The best constant in Sobolev's inequality

Louis Dupaigne, Institut Camille Jordan, UMR CNRS 5208, Lyon
joint work with I. Gentil (ICJ, Lyon) and S. Zugmeyer (UMPA, Lyon)

Sobolev's inequality

Aim : compute the best constant $A>0$ in Sobolev's inequality

$$
\|\varphi\|_{L^{*}\left(\mathbb{R}^{d}\right)} \leq A\|\nabla \varphi\|_{L^{2}\left(\mathbb{R}^{d}\right)}, \quad \forall \varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)
$$

where $d \geq 3$ and $\frac{1}{2^{*}}=\frac{1}{2}-\frac{1}{d}$.

- ineq. [Sobolev, 38], simplified by [Gagliardo, 58] and [Nirenberg, 59]
- Best constant : [Bliss, 30] for radial functions, [Rodemich, 66], [Aubin, 76] and [Talenti, 76] for the g'al case, by symetrization

$$
A^{2}=\frac{4}{d(d-2)}\left|\mathbb{S}^{d}\right|^{-\frac{2}{d}}
$$

Plan of the talk

1. Sobolev's inequality
2. The Caffarelli-Kohn-Nirenberg inequality
3. Bakry-Emery's Γ-calculus, curvature-dimension condition
4. Gradient flows in the Euclidean space \mathbb{R}^{m}
5. Wasserstein space, Otto's calculus
6. Gradient flows in the Wasserstein space: two Rényi entropies and a fast diffusion equation
7. Sobolev's inequality

Enters the sphere

Recall that

$$
A^{2}=\frac{4}{d(d-2)}\left|\mathbb{S}^{d}\right|^{-\frac{2}{d}}
$$

Why does the area of the sphere $\left|\mathbb{S}^{d}\right|$ enter in the optimal constant?

BIBLIOTHÉQUE
D'ÉDUCATIOX ET DE RÉCRÉATIOX
j. hetzel et cis, 18, rue jacob paris
Tous drolss de traduction et de reproduction réents.

Stereographic projection

Source: Wikipedia.

The stereographic projection π is a conformal map. In addition,

$$
g^{i j}=\frac{\left(1+|x|^{2}\right)^{2}}{4} \delta^{i j}
$$

Using the conformal invariance of the inequality

Sobolev's inequality reads

$$
\left(\int_{\mathbb{S}^{d}}|v|^{2^{*}} d \mu\right)^{2 / 2^{*}} \leq \frac{4}{d(d-2)} \int_{\mathbb{S}^{d}}\left|\nabla_{\mathbb{S}^{d}} v\right|^{2} d \mu+\int_{\mathbb{S}^{d}}|v|^{2} d \mu
$$

where $d \mu=\frac{1}{\left|\mathbb{S}^{d}\right|} d \mathrm{Vol}_{g}$ is the normalized volume on \mathbb{S}^{d}.
Since $2^{*}-2=\frac{2 d}{d-2}-2=\frac{4}{d-2}$, we can rephrase as follows :

$$
\frac{\|v\|_{L^{2}\left(\mathbb{S}^{d}\right)}^{2}-\|v\|_{L^{2}\left(\mathbb{S}^{d}\right)}^{2}}{2^{*}-2} \leq \frac{1}{d}\|\nabla v\|_{L^{2}\left(\mathbb{S}^{d}\right)}^{2}
$$

From Sobolev to Beckner inequalities

Sobolev's inequality can be seen as a limiting case of a family of interpolation inequalities [Bidaut-Véron, Véron, 91], [Beckner, 93],
[Demange, 04] : given $q \in\left[1,2^{*}\right], q \neq 2$,

$$
\frac{1}{q-2}\left(\|v\|_{L^{q}\left(\mathbb{S}^{d}\right)}^{2}-\|v\|_{L^{2}\left(\mathbb{S}^{d}\right)}^{2}\right) \leq \frac{1}{d}\|\nabla v\|_{L^{2}\left(\mathbb{S}^{d}\right)}^{2} .
$$

