d-1

2
o <
n—1

Surprise, this is equivalent to0 < o < 1/



3. Gradient flows in Euclidean space



Gradient flows in Euclidean space

Let F: R™ — R of class C?, strictly convex and coercive i.e.
lim|y|— o0 F(x) = 400. Then, F has a unique critical point x*. in
addition,
F(x*) = inf F(x).
(x) = inf F(x)
In order to locate the point of minimum x*, start from an arbitrary point
x € R™ and follow the gradient flow of F :

d
{ 25:(x) = ~VF(S:x)
So(x) = x.

Since

d d 5
EF(St(X)) = VF(5:(x)) ast(x) = —|VF(&(x))" <0

one proves easily that

tango Si(x) = x*.



Entropy-entropy production inequality

If in addition F is strongly convex, i.e. V2F > pld where p > 0, then we

obtain the optimal speed of convergence to equilibrium of the entropy F
2

along its gradient flow : compute 45 F(5;(x)) and easily get

F(Se(x)) = F(x*) < e (F(x) — F(x"))

Since equality holds when t = 0, we can differentiate the inequality at
t = 0 and deduce that

oo L 2
F(x) = F(x") < TPIVF(X)\

This entropy-entropy production inequality is optimal, in the sense
that F(x) = p|x|?/2 saturates it. More generally,

G(x) < %IVF(X)F +G(x),

under the assumption

|VF-V?FVF > —pVF - VG|




4. Wasserstein space, Otto's calculus



Wasserstein space

Equip the set of prob. measures P,(M) with the Wasserstein distance

Wa(p,v) = inf ¢ J] dxypanixy)

where the inf. is taken on all transport plans 7 € P(M x M) with
marginals 1 and v and where d is the Riemannian distance on M.
A path [0,1] > t = vy € Po(M) is a.c. wor.t Wh if

WZ(Vt7 VS)

el (URE

|| = limsup
s—t

Theorem (Ambrosio-Gigli-Savaré, 08)

Given any a.c. path, there exists a unique vector field (t,x) — Vi(x) s.t.
[ Ve dvy < o and |14]? = [ |Vi]?dve a.e. in [0,1]. In addition, V; is the
limit of a sequence (V,) in L?(v;) and

[ Deve + V- (Vi) =0] in D'(M x (0,1)).




Tangent space, Otto's metric

In other words, for a.e. t € [0,1], V; identifies with a tangent vector to
the path (v¢)¢cpo,1- We write

I)t = Vt

and we call 2 the velocity of the path (vt):c[0,1] at time t. The tangent
space at the point p1 € P>(M) is thus defined by

L2(w)

T P2(M)={Ve, ¢ : M—=R,pec C(M)}

and a natural Riemannian metric is the following

(Vo, Vi), = /valb dp = /r(%w)du, for Vo,V € T, P2(M).




5. Gradient flows in Wasserstein space : Rényi entropies and fast
diffusion eq.



Fast diffusion is...
Let (p)e>0 s.t. 1o = p eand

1
Orpir = EAM?‘ =V (Nt Vu ) ;

with @ > 0, a # 1. By the continuity eq., the velocity of the flow is

1
a—1

a—1
t

ﬂt:—

Consider Rényi's entropy

Ra(p) = %/ua

ala—1
and differentiate R, along the flow.

d _ 1 a—1 _ 1 a—1
IRQ(MI’) = ﬁ/:u’t Orpir = H/Mt V- (Mt VM )

a—1
- 1323 . o 1 a—1 -
—/(Val) fit dut—<rflvut 7Mt>ut




...a gradient flow in Wasserstein space

The gradient of R, is thus given by

1 a—1
gradMRa = EV/JJ

and the fast diffusion eq. is the gradient flow of the Rényi entropy in
Wasserstein space :

‘,L.Lt = —grad,, Ra ‘

Differentiating twice, one finds that

Hess, Ra(V6,90) = [ [(a = (807 + Fa(a)]u



Rényi entropy

Apply the computations in the finite dimensional setting with

1 2
F =R,, azl—g and G =—Rg, 6:1—3.
Then, letting the pressure function be ® = L=~ we find under

CD(p, d)

Hess, Ra(grad, Ra, grad, Ry )
- 1/ (o — 1)(A®) + ()] > 2 /r(q>)

«
And since  — 3 =2a — 4,

— (grad, Ra, grad, (= Rp)), = CEDCED) /Vﬂa—lvuﬂ—ld’u

=/ua+ﬁ‘3\Vul2 =/r(¢)u‘”

Hess, Ra(grad, Ra, grad,Ra) > §<grad Rasgrad, (—Rp))

and so




Sobolev's inequality, finally !

As in the finite dimensional case, the previous convexity inequality implies
that

. o
—Rp(p") < ZlgraduRali — Ra(p)-
By definition of R, Rg, o, § and @, we find

4(d — 1) d—2 d—2
< 7
1< [Ty [
Letting at last |v| =y , it follows that
4(d —1) 5
< N )
l_pd(d72)/l'(v)+/v,

under the normalization ||v
This is Sobolev’s inequality.

2+ =1 (so that 4 is a prob. measure).



