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Abstract We prove that if the Ricci curvature Ric of a geodesically complete Rieman-
nian manifold M, endowed with the Riemannian distance ρ and the Riemannian measure
m, is bounded from below by a continuous function k : M → R whose negative part k−
satisfies, for every t > 0, the exponential integrability condition

sup
x∈M

E
[
e
∫ t

0
k−(Xx

r )/2 dr
1{t<ζx}

]
<∞,

then the lifetime ζx of Brownian motion Xx on M starting in any x ∈ M is a.s. infinite.
This assumption on k holds if k− is in the Kato class of M. We also derive a Bismut–
Elworthy–Li derivative formula for ∇Ptf for every f ∈ L∞(M) and t > 0 along the heat
flow (Pt)t≥0 with generator −∆/2, yielding its L∞-Lip-regularization as a corollary.

Moreover, without any assumption on k except continuity, we prove the equivalence
of lower boundedness of Ric by k to the existence, given any x, y ∈ M, of a Markovian
coupling (Xx, Xy) of Brownian motions on M starting in (x, y) such that a.s.,

ρ
(
Xx
t , X

y
t

)
≤ e−

∫ t

s
k(Xx

r ,X
y
r )/2 dr

ρ
(
Xx
s , X

y
s

)
holds for every s, t ≥ 0 with s ≤ t, involving the “average” k(u, v) := infγ

∫ 1
0 k(γr) dr of k

along geodesics from u to v.
Our results generalize to weighted Riemannian manifolds, where the Ricci curvature

is replaced by the corresponding Bakry–Émery Ricci tensor.
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1 Main results
Let (M, g) be a smooth, geodesically complete, noncompact, connected Riemannian manifold
without boundary. The metric 〈·, ·〉 := g(·, ·) induces the Riemannian distance ρ and the
Riemannian measure m. W.r.t. ρ, we write Br(x) for the open ball of radius r > 0 around
x ∈ M, Lip(M) for the space of real-valued Lipschitz functions on M, and Lip(f) for the
Lipschitz constant of any f ∈ Lip(M). Without further notice, all functions and sections of
bundles are assumed to be real-valued, and all appearing Lebesgue and Sobolev spaces are
understood w.r.t. m. With the usual abuse of notation, the fiberwise norm both on TM and
T ∗M is | · | := 〈·, ·〉1/2. Let ∇ be the Levi-Civita connection on M and Ric be the induced
Ricci curvature. We recall that by geodesic completeness, the Laplace–Beltrami operator ∆
is an essentially self-adjoint operator in L2(M) when defined initially on smooth compactly
supported functions, and it admits a unique – non-relabeled – self-adjoint extension. Let
(Pt)t≥0 be the heat flow in L2(M) with generator −∆/2, i.e. Pt := et∆/2 via spectral calculus.
For every x ∈ M, let Xx : [0, ζx) × Ω → M be a corresponding adapted Brownian motion
starting at x ∈ M with lifetime ζx, defined on a filtered probability space (Ω,F∗,P), see
[Elw82, Hsu02a, IW81, Wan14] for particular constructions of Xx.

Throughout, we fix a continuous function k : M→ R. We write “Ric ≥ k on M” if

Ric(x)(ξ, ξ) ≥ k(x) |ξ|2 for every x ∈ M, ξ ∈ TxM.

The goal of this paper is to study the previous condition, where the negative part k− of k,
where k−(x) := −min{k(x), 0}, obeys the integrability

sup
x∈M

E
[
e
∫ t

0 k
−(Xx

r )/2 dr
1{t<ζx}

]
<∞ for every t > 0. (1.1)

Our main results come in two groups. First, we study analytic and probabilistic conse-
quences of the assumption Ric ≥ k on M if k satisfies (1.1), as described in Section 1.1 and
stated in Theorem 1.1 and Theorem 1.5. Along with this, we treat an explicit class of k for
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which (1.1) holds, the so-called Kato decomposable ones, and highlight a general condition for
k to obey the latter property, Theorem 1.3. Second, we give equivalent characterizations of
the condition Ric ≥ k on M, which are summarized in Section 1.2, see Theorem 1.6 therein,
and mostly do not even require (1.1).

Besides [ER+20, GvR20], our article is among the first to systematically study analytic
and probabilistic consequences of variable lower Ricci bounds – and equivalent characteriza-
tions of these – which are not uniformly bounded from below and do not underlie geometric
growth conditions. We also stress our novel general recipe from Theorem 1.5 to determine
whether a given variable Ricci curvature lower bound is Kato decomposable, while the – albeit
more general – condition (1.1) is in general hard to verify directly. Lastly, our equivalence
result improves upon previously known ones especially because it involves a pathwise coupling
estimate which has just recently been introduced in a slightly different framework [BHS19].

1.1 Consequences of variable lower Ricci bounds

To formulate our first result, given an initial point x ∈ M, let �x : [0, ζx)× Ω→ (Xx)∗(TM),
i.e. �xt : TxM→ TXx

t
M for all t ∈ [0, ζx), denote the stochastic parallel transport w.r.t. ∇

along the sample paths of Xx, let the process Qx : [0, ζx)×Ω→ End(TxM) be defined as the
unique solution to the pathwise ordinary differential equation

dQxs = −1
2 Q

x
s (�xs )−1Ric(Xx

s )�xs ds, Qx0 = IdTxM, (1.2)

and let W x : [0, ζx)× Ω→ TxM denote the anti-development of Xx, a canonically given Eu-
clidean Brownian motion on TxM. See [Elw82, Hsu02a, IW81, Wan14] for the details.

Theorem 1.1. Let k : M → R be a continuous function satisfying (1.1) and assume that
Ric ≥ k on M. Then

(i) M is stochastically complete, i.e.

P
[
ζx =∞

]
= 1 for every x ∈ M,

(ii) for every f ∈ L∞(M) and every t > 0, we have Bismut–Elworthy–Li’s derivative formula

〈
∇Ptf(x), ξ

〉
= 1
t
E
[
f(Xx

t )
∫ t

0

〈
Qxsξ,dW x

s

〉]
for every x ∈ M, ξ ∈ TxM,

where the stochastic integral inside the expectation is understood in Itô’s sense, and

(iii) for every t > 0, one has the L∞-Lip-regularization property Pt : L∞(M)→ Lip(M) with

Lip(Ptf) ≤
√

8 t−1/2 sup
x∈M

E
[
e
∫ t

0 k
−(Xx

r )/2 dr
]
‖f‖L∞ for every f ∈ L∞(M).

Before further commenting on Theorem 1.1 and its proof, in order to make more refined
statements, we introduce the following definition.

Definition 1.2. (i) The Kato class K(M) of M is the linear space of all Borel functions
v : M→ R such that

lim
t↓0

sup
x∈M

∫ t

0
E
[∣∣v(Xx

r )
∣∣]dr = 0.
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(ii) A Borel function v : M → R is called Kato decomposable if it belongs to L1
loc(M) and

v− belongs to K(M).

Kato (decomposable) functions have been studied in great detail in the literature, see
[AS82, Gün17a, MO20, RS20, SV96, Stu94] and the references therein. In connection with
lower Ricci bounds, they have been introduced in [GP16] in the context of BV functions and
turn out to arise very naturally in different frameworks, see e.g. [GvR20] (which treats some
probabilistic and geometric aspects of molecular Schrödinger operators). For the convenience
of the reader, we have collected some important properties of Kato decomposable functions
in Appendix A. In particular, note that in view of

E
[∣∣v(Xx

r )
∣∣]dr ≤ ‖v‖L∞ for every x ∈ M, r > 0,

it follows that L∞(M) ⊂ K(M). More generally, paired with an explicit Example A.7, we
provide the following criterion in Section A.3, for which we denote by Ξ: M→ R the function
Ξ(x) := vol[B1(x)]−1, and by LpΞ(M) the p-th order Lebesgue space w.r.t. Ξm.

Theorem 1.3. Assume that dim(M) ≥ 2, that M is quasi-isometric to a complete Riemannian
manifold whose Ricci curvature is bounded from below by a constant, and that k− ∈ LpΞ(M) +
L∞(M) for some p ∈ (dim(M)/2,∞). Then k is Kato decomposable.