- When $q=1$, this is Poincaré's inequality, achieved by $v(\omega)=\omega_{1}$
- When $q \neq 1$, in the limit $v=1+\epsilon w, \epsilon \rightarrow 0$, the inequality linearizes to Poincare's inequality and so the constant $1 / d$ is again optimal
- The limit $q \rightarrow 2$ yields the following log-Sobolev inequality

$$
\int_{\mathbb{S}^{d}} v^{2} \ln \left(\frac{v^{2}}{\|v\|_{L^{2}\left(\mathbb{S}^{d}\right)}^{2}}\right) d \mu \leq \frac{1}{d}\|\nabla v\|_{L^{2}\left(\mathbb{S}^{d}\right)}^{2}
$$

From the sphere to its curvature

Theorem (llias, 83)
Let (M, g) be a smooth connected compact Riemannian manifold of dimension $d, d \geq 3$. Assume that its Ricci curvature is bounded below by $\rho>0$. Then, for every $v \in C^{\infty}(M)$,

$$
\frac{\|v\|_{L^{2^{*}}(M)}^{2}-\|v\|_{L^{2}(M)}^{2}}{2^{*}-2} \leq \frac{1}{d} \frac{d-1}{\rho}\|\nabla v\|_{L^{2}(M)}^{2},
$$

where we normalized the volume of M.

In other words, d and ρ are the only two parameters needed to obtain an explicit constant in Sobolev's inequality.

Could this be more general ?
2. The CKN inequality and the CKN spaces

Smooth metric measure spaces

Definition

A smooth metric measure space (M, g, μ) is a (compact) smooth Riemannian manifold (M, g) together with a weighted measure

$$
d \mu=e^{-W} d V o I_{g}
$$

We would like to define a (meaningful) notion of dimension $n \in \overline{\mathbb{R}}$ and curvature bound $\rho \in \overline{\mathbb{R}}$ on (M, g, μ). First observe

Proposition

Let $L=\Delta-\nabla W \cdot \nabla$. Then,

$$
\int_{M} u(-L v) d \mu=\int_{M} \nabla u \cdot \nabla v d \mu
$$

Indeed,

$$
\int_{M} u(-L v) d \mu=\int_{M} u(-\Delta v+\nabla W \cdot \nabla v) e^{-W} d V o l_{g}=\int_{M} u\left(-\nabla \cdot\left(e^{-W} \nabla v\right)\right) d V o l_{g}=\int_{M} \nabla u \cdot \nabla v d \mu
$$

Example : the Caffarelli-Kohn-Nirenberg inequality

For any $v \in \mathcal{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$,

$$
\left(\int_{\mathbb{R}^{d}} \frac{|v|^{p}}{|x|^{b p}} d x\right)^{2 / p} \leq C_{a, b} \int_{\mathbb{R}^{d}} \frac{|\nabla v|^{2}}{|x|^{2 a}} d x
$$

where

$$
\begin{array}{r}
d \geq 3, \quad a \leq b \leq a+1, \quad a<a_{c}=\frac{d-2}{2} \\
p=\frac{2 d}{d-2+2(b-a)} \leq 2^{*}=\frac{2 d}{d-2} .
\end{array}
$$

Define $n \geq d$ by

$$
p=\frac{2 n}{n-2}
$$

- if $a=b=0$, this is Sobolev's inequality
- if $a=0$ and $b=1$, then $p=2$ and we find Hardy's inequality
- the value of p and the restriction $a \leq b \leq a+1$ are necessary (just use scaling)
- the restriction $a<a_{c}=\frac{d-2}{2}$ is also needed for the integrals to be finite

The CKN Euclidean space

Consider the measure $d \hat{\mu}=|x|^{-b p} d x=: e^{-w} d x$ so that

$$
\int_{\mathbb{R}^{d}} \frac{|v|^{p}}{|x|^{b p}} d x=\int_{\mathbb{R}^{d}}|v|^{p} d \hat{\mu}
$$

Conformally deform \mathbb{R}^{d} by setting for some α

$$
\hat{\mathfrak{g}}^{i j}=|x|^{2(1-\alpha)} \delta^{i j}
$$

Then, $|\hat{\nabla} v|_{\hat{\mathfrak{g}}}^{2}=|x|^{2(1-\alpha)}|\nabla v|^{2}, d V o_{\hat{\mathfrak{g}}}=|x|^{d(\alpha-1)} d x$ and if $2(1-\alpha)-b p=-2 a$,

$$
\int_{\mathbb{R}^{d}}|\hat{\nabla} v|_{\hat{\mathfrak{g}}}^{2} d \hat{\mu}=\int_{\mathbb{R}^{d}}|x|^{2(1-\alpha)-b p}|\nabla v|^{2} d x=\int_{\mathbb{R}^{d}} \frac{|\nabla v|^{2}}{|x|^{2 a}} d x
$$

And so, CKN's inequality is exactly Sobolev's inequality on

$$
\text { the CKN Euclidean space }\left(\mathbb{R}^{d}, \hat{\mathfrak{g}}, d \hat{\mu}\right)
$$

The CKN spherical and hyperbolic spaces

Recall that the classical Sobolev inequality was usefully rewritten on the sphere. For CKN, we conformally deform \mathbb{R}^{d} by setting

$$
\overline{\mathfrak{g}}^{i j}=|x|^{2(1-\alpha)} \frac{\left(1+|x|^{2 \alpha}\right)^{2}}{4} \delta^{i j}
$$

and choosing the reference measure

$$
d \bar{\mu}=\frac{|x|^{-b p}}{\left(1+|x|^{2 \alpha}\right)^{n}} d x
$$

```
the CKN spherical space is ( }\mp@subsup{\mathbb{R}}{}{d},\overline{\mathfrak{g}},d\overline{\mu}
```

Note that the CKN sphere is the round sphere in the case $\alpha=1$. Similarly, the CKN hyperbolic space is defined by ($B_{1}, \tilde{\mathfrak{g}}, d \tilde{\mu}$) where

$$
\tilde{\mathfrak{g}}^{i j}=|x|^{2(1-\alpha)}\left(1-|x|^{2 \alpha}\right)^{2} \delta^{i j}, \quad d \tilde{\mu}=\frac{|x|^{-b p}}{\left(1-|x|^{2 \alpha}\right)^{n}} d x
$$

Theorem (D-Gentil-Zugmeyer, 21)

Sobolev's inequality holds on the three CKN spaces in the form

$$
\left(\int|v|^{p} d \mu\right)^{2 / p} \leq C\left[\int S v^{2} d \mu+\int|\nabla v|_{\mathfrak{g}}^{2} d \mu\right]
$$

where C is the optimal constant, $S=0$ for the Euclidean CKN space, $S=\frac{n(n-2)}{4} \alpha^{2}$ for the CKN spherical space and $S=-\frac{n(n-2)}{4} \alpha^{2}$ for the CKN hyperbolic space. The test function v is supported in $\mathbb{R}^{d} \backslash\{0\}$ in the Euclidean and spherical cases and in B_{1} in the hyperbolic case.