One key feature for us about functions v ∈ K(M) is that they always satisfy

sup
x∈M

E
[
e
∫ t

0 v(Xx
r )/2 dr

1{t<ζx}
]
<∞ locally uniformly in t ∈ [0,∞).

This is known as Khasminskii’s lemma, see Lemma A.4. In particular, since K(M) is a linear
space, we have the following link of Kato decomposability to (1.1).

Lemma 1.4. Assume that k is a Kato decomposable function. Then for every p ∈ [1,∞), the
exponential integrability (1.1) holds with k replaced by pk.

This is ultimately the key behind the following result which states that in this case,
Bismut–Elworthy–Li’s derivative formula holds on an Lp-scale.

Theorem 1.5. Assume k : M → R is a continuous Kato decomposable function satisfying
Ric ≥ k on M. Then (1.1) is satisfied, and moreover, Bismut–Elworthy–Li’s derivative for-
mula from Theorem 1.1 holds for every p ∈ (1,∞] and every f ∈ Lp(M).

The proof of (i) in Theorem 1.1 can be found in Section 3.1, while (ii) and (iii) as well as
Theorem 1.5 are studied in Section 3.2.

Let us collect some bibliographical comments on Theorem 1.1 and Theorem 1.5.
In the framework of uniform bounds from below on the Ricci curvature, (i) in Theorem 1.1

is due to [Yau78]. On weighted Riemannian manifolds – on which the Ricci tensor is always
replaced by the corresponding Bakry–Émery Ricci tensor, see Section 1.3 – the non-explosion
for the induced diffusion processes under uniform lower Ricci bounds has been obtained by
[Bak86]. In connection with (1.1), also for weighted Riemannian manifolds, the latter result
has been extended by [Li94] using an approach via stochastic and Hessian flows. Once we
have established all necessary intermediate results, our proof then closely follows the lines in
[Bak86] (which is also worked towards in [Li94]). For different, more geometric non-explosion
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criteria in terms of distance functions, see [Wan14] and the references therein. A nonsmooth
result similar to (i) – however assuming a Kato- or rather a Dynkin-type [SV96, Stu94] lower
bound instead of only (1.1) – has recently been treated in [ER+20].

Formula (ii) in Theorem 1.1 has first appeared in [Bis84] in the compact case. In the
noncompact case, this result, as well as Theorem 1.5, have been proven in [EL94] under more
general assumptions than (1.1) using the slightly different technique of stochastic derivative
flows. We also refer to [DT01] for similar treatises for heat semigroups over vector bundles, and
also [Hsu02a, Wan14] for similar results under more geometric conditions on the lower bound
of Ric. Remarkably, localized versions of the Bismut–Elworthy–Li derivative formula hold
without any assumptions on the geometry of the manifold, see e.g. [Tha97, TW98, TW11].

The L∞-Lip-regularization (iii) from Theorem 1.1 is a corollary of (ii), thus indicating the
importance of the latter in studying further regularity properties of (Pt)t≥0. In fact, (iii) is
already known even without the assumption (1.1) on k [TW98, Wan14], with slightly different
and more rough estimates on Lip(Ptf) involving locally uniform lower bounds on Ric. (The
proof uses the above mentioned local derivative formula.) Outside the smooth scope, a similar
property is known on RCD(K,∞) spaces [AGS15]. This setting allows for more flexibility in
the variety of spaces (metric measure spaces), but is still restricted to uniform lower Ricci
bounds, formulated in a synthetic sense [LV09, Stu06].

1.2 Characterizations of variable lower Ricci bounds

We now come to our second main result, i.e. several equivalent characterizations of lower Ricci
bounds, which we shortly introduce.

The closest characterization of Ric ≥ k on M is the L1-Bochner inequality which, for
f ∈ C∞(M), is related to the Ricci curvature of M by the well-known Bochner formula

∆ |∇f |
2

2 = 〈∇∆f,∇f〉+ |Hess f |2 + Ric(∇f,∇f). (1.3)

We also derive a one-to-one connection between lower Ricci bounds by k and the existence
of certain couplings of Brownian motions on M. Here, if M is stochastically complete, then
given x, y ∈ M, by a coupling of Brownian motions starting in (x, y), we understand an
M×M-valued stochastic process (Xx, Xy) : [0,∞)×Ω→ M×M on some filtered probability
space (Ω,F∗,P) such that Xx and Xy are Brownian motions on M starting in x and y,
respectively. To formulate an appropriate pathwise coupling estimate, we denote by Geo(M)
the set of minimizing geodesics γ : [0, 1] → M, and define the lower semicontinuous function
k : M×M→ R by

k(u, v) := inf
{∫ 1

0
k(γr) dr : γ ∈ Geo(M), γ0 = u, γ1 = v

}
. (1.4)

The key feature about k is that it provides a way to avoid mentioning cut-loci.

Theorem 1.6. Let k : M → R be a continuous function satisfying (1.1). Then the following
conditions are equivalent:

(i) we have Ric ≥ k on M,
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(ii) the L1-Bochner inequality w.r.t. k is satisfied, i.e. for every f ∈ C∞c (M),

∆|∇f | − |∇f |−1 〈∇∆f,∇f〉 ≥ k |∇f | on {|∇f | 6= 0}, (1.5)

(iii) we have the pathwise coupling property w.r.t. k, i.e. M is stochastically complete and
for every x, y ∈ M, there exists a Markovian coupling (Xx, Xy) of Brownian motions
on M starting in (x, y) such that a.s., we have

ρ
(
Xx
t , X

y
t

)
≤ e−

∫ t
0 k(Xx

r ,X
y
r )/2 drρ

(
Xx
s , X

y
s

)
for every s, t ∈ [0,∞) with s ≤ t.

Here and in the sequel, the Markov property for every respective process under consider-
ation is understood w.r.t. its canonically given filtration. The statement of Theorem 1.6 is
still true if one does not require the Markov property of (Xx, Xy).

Remark 1.7. Thanks to the local, respectively pathwise, nature of the statements, the im-
plications “(iii) =⇒ (ii) ⇐⇒ (i)” are even true without (1.1). Moreover, under the a priori
assumption of stochastic completeness, “(i) =⇒ (iii)” is satisfied without (1.1). �

We prove “(ii) =⇒ (i)” in Section 4.1, “(i) =⇒ (iii)” in Section 4.2 and “(iii) =⇒ (ii)”
in Section 4.3. For Kato decomposable functions k, another equivalent characterization of
Ric ≥ k on M in terms of the L1-gradient estimate is discussed in Section A.1.

Again, some bibliographical comments are in order.
In the abstract framework of [ER+20], the equivalence “(i) ⇐⇒ (ii)” – with (ii) in a weak

formulation – together with their equivalence to (a nonsmooth version of) the L1-gradient
estimate from Theorem A.1 has been shown independently.

The pathwise estimate appearing in (iii), as well as the equivalence of (iii) to lower Ricci
bounds, extends similar results from [BHS19] (the Markov property of the constructed cou-
pling has not been established therein), where analogous equivalences have been established
in the synthetic framework of CD(k,∞) spaces with lower semicontinuous, lower bounded
variable Ricci bounds k : M → R (see also [Stu15]). Even for the smooth case, the stated
pathwise inequality involving the function k has been firstly introduced in [BHS19]. (Al-
though it is quite straightforward to detect the place where k enters from the construction
of the coupling, see Section 4.2, the function k was seemingly never mentioned explicitly in
the literature before [BHS19].) In the Riemannian case, Theorem 1.6 establishes a similar
result in full generality without any lower boundedness assumption on k. We point out that,
in contrast to [BHS19], the coupling technique on manifolds does not require any notion of
“Wasserstein contractivity” for the dual heat flow to (Pt)t≥0 on the space of Borel probability
measures on M. It is rather provided in a direct way by the method of coupling by parallel
displacement [Cra91, Ken86], see [ACT11] for a treatise in the case of constant k. Let us also
point out [Vey11], which provides a coupling (Xx, Xy) such that for every t > 0, even

ρ
(
Xx
t , X

y
t

)
= e−

∫ t
0 κ(Xx

r ,X
y
r )/2 dr ρ(x, y)

holds on the event that
(
Xx
r , X

y
r

)
does not belong to the cut-locus of M for all r ∈ [0, t]. The

real-valued function κ, the so-called “coarse curvature” of M, is defined outside the diagonal
of M×M and is slightly larger than k.
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1.3 Extensions to possible other settings

Recent results [GvR20] suggest a detailed study of weighted Riemannian manifolds having
Kato-type lower bounds on their Bakry–Émery Ricci tensor. In this context, we note that
Theorem 1.1, Theorem 1.5 and Theorem 1.6 remain valid if for some Φ ∈ C2(M), we replace

• m by the weighted measure e−2Φ m,

• ∆ by the drift Laplacian ∆− 2 〈∇Φ,∇·〉,

• Ric by the Bakry–Émery Ricci tensor Ric + 2 Hess Φ,

• (Pt)t≥0 by the semigroup generated by −∆/2 + 〈∇Φ,∇·〉, noting that the latter is again
essentially self-adjoint [BMS02], and

• Xx by the diffusion generated by the operator −∆/2 + 〈∇Φ,∇·〉, see e.g. [Wan14,
Chapter 3] for the particular form of the corresponding stochastic differential equation
and the construction of its solution.