Theorem (Bakry-Gentil-Ledoux, 13)

Let $(M, \mathfrak{g}, d \mu)$ be a smooth metric measure space, $n>2$ and $\gamma \in \mathbb{R}$. Then, there exists $\beta_{n}(\gamma), \theta_{n}(\gamma)$ such that

$$
S_{\gamma}(M, \mathfrak{g}, d \mu)=\theta_{n}(\gamma)\left[s c_{\mathfrak{g}}-\gamma \Delta_{\mathfrak{g}} W+\beta_{n}(\gamma)\left|\nabla_{\mathfrak{g}} W\right|_{\mathfrak{g}}^{2}\right]
$$

is an n-conformal invariant i.e. if $p=2 n /(n-2)$, the inequality

$$
\left(\int|v|^{p} d \mu\right)^{2 / p} \leq C\left(\int S_{\gamma}(M, \mathfrak{g}, d \mu) v^{2} d \mu+\int\left|\nabla_{\mathfrak{g}} u\right|_{\mathfrak{g}}^{2} d \mu\right)
$$

is invariant under the transformation $\mathfrak{g} \rightarrow c^{2} \mathfrak{g}, \mu \rightarrow c^{-n} \mu$, $c \in C^{\infty}\left(M, \mathbb{R}_{+}^{*}\right)$.

Theorem (D-Gentil-Zugmeyer, 21)

Let $(M, \hat{\mathfrak{g}}, d \hat{\mu})$ be the CKN Euclidean space. There exists $\gamma \in \mathbb{R}$ s.t.
$S_{\gamma}(M, \hat{\mathfrak{g}}, d \hat{\mu})=0$. And so, $S_{\gamma}(M, \overline{\mathfrak{g}}, d \bar{\mu})=\frac{n(n-2)}{4} \alpha^{2}$ and
$S_{\gamma}(M, \tilde{\mathfrak{g}}, d \tilde{\mu})=-\frac{n(n-2)}{4} \alpha^{2}$.

All the inequalities are equivalent but we have proved none of them yet !
3. Bakry-Emery's 「-calculus, curvature-dimension condition

Г-calculus and the Bochner formula

In \mathbb{R}^{d}, the Laplacian of the product of two functions is given by

$$
\Delta v^{2}=2 v \Delta v+2|\nabla v|^{2}
$$

In other words, the Laplacian fails to satisfy the chain rule and the defect is measured by the carré du champ

$$
\Gamma(v):=\frac{1}{2} \Delta\left(v^{2}\right)-v \Delta v=|\nabla v|^{2}
$$

Repeat this once more and measure the defect in the chain rule applied to the quadratic form Γ. We get the iterated carré du champ

$$
\begin{aligned}
\Gamma_{2}(v) & :=\frac{1}{2} \Delta(\Gamma(v))-\Gamma(v, \Delta v) \\
& =\frac{1}{2} \Delta\left(|\nabla v|^{2}\right)-\nabla v \cdot \nabla \Delta v \\
& =\nabla \cdot\left(\nabla^{2} v \nabla v\right)-\nabla v \cdot \nabla \Delta v=\left\|\nabla^{2} v\right\|_{\text {H.S. }}^{2} .
\end{aligned}
$$

On a Riemannian manifold, the Bochner-Lichnerowitz-Weizenboch formula states that

$$
\Gamma_{2}(v)=\operatorname{Ric}_{g}(\nabla v, \nabla v)+\left\|\nabla^{2} v\right\|_{\text {H.S. }}^{2}
$$

Г-calculus and the Bochner formula

Recall that

$$
\Gamma_{2}(v)=\operatorname{Ric}_{g}(\nabla v, \nabla v)+\left\|\nabla^{2} v\right\|_{H . S}^{2} .
$$

If $\operatorname{Ric}_{g} \geq \rho g$, Cauchy's inequality implies that

$$
\Gamma_{2}(v) \geq \rho|\nabla v|_{g}^{2}+\frac{1}{d}\left(\Delta_{g} v\right)^{2}
$$

More generally, consider a smooth metric measure space (M, g, μ) and the associated elliptic operator $L=\Delta-\nabla W \cdot \nabla$. Define its carré du champ and iterated carré du champ by

$$
\Gamma(v)=\frac{1}{2} L\left(v^{2}\right)-v L v, \quad \Gamma_{2}(v)=\frac{1}{2} L(\Gamma v)-\Gamma(v, L v)
$$