Other appropriate changes compared to the non-weighted setting, if needed, will always be
indicated in the sequel.

It would also be interesting to study Theorem 1.1, Theorem 1.5 and Theorem 1.6 in the
context of lower bounds on the Bakry–Émery Ricci curvature RicZ := Ric + 2∇Z which is
associated to a C1-vector field Z on M not necessarily of gradient-type. See [Wan14] and
the references therein for a summary of similar statements under different, more geometric
conditions. Given appropriate interpretations of the involved analytic objects, see [Wan14]
for details, some of the results immediately carry over with trivial modifications (for instance,
the chain “(iii) =⇒ (ii)⇐⇒ (i)” in Theorem 1.6). On the other hand, many of our arguments,
e.g. Theorem 2.1 and thus (i) in Theorem 1.1, are implicitly based on self-adjointness of the
semigroup (Pt)t≥0 and the heat flow on 1-forms. The latter properties lack in this generality,
which is why we restricted ourselves to gradient vector fields.

Finally, a further possible (but highly nontrivial) direction of investigation is the case
of manifolds with boundary, taking the heat flow with Neumann boundary conditions. See
[CF12, Hsu02b, Wan14] and the references therein for an account on diffusion processes on
these. The key difficulty in this context will be to take into account the local time of the
boundary appropriately, a highly subtle business.

Acknowledgments The authors’ collaboration arose from a discussion at the Japanese-
German Open Conference on Stochastic Analysis at the University of Fukuoka, Japan, in
September 2019. The authors gratefully acknowledge the warm hospitality of this institution.

2 Preliminaries
For more details on the heat flows on functions and on 1-forms collected in this chapter, we
refer the reader to [Gri09, Gün17a, Hsu02a, Ros97] and the references therein. For details on
their connection with the underlying stochastic processes, see [IW81, Mal97, Wan14].

All objects and results presented here have counterparts in the weighted case outlined in
Section 1.3: the heat flow on functions [Gri09], Brownian motion (or rather the corresponding
Ornstein–Uhlenbeck process) [IW81, Wan14], and the heat flow on 1-forms [Gün17a].
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Heat flow on functions The operator −∆/2 is the generator of the strongly local, regular
Dirichlet form E : L2(M)→ [0,∞] given by

E (f) := 1
2

∫
M
|∇f |2 dm if f ∈W 1,2(M), E (f) :=∞ otherwise.

The heat semigroup or heat flow (Pt)t≥0 introduced in the beginning of this article is di-
rectly linked to E by spectral calculus and is a strongly continuous, positivity preserving con-
traction semigroup of linear, self-adjoint operators in L2(M). Powerful L2-L∞-regularization
properties of the heat flow on relatively compact subsets of M, an exhaustion procedure
and bootstrapping of regularity imply the existence of the so-called minimal heat kernel
p ∈ C∞

(
(0,∞)×M×M; (0,∞)

)
on M, the smallest positive fundamental solution to the

heat operator ∂/∂t−∆/2. It has the property that for every f ∈ L2(M) and t > 0, (a version
of) Ptf can be represented by

Ptf(x) :=
∫

M
pt(x, y) f(y) dm(y) for every x ∈ M.

Actually, (Pt)t≥0 extends to a contraction semigroup of linear operators from Lp(M) into
Lp(M) for every p ∈ [1,∞] which is strongly continuous if p < ∞. Moreover, the previous
representation formula is still valid for every p ∈ [1,∞] and f ∈ Lp(M). For such f , the above
properties of the heat kernel show that P·f ∈ C∞

(
(0,∞)×M

)
solves the heat equation

∂

∂t
Ptf = 1

2∆Ptf in (0,∞)×M (2.1)

with inital condition f in the classical sense. In addition, we have P·f ∈ C∞
(
[0,∞) ×M

)
if

f is also smooth.

Brownian motion Given a locally compact Polish space Y we denote by C([0,∞);Y ) the
space of continuous maps γ : [0,∞) → Y , equipped with the topology of locally uniform
convergence and the induced Borel σ-algebra. Let Y∂ := Y ∪ {∂} denote the one-point
compactification of Y .

Given a point x ∈ M, any stochastic processX with sample paths in C([0,∞); M∂) which is
defined on a probability space (Ω,F ,P) (i.e. the map t 7→ Xt(ω) belongs to C([0,∞); M∂) for
all ω ∈ Ω) is termed Brownian motion on M starting in x if its law equals the Wiener measure
Px on C([0,∞); M∂) concentrated at paths starting in x. (Usually we want to underline the
dependency of X from its starting point x, whence we shall often write Xx.) Recall that Px
is the uniquely determined probability measure on C([0,∞); M∂) with (ev0)]Px = δx (where
ev0(γ) := γ0 is the evaluation map at 0) and whose transition density is given by the function
q : (0,∞)×M∂ ×M∂ → [0,∞) defined by setting, for every y, y′ ∈ M,

qt(y, y′) = pt(y, y′), qt(∂, y′) := 0, qt(∂, ∂) := 1, qt(y, ∂) := 1−
∫

M
pt(y, z) dm(z).

Now let ζx := inf{t ≥ 0 : Xx
t = ∂} denote the explosion time of Xx, with the usual

convention that inf ∅ := ∞. Since the Wiener measure is concentrated on paths having ∂ as
a trap, for every p ∈ [1,∞] and f ∈ Lp(M) one has

Ptf(x) = E
[
f(Xx

t )1{t<ζx}
]

for every x ∈ M, t ≥ 0. (2.2)
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Therefore, M is stochastically complete if and only if

P
[
t < ζx

]
= Pt1M(x) =

∫
M

pt(x, y) dm(y) = 1 for every x ∈ M, t > 0. (2.3)

If (Ω,F∗,P) is filtered and Xx adapted to the given filtration, then Xx is called an
adapted Brownian motion. In this case, Xx is a semimartingale on M in the sense that for
every f ∈ C∞(M), the real-valued process f ◦ Xx is a semimartingale up to the explosion
time ζx. The stochastic parallel transport along Xx w.r.t. ∇ started in x ∈ M constitutes a
process �x : [0, ζx)× Ω→ (Xx)∗(TM), the latter being the pullback bundle of TM along the
paths of Xx, such that �xt : TxM→ TXx

t
M is a.s. orthogonal for every t ∈ [0, ζx).

Heat flow on 1-forms In the sequel, Borel equivalence classes of 1-forms on M having a
certain regularity R are denoted by ΓR(T ∗M), and similarly ΓR(TM) for Borel equivalence
classes of vector fields with regularity R. For instance, given p ∈ [1,∞], we get the Banach
space ΓLp(T ∗M) given by all Borel equivalence classes ω of sections in T ∗M such that |ω| ∈
Lp(M). Let ~∆ := d∗d + d d∗ denote the Hodge–de Rham Laplacian. When defined initially
on ΓC∞c (T ∗M), by geodesic completeness this operator has a unique self-adjoint extension in
the Hilbert space ΓL2(T ∗M), which will be denoted with the same symbol again. Note our
sign convention: ~∆ is nonnegative, while ∆ is nonpositive. The heat semigroup (~Pt)t≥0 on
1-forms given by ~Pt := e−t~∆/2 in ΓL2(T ∗M) is smooth, in the sense for every ω ∈ ΓL2(T ∗M)
one has a jointly smooth representative ~P·ω which solves the heat equation

∂

∂t
~Ptω = −1

2
~∆~Ptω in (0,∞)×M

on 1-forms with initial condition ω (and in [0,∞)×M if ω is also smooth).
On exact forms, ~Pt can be represented by the heat operator Pt; more precisely, for every

f ∈ C∞c (M), it has been discussed in detail in [Gün17a] that

~Ptdf = dPtf for every t ≥ 0. (2.4)

This relation may fail on noncomplete Riemannian manifolds [Tha98].
Lastly, a key result is Feynman–Kac’s formula, for which we recall the process Qx from

(1.2). Compare with Section A.1. Note that the asserted estimate in the theorem follows
from Gronwall’s inequality.

Theorem 2.1 [DT01, Theorem B.4]. Let t > 0 and suppose that Ric ≥ k on M for some
continuous k : M→ R. Assume that for every compact K ⊂ M, we have

E
[
e
∫ t

0 k
−(Xx

r )/2 dr
1{Xx

t ∈K} 1{t<ζx}
]
<∞ for every x ∈ M.

Then for every ω ∈ ΓC∞c (T ∗M), we have the Feynman–Kac formula

~Ptω(x) = E
[
Qxt (�xt )−1ω](Xx

t )1{t<ζx}
][ for every x ∈ M

and, in particular,∣∣~Ptω(x)
∣∣ ≤ E

[
e
∫ t

0 k
−(Xx

r )/2 dr ∣∣ω(Xx
t )
∣∣1{t<ζx}] for every x ∈ M.

9



Note that on weighted Riemannian manifolds, one has to replace (~Pt)t≥0 by the semigroup
on ΓL2(T ∗M) which is generated by the Schrödinger-type operator −∇∗∇/2+Ric/2+Hess Φ,
where ∇∗∇ is the Bochner Laplacian on M, and Ric and Hess Φ are identified with their
induced endomorphisms T ∗M→ T ∗M [Gün17a].

3 Proof of Theorem 1.1 and Theorem 1.5
This chapter treats the stochastic completeness of M, Bismut–Elworthy–Li’s derivative for-
mula, and the L∞-Lip-regularization of the heat semigroup (Pt)t≥0 if we have Ric ≥ k on M
for some continuous function k : M→ R satisfying (1.1).

3.1 Stochastic completeness

A key tool for proving stochastic completeness under geodesic completeness, already used in
[Bak86], are sequences of first-order cutoff-functions [Str83, Chapter 2]. Their existence is
equivalent to the geodesic completeness of M [Gün16, Theorem 2.2].
Lemma 3.1. There exists a sequence (ψn)n∈N in C∞c (M) satisfying
(i) ψn(M) ⊂ [0, 1] for every n ∈ N,

(ii) for all compact K ⊂ M, there exists N ∈ N such that ψn|K = 1K for every n ≥ N , and

(iii)
∥∥|dψn|∥∥L∞ → 0 as n→∞.

Proof of (i) in Theorem 1.1. We are going to show the statement (2.3), i.e. that Pt1M = 1M
for every t > 0. Let φ ∈ C∞c (M), and let (ψn)n∈N be a sequence of first-order cutoff functions
provided by Lemma 3.1. Then Theorem 2.1 applied to the 1-form ω := dψn for every n ∈ N
as well as (2.4) give∥∥|~Psdψn|∥∥L∞ ≤ sup

x∈M
E
[
e−
∫ s

0 k(Xx
r )/2 dr ∣∣dψn(Xx

s )
∣∣1{s<ζx}]

≤ sup
x∈M

E
[
e
∫ s

0 k−(Xx
r )/2 dr

1{s<ζx}
] ∥∥|dψn|∥∥L∞ ≤ C ∥∥|dψn|∥∥L∞ ,

uniformly in s ∈ [0, t], where C > 0 is the quantity from (1.1). Since P·ψn solves the heat
equation (2.1), also using Fubini’s theorem, integration by parts as well as the commutation
rule (2.4) we arrive at∫

M

(
Ptψn − ψn

)
φ dm = 1

2

∫
M

∫ t

0
φ∆Psψn dsdm

= −1
2

∫ t

0

∫
M

〈
dφ, dPsψn

〉
dmds = −1

2

∫ t

0

∫
M

〈
dφ, ~Psdψn

〉
dmds.

Therefore, we obtain∣∣∣∣∫
M

(
Pt1M − 1M

)
φ dm

∣∣∣∣ = lim
n→∞

∣∣∣∣∫
M

(
Ptψn − ψn

)
φ dm

∣∣∣∣
≤ lim sup

n→∞

1
2

∫ t

0

∫
M
|dφ|

∣∣~Psdψn∣∣ dmds∫ t

0
≤ C ‖dφ‖L1 lim sup

n→∞

∥∥|dψn|∥∥L∞ = 0.

10



Since φ was arbitrary, this proves the claim.

3.2 Bismut–Elworthy–Li’s derivative formula and the Lipschitz
smoothing property

In view of proving Bismut–Elworthy–Li’s derivative formula and the L∞-Lip-regularization
property of (Pt)t≥0, for convenience we cite the following version of the Burkholder–Davis–
Gundy inequality for q ∈ [1,∞) (although we only need the upper bounds, respectively),
which improves the classically known constants to better ones.

Lemma 3.2 [Ren08, Theorem 2]. Let (Mr)r≥0 be a real-valued continuous local martingale
with M0 = 0, and let q ∈ [1,∞). Then

(8q)−q/2 E
[
[M ]q/2τ

]
≤ E

[
sup
r∈[0,τ ]

|Mr|q
]
≤ (8q)q/2 E

[
[M ]q/2τ

]
for every stopping time τ , where ([M ]r)r≥0 denotes the quadratic variation process of (Mr)r≥0.

Again recall the process Qx defined by (1.2) and taking values in TxM.

Proof of (ii) in Theorem 1.1. Fix x ∈ M, t > 0 and ξ ∈ TxM. It suffices to assume |ξ| ≤ 1.
We first assume that f ∈ C∞c (M). By [DT01, Proposition 3.2], the process Nx given by

Nx
r :=

〈
Qxr (�xr )−1∇Pt−rf(Xx

r ), t− r
t

ξ
〉

+ 1
t

Pt−rf(Xx
r )
∫ r

0

〈
Qxsξ, dW x

s

〉
,

r ∈ [0, t], is a local martingale. We show that under the given assumption on k, this process
is even a martingale. Indeed, estimating |Qxr | by (3.2) below and using the commutation rule
(2.4), Theorem 2.1 as well as Lemma 1.4, for all r ∈ [0, t] one a.s. has

|Nx
r | ≤ e

∫ t
0 k
−(Xx

s )/2 ds ∣∣~Pt−r df(Xx
r )
∣∣+ ‖f‖L∞

t

∣∣∣∣∫ r

0

〈
Qxsξ, dW x

s

〉∣∣∣∣
≤ e

∫ t
0 k
−(Xx

s )/2 ds EXx
r

[
e−
∫ t−r

0 k(Ys)/2 ds ∣∣df(Yt−r)
∣∣]+ ‖f‖L

∞

t

∣∣∣∣∫ r

0

〈
Qxsξ,dW x

s

〉∣∣∣∣
≤ e

∫ t
0 k
−(Xx

s )/2 ds sup
y∈M

E
[
e−
∫ t−r

0 k(Xy
s )/2 ds

] ∥∥|df |∥∥L∞ + ‖f‖L
∞

t

∣∣∣∣∫ r

0

〈
Qxsξ,dW x

s

〉∣∣∣∣
≤ e

∫ t
0 k
−(Xs)/2 dsC1 eC2t

∥∥|df |∥∥L∞ + ‖f‖L
∞

t

∣∣∣∣∫ r

0

〈
Qxsξ,dW x

s

〉∣∣∣∣.
Here, we denote by Y a generic path in C([0,∞); M). It follows that

E
[

sup
r∈[0,t]

|Nx
r |
]
≤ E

[
e
∫ t

0 k
−(Xx

s )/2 ds
]
C1 eC2t

∥∥|df |∥∥L∞ + ‖f‖L
∞

t
E
[

sup
r∈[0,t]

∣∣∣∣ ∫ r

0

〈
Qxsξ,dW x

s

〉∣∣∣∣].
Estimating the second summand by (3.3) below for q = 1, the previous right-hand side is
finite by Lemma 1.4. It follows that (Nx

r )r≥0 is a true martingale, and thus

〈
∇Ptf(x), ξ

〉
= E

[
Nx

0
]

= E
[
Nx
t

]
= 1
t
E
[
f(Xx

t )
∫ t

0

〈
Qxsξ,dW x

s

〉]
. (3.1)
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The claimed equality for bounded f ∈ C∞(M) follows by replacing f by ψn f in (3.1)
for every n ∈ N, where (ψn)n∈N is as in Lemma 3.1, and letting n → ∞ (together with the
dominated convergence theorem on the right-hand side). In turn, if only f ∈ L∞(M), a similar
procedure works by replacing f by Pεf in (3.1), where ε > 0, and letting ε→ 0.