(M, g, μ) satisfies the $C D(\rho, n)$ curvature-dimension condition if

$$
\Gamma_{2}(v) \geq \rho \Gamma(v)+\frac{1}{n}(L v)^{2}
$$

A basic example : the Gaussian space

Example 1: consider $\left(\mathbb{R}^{d}, \delta_{i j}, e^{-W} d x\right)$ with $W(x)=|x|^{2} / 2$. Then, $L=\Delta-x \cdot \nabla$ on $M=\mathbb{R}^{d}, \Gamma(v)=|\nabla v|^{2}$ and

$$
\begin{aligned}
\Gamma_{2}(v) & :=\frac{1}{2} L(\Gamma(v))-\Gamma(v, L v) \\
& =\left\|\nabla^{2} v\right\|_{\text {H.S. }}^{2}-\frac{1}{2} x \cdot \nabla|\nabla v|^{2}+\nabla v \cdot \nabla(x \cdot \nabla v) \\
& =\left\|\nabla^{2} v\right\|_{\text {H.S. }}^{2}+|\nabla v|^{2} \geq 1 \cdot|\nabla v|^{2}+\frac{1}{\infty}(L v)^{2}
\end{aligned}
$$

In this example, whereas $\left(\mathbb{R}^{d}, \delta_{i j}, d x\right)$ is flat, the potential $W(x)=|x|^{2} / 2$ is confining, yielding the curvature bound $\rho=1$.

Note : regarding dimension, the Gaussian space can be seen as the limit of a $(d+m)$-dimensional sphere (of normalized radius), as $m \rightarrow+\infty$.

The Sobolev inequality on smooth metric measure spaces

Theorem (Bakry-Ledoux, 96)
Assume that ($M, \mathfrak{g}, d \mu$) verifies the curvature-dimension condition $C D(\rho, n)$ for some $\rho>0$ and $n \in[d,+\infty), n>2$. Then,

$$
\|v\|_{L^{\frac{2 n}{n-2}}(M)}^{2} \leq \frac{4}{n(n-2)} \frac{n-1}{\rho}\|\nabla v\|_{L^{2}(M)}^{2}+\|v\|_{L^{2}(M)}^{2},
$$

under the normalization $\mu(M)=1$.

Remark

The result extends to the nonsmooth setting : [Profeta, 15] for RCD* (K, N)-spaces, [Cavaletti-Mondino, 17] for $C D^{*}(K, N)$-spaces.

Liouville-type theorem

Theorem (D-Gentil-Zugmeyer, 20)

Assume $(M, \mathfrak{g}, d \mu)$ verifies the curvature-dimension condition $C D(\rho, n)$ for some $\rho>0$ and $n \in[d,+\infty), n>2$. Set $q=\frac{2 n}{n-2}$. Let $A>0$ and $f \in C^{1}\left(\mathbb{R}_{+}^{*} ; \mathbb{R}_{+}^{*}\right)$ nonincreasing.
Assume that $v \in C^{2}(M), v>0$ is a nonconstant solution to

$$
-A L v+v=v^{q-1} f(v) \quad \text { in } M
$$

Then, $A \leq A^{*}:=\frac{4(n-1)}{n(n-2) \rho}$.
If $A=A^{*}$, then $f=$ cste and if $W=0, \Phi=v^{-\frac{q-2}{2}}$ solves $\nabla^{2} \Phi=\frac{\Delta \Phi}{d} g$.
Theorem (Tashiro 65, Obata 71, Nobili-Violo 21)
Assume $A=A^{*}, W=0$. Then, (M, g) is isometric to the round sphere and for some $\lambda>1$ and $x_{0} \in M$,

$$
v(x)=(\lambda-\cos r)^{-\frac{d-2}{2}}, \quad \text { where } r=d\left(x, x_{0}\right)
$$