Proof of (iii) in Theorem 1.1. Using Bismut–Elworthy–Li’s formula proved above and (3.3)
below for q = 1, for every x ∈M , t > 0 and ξ ∈ TxM with |ξ| ≤ 1, we get∣∣〈∇Ptf(x), ξ

〉∣∣ ≤ 1
t
E
[∣∣∣∣∫ t

0

〈
Qxsξ, dW x

s

〉∣∣∣∣] ‖f‖L∞ ≤ √8 t−1/2 sup
x∈M

E
[
e
∫ t

0 k
−(Xx

r )/2 dr
]
‖f‖L∞ ,

and duality gives

Lip(Ptf) ≤
√

8 t−1/2 sup
x∈M

E
[
e
∫ t

0 k
−(Xx

r )/2 dr
]
‖f‖L∞ .

Now we assume Kato decomposability of k in the rest of this chapter, devoting ourselves
to the proof of Theorem 1.5. In this situation, one has to guarantee that the right-hand side
of Bismut–Elworthy–Li’s formula is well-defined for f ∈ Lp(M), where p ∈ (1,∞), which is
essentially the content of the following lemma.
Lemma 3.3. Let t ≥ 0 and V ∈ ΓL∞(TM). Then for every f ∈ L∞(M) and x ∈ M, the
random variable f(Xx

t )
∫ t

0
〈
QxsV (x), dW x

s

〉
is integrable. Moreover, for every p ∈ (1,∞], the

operator EVt given on functions f ∈ L∞(M) ∩ Lp(M) in terms of

EVt f(x) := E
[
f(Xx

t )
∫ t

0

〈
QxsV (x), dW x

s

〉]
for every x ∈ M

extends to a bounded linear operator from Lp(M) into Lp(M), and the previous representation
is valid and well-defined for every f ∈ Lp(M).
Proof. Let V ∈ ΓL∞(TM) and f ∈ L∞(M), for which we assume without loss of generality
that

∥∥|V |∥∥L∞ ≤ 1 and ‖f‖L∞ ≤ 1. Fix t and x as above. Given any s ≥ 0, it follows from
Gronwall’s inequality and Ric ≥ k on M that a.s.,∣∣Qxs ∣∣ ≤ e−

∫ s
0 k(Xx

r )/2 dr, (3.2)

so that for every q ∈ [1,∞), we obtain

E
[

sup
r∈[0,t]

∣∣∣∣∫ r

0

〈
QxsV (x), dW x

s

〉∣∣∣∣q] ≤ (8q)q/2 E
[( ∫ t

0
|Qxs |2 ds

)q/2]
≤ (8q)q/2 t1/2 sup

y∈M
E
[
e
∫ t

0 qk
−(Xy

r )/2 dr
]

(3.3)

by Lemma 3.2. This inequality for q = 1 and Lemma 1.4 directly show the claimed integra-
bility of the random variable f(Xx

t )
∫ t

0
〈
QxsV (x), dW x

s

〉
. These facts also prove that EVt is a

bounded linear operator from L∞(M) into L∞(M).
If p ∈ (1,∞), then Hölder’s inequality, (3.3) for q = p/(p−1), contractivity of (Pt)t≥0 and

Theorem A.5 show that there exist finite constants C1, C2 ≥ 0 depending only on k− and p
such that for every f ∈ Lp(M) ∩ L∞(M),∥∥EVt f∥∥Lp ≤ C1 t

(p−1)/2p eC2t ‖f‖Lp ,

and we conclude by an approximation argument as in the proof of Theorem A.5.

12



Proof of Theorem 1.5. Trivially, L∞(M) ∩ Lp(M) is dense in Lp(M). Note that, given p ∈
(1,∞), and f ∈ Lp(M), it follows from the divergence theorem as well as Lemma 3.3 –
replacing ξ by a smooth and bounded vector field V ∈ Γ(TM) such that V (x) = ξ – that
both sides of (3.1) are continuous in f w.r.t. convergence in Lp(M). In particular, the desired
pointwise identity follows.

4 Proof of Theorem 1.6
We turn to characterizations of continuous lower Ricci curvature bounds in terms of functional
inequalities and existence couplings. Throughout this chapter, we assume that k : M → R is
continuous, and only state explicitly if we need (1.1).

4.1 From the L1-Bochner inequality to lower Ricci bounds

As already hinted, the key point in showing the implication “(ii) =⇒ (i)” in Theorem 1.6
is the well-known Bochner formula (1.3), subject to a clever choice of f as granted by the
subsequent lemma, together with the chain rule to deduce Ric ≥ k on M.

It is well-known in Riemannian geometry that, given any x ∈ M, there exists an open
subset Ox ⊂ TxM such that the restriction of the exponential map to Ox provides a diffeo-
morphism expx : Ox → expx(Ox). We denote its inverse by exp−1

x .

Lemma 4.1 [vRS05, Lemma 3.2]. Let x ∈ M and ξ ∈ TxM with unit norm. Let H :={
expx η : η ∈ Ox, 〈η, ξ〉 = 0

}
be the (dim(M)− 1)-dimensional hypersurface in M orthogonal

to ξ at x. Then there exists an open neighborhood U ⊂ expx(Ox) of x such that the signed
distance function ρ±H : U → R given by

ρ±H (y) := ρ(y,H ) sgn
〈
ξ, exp−1

x y
〉
, where ρ(y,H ) := inf

z∈H
ρ(y, z),

obeys
ρ±H ∈ C

∞(U), ∇ρ±H (x) = ξ,
∣∣∇ρ±H (U)

∣∣ = {1}, Hess ρ±H (x) = 0.

Proof of “(ii) =⇒ (i)” in Theorem 1.6. Let x ∈ M, and let ξ ∈ TxM obey |ξ(x)| = 1. Retain-
ing the notation from Lemma 4.1, consider the function ρ±H provided therein. By Lemma 4.1,
Bochner’s formula (1.3) and the chain rule for ∆, we have

Ric(x)(ξ, ξ) = ∆
|∇ρ±H |2(x)

2 −
〈
∇∆ρ±H (x),∇ρ±H (x)

〉
= |∇ρ±H (x)|∆

∣∣∇ρ±H (x)|+
∣∣∇|∇ρ±H (x)|

∣∣2 − 〈∇∆ρ±H (x),∇ρ±H (x)
〉

≥ k(x) |∇ρ±H (x)|2 = k(x).12
The arbitrariness of ξ concludes the proof.

4.2 From lower Ricci bounds to pathwise couplings

We start with the existence of a suitable coupling of Brownian motions under the inequality
Ric ≥ k on M, also assuming (1.1) in this section. (Note that the stochastic completeness
of M is already known by Theorem 1.1.) The coupling technique is well-known and called

13



coupling by parallel displacement, see [Cra91, Ken86, Wan14] and the references therein. See
also [Wan94] for a “local” treatise on regular subdomains.

We first collect some notation. Denote by Cuty the cut-locus of y ∈ M, and by R the Rie-
mannian curvature tensor of M. Put d := dim(M) and Cut :=

{
(x, y) ∈ M×M : x ∈ Cuty

}
.