Curvature-dimension condition for the CKN sphere

Theorem (D-Gentil-Zugmeyer, 21)
When

$$
\alpha^{2} \leq \frac{d-2}{n-2}
$$

is nonnegative, the CKN sphere satisfies the $C D(\rho, n)$ condition with

$$
\rho=\alpha^{2}(n-1) .
$$

Remark

The above parameter zone does not coincide with the known region for symmetry for extremals of the inequality. In fact, as we shall see, only an integrated version of $C D(\rho, n)$ is needed to prove sharp inequalities, which holds true if and only if

$$
\alpha^{2} \leq \frac{d-1}{n-1}
$$

Surprise, this is equivalent to $0 \leq \alpha \leq 1$!
3. Gradient flows in Euclidean space

Gradient flows in Euclidean space

Let $F: \mathbb{R}^{m} \mapsto \mathbb{R}$ of class C^{2}, strictly convex and coercive i.e. $\lim _{|x| \rightarrow+\infty} F(x)=+\infty$. Then, F has a unique critical point x^{*}. in addition,

$$
F\left(x^{*}\right)=\inf _{x \in \mathbb{R}^{m}} F(x) .
$$

In order to locate the point of minimum x^{*}, start from an arbitrary point $x \in \mathbb{R}^{m}$ and follow the gradient flow of F :

$$
\left\{\begin{array}{l}
\frac{d}{d t} S_{t}(x)=-\nabla F\left(S_{t}(x)\right) \\
S_{0}(x)=x
\end{array}\right.
$$

Since

$$
\frac{d}{d t} F\left(S_{t}(x)\right)=\nabla F\left(S_{t}(x)\right) \cdot \frac{d}{d t} S_{t}(x)=-\left|\nabla F\left(S_{t}(x)\right)\right|^{2} \leq 0
$$

one proves easily that

$$
\lim _{t \rightarrow \infty} S_{t}(x)=x^{*}
$$

Entropy-entropy production inequality

If in addition F is strongly convex, i.e. $\nabla^{2} F \geq \rho$ Id where $\rho>0$, then we obtain the optimal speed of convergence to equilibrium of the entropy F along its gradient flow : compute $\frac{d^{2}}{d t^{2}} F\left(S_{t}(x)\right)$ and easily get

$$
F\left(S_{t}(x)\right)-F\left(x^{*}\right) \leq e^{-2 \rho t}\left(F(x)-F\left(x^{*}\right)\right)
$$

Since equality holds when $t=0$, we can differentiate the inequality at $t=0$ and deduce that

$$
F(x)-F\left(x^{*}\right) \leq \frac{1}{2 \rho}|\nabla F(x)|^{2}
$$

This entropy-entropy production inequality is optimal, in the sense that $F(x)=\rho|x|^{2} / 2$ saturates it. More generally,

$$
G\left(x^{*}\right) \leq \frac{1}{2 \rho}|\nabla F(x)|^{2}+G(x)
$$

under the assumption

$$
\nabla F \cdot \nabla^{2} F \nabla F \geq-\rho \nabla F \cdot \nabla G
$$

4. Wasserstein space, Otto's calculus

Wasserstein space

Equip the set of prob. measures $\mathcal{P}_{2}(M)$ with the Wasserstein distance

$$
W_{2}(\mu, \nu)=\inf \sqrt{\iint \mathbf{d}(x, y)^{2} d \pi(x, y)}
$$

where the inf. is taken on all transport plans $\pi \in \mathcal{P}(M \times M)$ with marginals μ and ν and where \mathbf{d} is the Riemannian distance on M. A path $[0,1] \ni t \mapsto \nu_{t} \in \mathcal{P}_{2}(M)$ is a.c. w.r.t W_{2} if

$$
\left|\dot{\nu}_{t}\right|:=\underset{s \rightarrow t}{\limsup } \frac{W_{2}\left(\nu_{t}, \nu_{s}\right)}{|t-s|} \in L^{1}([0,1]) .
$$