Given any (x, y) ∈ (M×M) \Cut, let J1, . . . , Jd−1 be Jacobi fields along the unique minimal
geodesic γ : [0, ρ(x, y)]→ M from x to y such that {J1(r), . . . , Jd−1(r), γ̇(z)} is an orthonormal
basis of TzM both for r = 0 and z = x as well as r = ρ(x, y) and z = y. Define

I(x, y) :=
d−1∑
i=1

∫ ρ(x,y)

0

(∣∣∇γ̇sJi(s)∣∣2 − 〈R(γ̇s, Ji(s))γ̇s, Ji(s)
〉)

ds.

(In the weighted case Φ 6= 0, the previous quantity has to be replaced by its weighted coun-
terpart IΦ(x, y) := I(x, y)− (∇Φ)ρ(·, y)(x)− (∇Φ)ρ(·, x)(y).)

Theorem 4.2 [Wan14, Theorem 2.3.2]. For every x, y ∈ M with x 6= y, there exists a coupling
(Xx, Xy) of Brownian motions on M starting in (x, y) which coincide past their coupling time
T (Xx, Xy) := inf{t ≥ 0 : Xx

t = Xy
t } and such that before T (Xx, Xy), we have

dρ
(
Xx
t , X

y
t ) ≤ 1

2 I
(
Xx
t , X

y
t

)
dt.

The construction of this coupling is quite time- and space-demanding, whence we only
sketch it; details are satisfactorily explained and motivated in [Cra91, Wan14]. Take a Brow-
nian motion Xx on M starting in x. Using Brownian motion on the frame bundle and usual
parallel transport, one can define an appropriate process (Xy

t )t∈[0,σ(Xy)) until it hits the set
CutXx

t
at time σ(Xy) := inf

{
t > 0 : Xy

t ∈ CutXx
t

}
. It is then indeed a nontrivial task carried

out in detail in [Cra91, Proposition 1] that Xy can be expanded past the critical time σ(Xy)
– so that in particular, I

(
Xx
t , X

y
t

)
is well-defined for t < T (Xx, Xy) – and the only additional

effect on dρ
(
Xx
t , X

y
t

)
is caused by a nonincreasing local time starting at 0. In view of bound-

ing dρ
(
Xx
t , X

y
t

)
from above, this contribution can thus be ignored. Moreover, (Xx, Xy) is a

diffusion and therefore a Markov process [Hsu02a, Theorem 6.5.1].
A large part of the subsequent proof now follows [Wan14, Corollary 3.2.6].

Proof of “(i) =⇒ (iii)” in Theorem 1.6. By the index lemma, in the above notation, for all
x, y ∈ (M×M) \ Cut we have

I(x, y) ≤ −
∫ ρ(x,y)

0

[ d−1∑
i=1

〈
R(γ̇s, Ji(s))γ̇s, Ji(s)

〉]
ds = −

∫ ρ(x,y)

0
Ric(γs)(γ̇s, γ̇s) ds

≤ −
∫ ρ(x,y)

0
k(γs) ds ≤ −ρ(x, y) k(x, y).

Together with the integrated version of Theorem 4.2, this yields the claim.

4.3 From pathwise couplings to the L1-Bochner inequality

Even if k is smooth, the function k from (1.4) is in general only lower semicontinuous. A
tool to bypass this lack of true continuity by approximation is the following fact, in which
Lipschitz continuity on the product manifold M×M is understood w.r.t. the product metric
ρ2 given by ρ2

2
(
(x, y), (x′, y′)

)
:= ρ2(x, x′) + ρ2(y, y′).

14



Lemma 4.3. Let D ⊂ M be a compact subset. Then, in D×D, k is the pointwise limit of a
pointwise increasing sequence of functions in Lipb(M×M) which are everywhere not smaller
than inf k(D × D). In particular, in D, k is the pointwise limit of a pointwise increasing
sequence of functions in Lipb(M) which are everywhere not smaller than inf k(D).

Proof. Every lower semicontinuous, lower bounded function on M×M can be approximated
pointwise on M ×M by a pointwise increasing sequence of functions in Lipb(M ×M) which
preserves uniform lower bounds, see [BHS19, Lemma 2.1] and the references therein. If k is
not uniformly bounded from below, we apply the previous result to the function ` : M×M→ R
given by `(x, y) := k(x, y)1D×D(x, y) + inf k(D ×D)1(D×D)c(x, y).

The second statement follows by noting that k(x) = k(x, x) for every x ∈ M.

The step from the pathwise coupling property w.r.t. k towards (1.5) requires a nontrivial
extension of the arguments for [BHS19, Theorem 5.17] (which adapt the duality argument
from [Kuw10] to the case of synthetic variable Ricci bounds and make crucial use of uniform
lower boundedness of the Ricci curvature) for short times instead of fixed ones. This kind of
localization argument was indeed used in [BHS19] in different variants at different instances.
For this, the smoothness of Ric, allowing us to bound it locally uniformly from below apart
from any information on the relation between Ric and k, plays a crucial role.

Given any x ∈ M, let τx be the first exit time of Brownian motion starting in a fixed
x ∈ M from B1(x). We will need the following exit time estimate for Brownian motion, which
also holds for general gradient diffusions. It is a variant of [Wan14, Lemma 2.1.4], observing
that the constant c1 chosen in the proof therein can be chosen to be independent of x as long
as x belongs to a compact subset of M, see [Hsu02a, Corollary 3.4.4, Corollary 3.4.5]. See
also [Hsu02a, Theorem 3.6.1] and its proof.

Lemma 4.4. For every compact D ⊂ M, there exists a finite constant c > 0 such that

P
[
τx ≤ t

]
≤ e−c/t for every x ∈ D, t ∈ (0, 1].

Proof of “(iii) =⇒ (ii)” in Theorem 1.6. We start with some preparations. Let f ∈ C∞c (M)
and x ∈ M with |∇f(x)| 6= 0 be arbitrary, and let γ ∈ Geo(M) start in x with ρ(x, γ1) ≤ 1.
The continuity of k yields k ≥ K on B6(x) for some K ∈ R. Therefore, defining D :=

{
z ∈

M : z ∈ B1(γs) for some s ∈ [0, 1]
}
we have

k ≥ K on D ×D. (4.1)

Finally, let ` be any bounded Lipschitz function on M ×M with K ≤ ` ≤ k on D × D, see
Lemma 4.3. Let us denote by (Xx, Xγs) a process starting in (x, γs) given by the pathwise
coupling property w.r.t. k. This pair process still depends on s, but we suppress this depen-
dency from the notation. Let τx and τγs denote the first exit times of the marginal Brownian
motions Xx and Xγs from B1(x) and B1(γs), respectively. For every s ∈ [0, 1], a.s. we have

ρ
(
Xx
t , X

γs
t

)
≤ e−

∫ t
0 k(Xx

r ,X
γs
r )/2 dr s ≤ e−

∫ t
0 `(Xx

r ,X
γs
r )/2 dr s

whenever t ≤ min{τx, τγs}.
(4.2)

Given any s ∈
(
0, e−1/6], define ts := −6c log s, where c > 0 is the constant from Lemma

4.4 associated to D. Define the event As := {τx > ts, τ
γs > ts} for s ∈ (0, δ]. By joint
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smoothness of the heat semigroup, the time derivative of |∇Ptf(x)| = (|∇Ptf(x)|2)1/2 at t = 0
can be written and estimated via

|∇f(x)|−1

2
〈
∇∆f(x),∇f(x)

〉
lim sup
s↓0

≤ lim sup
s↓0

1
ts

[1
s
E
[∣∣f(Xx

ts)− f(Xγs
ts )
∣∣]− |∇f(x)|

]
= lim sup

s↓0

1
ts

[1
s
E
[∣∣f(Xx

ts)− f(Xγs
ts )
∣∣ (1As + 1Ac

s

)]
− |∇f(x)|

]
.