Theorem (Ambrosio-Gigli-Savaré, 08)

Given any a.c. path, there exists a unique vector field $(t, x) \mapsto V_{t}(x)$ s.t. $\int\left|V_{t}\right|^{2} d \nu_{t}<\infty$ and $\left|\dot{\nu}_{t}\right|^{2}=\int\left|V_{t}\right|^{2} d \nu_{t}$ a.e. in $[0,1]$. In addition, V_{t} is the limit of a sequence $\left(\nabla \varphi_{n}\right)$ in $L^{2}\left(\nu_{t}\right)$ and

$$
\partial_{t} \nu_{t}+\nabla \cdot\left(\nu_{t} V_{t}\right)=0 \quad \text { in } \mathcal{D}^{\prime}(M \times(0,1))
$$

Tangent space, Otto's metric

In other words, for a.e. $t \in[0,1], V_{t}$ identifies with a tangent vector to the path $\left(\nu_{t}\right)_{t \in[0,1]}$. We write

$$
\dot{\nu}_{t}:=V_{t}
$$

and we call $\dot{\nu}_{t}$ the velocity of the path $\left(\nu_{t}\right)_{t \in[0,1]}$ at time t. The tangent space at the point $\mu \in \mathcal{P}_{2}(M)$ is thus defined by

$$
T_{\mu} \mathcal{P}_{2}(M)=\overline{\left\{\nabla \varphi, \varphi: M \mapsto \mathbb{R}, \varphi \in C^{\infty}(M)\right\}^{L^{2}(\mu)}}
$$

and a natural Riemannian metric is the following

$$
\langle\nabla \varphi, \nabla \psi\rangle_{\mu}=\int \nabla \varphi \cdot \nabla \psi d \mu=\int \Gamma(\varphi, \psi) d \mu, \quad \text { for } \nabla \varphi, \nabla \psi \in T_{\mu} \mathcal{P}_{2}(M)
$$

5. Gradient flows in Wasserstein space : Rényi entropies and fast diffusion eq.

Fast diffusion is...

Let $\left(\mu_{t}\right)_{t \geq 0}$ s.t. $\mu_{0}=\mu$ eand

$$
\partial_{t} \mu_{t}=\frac{1}{\alpha} \Delta \mu_{t}^{\alpha}=\nabla \cdot\left(\mu_{t} \frac{1}{\alpha-1} \nabla \mu_{t}^{\alpha-1}\right)
$$

with $\alpha>0, \alpha \neq 1$. By the continuity eq., the velocity of the flow is

$$
\dot{\mu}_{t}=-\frac{1}{\alpha-1} \nabla \mu_{t}^{\alpha-1}
$$

Consider Rényi's entropy

$$
\mathcal{R}_{\alpha}(\mu)=\frac{1}{\alpha(\alpha-1)} \int \mu^{\alpha}
$$

and differentiate \mathcal{R}_{α} along the flow.

$$
\begin{gathered}
\frac{d}{d t} \mathcal{R}_{\alpha}\left(\mu_{t}\right)=\frac{1}{(\alpha-1)} \int \mu_{t}^{\alpha-1} \partial_{t} \mu_{t}=\frac{1}{\alpha-1} \int \mu_{t}^{\alpha-1} \nabla \cdot\left(\mu_{t} \frac{1}{\alpha-1} \nabla \mu_{t}^{\alpha-1}\right) \\
=\int\left(\nabla \frac{\mu_{t}^{\alpha-1}}{\alpha-1}\right) \cdot \dot{\mu}_{t} d \mu_{t}=\left\langle\frac{1}{\alpha-1} \nabla \mu_{t}^{\alpha-1}, \dot{\mu}_{t}\right\rangle_{\mu_{t}}
\end{gathered}
$$