The contribution of Ac
s becomes negligible thanks to

E
[∣∣f(Xx

ts)− f(Xγs
ts )
∣∣1Ac

s

]
≤ 2 ‖f‖L∞

(
P
[
τx ≤ ts

]
+ P

[
τγs ≤ ts

])
≤ 4 ‖f‖L∞ s3

by Lemma 4.4 and since 1/ts only grows logarithmically as s ↓ 0. Thus, we concentrate on
the behavior of the integrand on As, an event which we decompose three further mutually
disjoint subsets Vs := As ∩

{
ρ
(
X1
ts , X

2
ts

)
≥ s1/2}, Ws := As ∩

{∫ ts
0 ρ

(
X1
r , X

2
r

)
dr/ts ≥ s1/2},

and Us := As ∩ V c
s ∩W c

s . Hence, it remains to estimate these three parts separately.
By (4.1), the contribution of Vs can be bounded via

E
[∣∣f(Xx

ts)− f(Xγs
ts )
∣∣

ρ(Xx
ts , X

γs
ts ) ρ(Xx

ts , X
γs
ts )1Vs

]
≤
∥∥|∇f |∥∥L∞ s

−1/2 E
[
ρ(Xx

ts , X
γs
ts )2

1As

]∣∣∣∣
≤
∥∥|∇f |∥∥L∞ s

3/2 E
[
e−
∫ ts

0 `(Xx
r ,X

γs
r ) dr

1As

]∣∣∣∣
≤
∥∥|∇f |∥∥L∞ s

3/2 e−Kts .
∣∣∣∣

In a similar way, we can control the influence of Ws by

E
[∣∣f(Xx

ts)− f(Xγs
ts )
∣∣

ρ(Xx
ts , X

γs
ts ) ρ(Xx

ts , X
γs
ts )1Ws

]

≤
∥∥|∇f |∥∥L∞

s−1/2

ts

∫ ts

0
E
[
ρ
(
Xx
ts , X

γs
ts

)
ρ(Xx

r , X
γs
r )1As

]
dr

≤
∥∥|∇f |∥∥L∞ s

3/2 e−Kts .
∣∣∣∣

Finally turning to the study of the expectation on Us, it is not difficult to derive from the
Lipschitz continuity of ` and Jensen’s inequality that

∫ ts
0 `

(
Xx
r , X

γs
r

)
dr ≥

∫ ts
0 `

(
Xx
r

)
dr −

Lip(`) ts s1/2 on W c
s , where ` ∈ Lipb(M) is defined by `(x) := `(x, x). Together with (4.2) and

the definition of As, we then obtain

E
[∣∣f(Xx

ts)− f(Xγs
ts )
∣∣

ρ(Xx
ts , X

γs
ts ) ρ(Xx

ts , X
γs
ts )1Us

]
≤ sE

[
e−
∫ ts

0 `(Xx
r )/2 dr eLip(`) ts s1/2/2 Gsf(Xx

ts)1As
]∣∣∣∣

≤ sE
[
e−
∫ ts

0 `(Y xr )/2 dr eLip(`) ts s1/2/2 Gsf(Y x
ts)
]
,
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where Gsf(y) := sup
{
|f(y)− f(z)|/ρ(y, z) : z ∈ Bs1/2(y)

}
. In the last step, we switched to a

Brownian motion Y x starting in x which is independent of s.
Now we paste these three estimates together. Using smoothness and uniform continuity

of f (and of |∇f | near x) as well as the fact that the Schrödinger semigroup with generator
−(∆− `)/2 is well-defined, see Subsection A.2, we then finally arrive at

lim sup
s↓0

1
ts

[1
s
E
[∣∣f(Xx

ts)− f(Xγs
ts )
∣∣1As]− |∇f(x)|

]
≤ lim sup

s↓0

1
ts

[1
s
E
[∣∣f(Xx

ts)− f(Xγs
ts )
∣∣1Us]− |∇f(x)|

]
≤ lim sup

s↓0

1
ts

[
E
[
e−
∫ ts

0 `(Y xr )/2 dr eLip(`) ts s1/2/2 Gsf(Y x
ts)
]
− |∇f(x)|

]
= 1

2(∆− `)|∇f(x)|.

Since ` was arbitrary, we conclude the inequality (1.5) by Lemma 4.3.

A Kato decomposable lower Ricci bounds and their
Schrödinger semigroups

A.1 The L1-gradient estimate

In this section, we present a last equivalent characterization of the condition Ric ≥ k on M
for the class of Kato decomposable k in terms of gradient estimates for (Pt)t≥0. A similar
result can be found in [Wu20, Corollary 2.2]. See also [Wan14, Theorem 2.3.1] for more
geometric growth conditions on k−, and [BHS19, Theorem 1.1] for the nonsmooth case under
boundedness of k−, the condition Ric ≥ k on M interpreted in a synthetic sense [Stu15].
Theorem A.1. Assume that k : M → R is a continuous and Kato decomposable function.
Then any of the equivalent conditions in Theorem 1.6 is equivalent to the L1-gradient estimate
w.r.t. k, i.e. for every f ∈ C∞c (M),

|∇Ptf(x)| ≤ E
[
e−
∫ t

0 k(Xx
r )/2 dr |∇f |(Xx

t )1{t<ζx}
]

for every x ∈ M, t > 0. (A.1)

Proof. If k obeys Ric ≥ k on M, then the claimed L1-gradient estimate is just a restatement
of Theorem 2.1 for exact 1-forms together with (2.4).

Conversely, assume the L1-gradient estimate. A similar argument as in the proof of (i)
in Theorem 1.1 in Section 3.1 – directly employing (2.4) and (A.1) instead of Theorem 2.1 –
shows that M is stochastically complete. Let f ∈ C∞c (M) and x ∈ M with |∇f(x)| 6= 0. Then

1
|∇f(x)|

〈
∇f(x),∇∆f(x)

〉
= lim

t↓0

1
t

[
|∇Ptf(x)| − |∇f(x)|

]∣∣∣∣
≤ lim sup

t↓0

1
t

[
E
[
e−
∫ t

0 k(Xx
r )/2 dr |∇f |(Xx

t )
]
− |∇f(x)|

]
≤ ∆|∇f(x)|+ lim sup

t↓0

1
t
E
[[

e−
∫ t

0 k(Xx
r )/2 dr − 1

]
|∇f |(Xx

t )
]
.
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It remains to estimate the latter limit. Let τx be the first exit time of Xx from B1(x). Since
k is bounded on the compact set B1(x), and by continuity of Brownian sample paths, the
dominated convergence theorem gives

lim sup
t↓0

1
t
E
[[

e−
∫ t

0 k(Xx
r )/2 dr − 1

]
|∇f |(Xx

t )1{t<τx}
]

= −k(x) |∇f(x)|.

Given any ε > 0, the uniform integrability condition (1.1) holds for (1 + ε)k− in place of k−,
see Lemma 1.4. Hölder’s inequality and Lemma 4.4 yield, for arbitrary T > 0,

lim sup
t↓0

1
t
E
[[

e−
∫ t

0 k(Xx
r )/2 dr − 1

]
|∇f |(Xx

t )1{t≥τx}
]

≤ 2
∥∥|∇f |∥∥

L∞

[
sup
y∈M

E
[
e(1+ε)

∫ T
0 k−(Xy

r )/2 dr
]1/(1+ε)

+ 1
]

× lim sup
t↓0

1
t
P
[
τx ≤ t

]ε/(1+ε) = 0,

and the L1-Bochner inequality (1.5) readily follows.

Remark A.2. One can replace C∞c (M) by W 1,2(M) in Theorem A.1. This follows from
semigroup domination [Gün17a, Theorem VII.8], and in turn relies on the fact that the
Feynman–Kac formula for the heat semigroup on 1-forms, Theorem 2.1, holds for all square
integrable 1-forms under Kato decomposability [Gün12], while this Feynman–Kac formula
only holds for smooth compactly supported 1-forms under (1.1). �

Remark A.3. Assume that k satisfies the more general condition (1.1) instead of Kato
decomposability. Of course, if Ric ≥ k on M, the L1-gradient estimate from Theorem A.1
then still holds by virtue of Theorem 2.1. However, as it becomes apparent from the above
proof, the converse implication seems to be more involved and to require at least some higher
order exponential integrability of k−. �

A.2 Schrödinger semigroups

For Kato decomposable k, the right-hand side of (A.1) has a more analytic interpretation in
terms of the Schrödinger semigroup associated to k, which is briefly discussed now.

Assume in this section that k is – for simplicity [SV96] – a function in L2
loc(M), not

necessarily continuous, which is Kato decomposable. Then ∆ − k is essentially self-adjont
in L2(M) [Gün17b], and the Schrödinger semigroup (Pkt )t≥0 is defined to be Pkt := et(∆−k)/2

via spectral calculus. This is a strongly continuous semigroup of bounded linear operators
in L2(M). As k is Kato decomposable [SV96, Gün17a], (Pkt )t≥0 has a pointwise well-defined
version which, for every f ∈ L2(M), can be expressed via Brownian motion Xx on M in terms
of the Feynman–Kac formula

Pkt f(x) = E
[
e−
∫ t

0 k(Xx
r )/2 dr f(Xx

t )1{t<ζx}
]

for every x ∈ M, t ≥ 0. (A.2)

We are going to show that this semigroup extends to a strongly continuous semigroup
of bounded operators in Lp(M) for all p ∈ [1,∞), see Theorem A.5. To this end, we record
Khasminskii’s lemma (which relies on the Markov property of Brownian motion on M).
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Lemma A.4 [Gün17a, Lemma VI.8]. Let v ∈ K(M). Then for every δ > 1 there exists a
finite constant C ≥ 0 depending only on |v| and δ such that

sup
x∈M

E
[
e
∫ t

0 |v(Xx
r )| dr

1{t<ζx}
]
≤ δ eCt for every t ≥ 0.

Theorem A.5. Let k : M → R be a Kato decomposable function in L2
loc(M). Then there

exist finite constants C1, C2 ≥ 0 depending only on k− such that, for every p ∈ [1,∞] and
f ∈ L2(M) ∩ Lp(M), we have∥∥Pkt f∥∥Lp ≤ C1 eC2t ‖f‖Lp for every t ≥ 0. (A.3)

In particular, for every p ∈ [1,∞], (Pkt )t≥0 extends to a semigroup of bounded operators
from Lp(M) into Lp(M) which indeed satisfies (A.3) for every f ∈ Lp(M) and, if p < ∞, is
strongly continuous.

Proof. The idea to prove (A.3) is to use Feynman–Kac’s formula (A.2) together with Lemma
A.4 to show the desired inequality in the cases p =∞ and p = 1 (which needs an additional,
but elementary exhaustion argument) and to apply Riesz–Thorin’s theorem to extend it to
all exponents p ∈ [1,∞]. See [Gün17a, Theorem IX.2, Corollary IX.4] for details.

The existence of an extension of (Pkt )t≥0 to a semigroup of bounded operators from Lp(M)
into Lp(M) for every p ∈ [1,∞] still satisfying (A.3) is standard by approximation, but we
include the argument for the convenience of the reader since similar arguments will appear
later (see the proofs of Lemma 3.3 and of (ii) in Theorem 1.1). For p < ∞ and f ∈ Lp(M),
for any sequence (fn)n∈N in L2(M) ∩ Lp(M) converging to f in Lp(M), (A.3) implies that
(Pkt fn)n∈N is a Cauchy sequence in Lp(M). Thus, we define Pkt f as the Lp-limit of the latter
sequence as n → ∞, and (A.3) again shows that this definition is independent of the choice
of (fn)n∈N. In the case p = ∞, given any reference point o ∈ M, the sequence (fn)n∈N
defined by fn := f 1Bn(o) converges pointwise to f . By (A.2) and Lemma A.4, the dominated
convergence theorem shows that the pointwise limit Pkt f of (Pkt fn)n∈N as n → ∞ is well-
defined, and again this definition does not depend on the choice of (fn)n∈N once it is demanded
that ‖fn‖L∞ ≤ ‖f‖L∞ . It is clear that both approximation procedures preserve (A.3).

To show strong continuity of (Pkt )t≥0 in Lp(M) for p <∞, by approximation and (A.3), it
suffices to show continuity of t 7→ Pkt f on [0,∞) in Lp(M) for f ∈ L2(M) ∩ Lp(M) ∩ L∞(M).
By the semigroup property, we may restrict to continuity at t = 0. Given any x ∈ M, note
that a.s., we have

∫ t
0 k(Xx

r ) dr → 0 as t ↓ 0 since k ∈ L1
loc(M), and that∣∣∣e− ∫ t0 k(Xx

r )/2 dr − 1
∣∣∣ ≤ e

∫ T
0 k−(Xx

r )/2 dr + 1 (A.4)

for every t ∈ [0, T ] is satisfied a.s. for fixed T > 0. Since∫
M

∣∣Pkt f − Ptf
∣∣p dm ≤

∫
M
E
[∣∣∣e− ∫ t0 k(Xx

r )/2 dr − 1
∣∣∣ |f(Xx

t )|1{t<ζx}
]p

dm(x),

applying the dominated convergence theorem twice using (A.4) as well as Lemma A.4, we
obtain Pkt f −Ptf → 0 in Lp(M) as t ↓ 0. The result follows immediately by strong continuity
of the heat flow (Pt)t≥0 in Lp(M).
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A.3 Proof of Theorem 1.3

Now, we present one possible step-by-step analysis in order to check the existence of (contin-
uous) Kato decomposable lower Ricci bounds for M, along with proving Theorem 1.3. Let us
abbreviate d := dim(M).

Proof of Theorem 1.3. Let Ξ : M → (0,∞) be a Borel function such that

sup
y∈M

pt(x, y) ≤ Ξ(x) t−d/2 for every x ∈ M, t ∈ (0, 1]. (A.5)

It has been shown in [Gün17b], using a parabolic L2-mean value inequality, that every Rie-
mannian manifold admits a canonical choice of a function Ξ as above. [Gün17a, Proposition
VI.10] states that for every p ∈ [1,∞), if d = 1, and every p ∈ (d/2,∞), if d ≥ 2, we have
LpΞ(M) + L∞(M) ⊂ K(M). Thus, any locally m-integrable function k : M→ R such that

k− ∈ LpΞ(M) + L∞(M)

for some Ξ and p as above is Kato decomposable.
Now let 〈·, ·〉 be quasi-isometric to a complete metric on M whose Ricci curvature is

bounded from below by constant. Then, as the Li–Yau heat kernel estimate, the Cheeger–
Gromov volume estimate and the local volume doubling property are qualitatively stable
under quasi-isometry, it follows from the considerations in [Gün17a, Example IV.18] that
there exists a constant C1 > 0 such that

pt(x, y) ≤ C1 vol
[
B1(x)

]−1
t−d/2 for every x, y ∈ M, t ∈ (0, 1].

Thus every k : M→ R such that, choosing Ξ := vol
[
B1(·)

]−1, one has

k− ∈ LpΞ(M) + L∞(M)

for some p as in the previous step is Kato decomposable.

Remark A.6. The previous proof shows that the assertion of Theorem 1.3 remains valid if
the inverse volume function used therein is replaced by any function obeying (A.5). �

Example A.7. Assume that M is a model manifold in the sense of [Gri09], meaning that
M = Rd as a manifold with d ≥ 2, and that the Riemannian metric 〈·, ·〉 is given in polar
coordinates as dr2 + ψ(r) dθ2, where ψ is a smooth positive function on (0,∞). The volume
of balls on such manifolds does not depend on the center, and the Ricci curvature behaves in
the radial direction like ψ′′/ψ − (d− 1)(ψ′)2/ψ2, see e.g. page 266 in [Bes87]. Assume now(

ψ′′/ψ − (d− 1)(ψ′)2/ψ2)− ∈ Lp
ψd−1(R) + L∞(R) for some p > d/2.

Since the volume measure behaves in the radial direction as ψd−1 dr, it follows that the Ricci
curvature is bounded from below by a function with negative part in Lp(M) + L∞(M).

To make sure that the latter function space is included in K(M) it suffices from the above
considerations to assume that there exists a smooth positive function ψ0 on (0,∞) such that

a. ψ0(0) = 0, ψ′0(0) = 1 and ψ′′0(0) = 0,
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b. ψ′′0/ψ0 − (d− 1)(ψ′0)2/ψ2
0 is uniformly bounded from below by a constant, and

c. ψ0/C ≤ ψ ≤ Cψ0 for some constant C > 1.

Indeed, a. guarantees that there exists a complete metric g0 on M which – in polar coordinates
– is written as g0 = dr2 + ψ0(r) dθ2. Assumption b. guarantees that the Ricci curvature
associated to g0 is bounded from below by a constant, and c. implies that g is quasi-isometric
to g0. For instance, one can take the Euclidean metric corresponding to ψ0(r) := r or the
hyperbolic metric corresponding to ψ0(r) = sinh(r) as reference metrics. �
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