...a gradient flow in Wasserstein space

The gradient of \mathcal{R}_{α} is thus given by

$$
\operatorname{grad}_{\mu} \mathcal{R}_{\alpha}:=\frac{1}{\alpha-1} \nabla \mu^{\alpha-1}
$$

and the fast diffusion eq. is the gradient flow of the Rényi entropy in Wasserstein space :

$$
\dot{\mu}_{t}=-\operatorname{grad}_{\mu_{t}} \mathcal{R}_{\alpha}
$$

Differentiating twice, one finds that

$$
\operatorname{Hess}_{\mu} \mathcal{R}_{\alpha}(\nabla \phi, \nabla \phi)=\frac{1}{\alpha} \int\left[(\alpha-1)(\Delta \phi)^{2}+\Gamma_{2}(\phi)\right] \mu^{\alpha},
$$

Rényi entropy

Apply the computations in the finite dimensional setting with

$$
F \equiv R_{\alpha}, \quad \alpha=1-\frac{1}{d} \quad \text { and } \quad G \equiv-R_{\beta}, \quad \beta=1-\frac{2}{d} .
$$

Then, letting the pressure function be $\Phi=\frac{1}{\alpha-1} \mu^{\alpha-1}$, we find under $C D(\rho, d)$
$\operatorname{Hess}_{\mu} \mathcal{R}_{\alpha}\left(\operatorname{grad}_{\mu} \mathcal{R}_{\alpha}, \operatorname{grad}_{\mu} \mathcal{R}_{\alpha}\right)$

$$
=\frac{1}{\alpha} \int\left[(\alpha-1)(\Delta \Phi)^{2}+\Gamma_{2}(\Phi)\right] \mu^{\alpha} \geq \frac{\rho}{\alpha} \int \Gamma(\Phi) \mu^{\alpha}
$$

And since $\beta-3=2 \alpha-4$,

$$
\begin{array}{r}
-\left\langle\operatorname{grad}_{\mu} \mathcal{R}_{\alpha}, \operatorname{grad}_{\mu}\left(-\mathcal{R}_{\beta}\right)\right\rangle_{\mu}=\frac{1}{(\alpha-1)(\beta-1)} \int \nabla \mu^{\alpha-1} \nabla \mu^{\beta-1} d \mu \\
=\int \mu^{\alpha+\beta-3}|\nabla \mu|^{2}=\int \Gamma(\Phi) \mu^{\alpha}
\end{array}
$$

and so

$$
\operatorname{Hess}_{\mu} \mathcal{R}_{\alpha}\left(\operatorname{grad}_{\mu} \mathcal{R}_{\alpha}, \operatorname{grad}_{\mu} \mathcal{R}_{\alpha}\right) \geq-\frac{\rho}{\alpha}\left\langle\operatorname{grad}_{\mu} \mathcal{R}_{\alpha}, \operatorname{grad}_{\mu}\left(-\mathcal{R}_{\beta}\right)\right\rangle_{\mu}
$$

Sobolev's inequality, finally!

As in the finite dimensional case, the previous convexity inequality implies that

$$
-\mathcal{R}_{\beta}\left(\mu^{*}\right) \leq \frac{\alpha}{2 \rho}\left|\operatorname{grad}_{\mu} \mathcal{R}_{\alpha}\right|_{\mu}^{2}-\mathcal{R}_{\beta}(\mu) .
$$

By definition of $\mathcal{R}_{\alpha}, \mathcal{R}_{\beta}, \alpha, \beta$ and Φ, we find

$$
1 \leq \frac{4(d-1)}{\rho d(d-2)} \int \Gamma\left(\mu^{\frac{d-2}{2 d}}\right)+\int \mu^{\frac{d-2}{d}},
$$

Letting at last $|v|=\mu^{\frac{d-2}{2 d}}$, it follows that

$$
1 \leq \frac{4(d-1)}{\rho d(d-2)} \int \Gamma(v)+\int v^{2},
$$

under the normalization $\|v\|_{2^{*}}=1$ (so that μ is a prob. measure). This is Sobolev's inequality.

