Brownian motion and the Feynman-Kac formula on Riemannian manifolds, TU Chemnitz, WS 2021/2022,

Prof. Dr. Batu Güneysu

Solution hints to Sheet 6:

1. If $h_{+} \in W_{0}^{1,2}(M)$, then one has $h \leq v:=h_{+}$.

Conversely, suppose that there exists $v \in W_{0}^{1,2}(M)$ with $h \leq v$.
Case $v \in C_{c}^{\infty}(M)$. Pick $\phi \in C_{c}^{\infty}(M)$ with $0 \leq \phi \leq 1$ on M and $\phi=1$ on $\operatorname{supp}(v)$. Then using $h \leq v$ one easily checks

$$
h_{+}=((1-\phi) v+\phi h)_{+} .
$$

Since ϕh is a compactly supported element of $W^{1,2}(M)$, one has $\phi h \in$ $W_{0}^{1,2}(M)$, and so

$$
(1-\phi) v+\phi h \in W_{0}^{1,2}(M)
$$

and thus by Example 3.6 one has

$$
h_{+}=((1-\phi) v+\phi h)_{+} \in W_{0}^{1,2}(M) .
$$

Case $v \in W_{0}^{1,2}(M)$: Pick a sequence $v_{n} \in C_{c}^{\infty}(M)$ with $v_{n} \rightarrow v$ in $W^{1,2}(M)$. Then, because $h \leq v$, we have

$$
h_{n}:=h+\left(v_{n}-v\right) \leq v_{n}
$$

and so by the previous case $\left(h_{n}\right)_{+} \in W_{0}^{1,2}(M)$ for all n. Since $h_{n} \rightarrow h$ in $W^{1,2}(M)$, Example 3.6 gives $\left(h_{n}\right)_{+} \rightarrow h_{+}$in $W^{1,2}(M)$ and $W_{0}^{1,2}(M) \subset$ $W^{1,2}(M)$ is a closed subspace, and we end up with $h_{+} \in W_{0}^{1,2}(M)$.
2. The map

$$
\begin{equation*}
\varphi: H^{m} \longrightarrow B_{e}^{\mathbb{R}^{m}}(0,1)=\left\{y \in \mathbb{R}^{m}:|y|<1\right\}, \quad\left(x^{\prime}, x^{m+1}\right) \longmapsto \frac{x^{\prime}}{x^{m+1}+1} \tag{1}
\end{equation*}
$$

where

$$
|y|^{2}:=\sum_{i=1}^{m} y_{i}^{2},
$$

is a global chart with

$$
\begin{equation*}
\varphi^{-1}: B_{e}^{\mathbb{R}^{m}}(0,1) \longrightarrow H^{m}, \quad y \longmapsto\left(\frac{2 y}{1-|y|^{2}}, \frac{1+|y|^{2}}{1-|y|^{2}}\right) . \tag{2}
\end{equation*}
$$

Since for all $\left(x^{\prime}, x^{m+1}\right) \in H^{m}$ one has

$$
\left(x^{m+1}\right)^{2}-\left(x^{\prime}\right)^{2}=1
$$

we get (with the usual abuse of notation denoting the map of the charts and the points with the same symbol)

$$
x^{m+1} d x^{m+1}=\sum_{i=1}^{m}\left(x^{\prime}\right)^{i} d\left(x^{\prime}\right)^{i}
$$

and (1) implies that for all $i=1, \ldots, m$,

$$
d y^{i}=\frac{\left(1+x^{m+1}\right) d\left(x^{\prime}\right)^{i}-\left(x^{\prime}\right)^{i} d x^{m+1}}{\left(1+x^{m+1}\right)^{2}}
$$

Using the latter two formulae one calculates

$$
\sum_{i=1}^{m} d y^{i} \otimes d y^{i}=\left(1+x^{m+1}\right)^{-2} \sum_{i=1}^{m} d\left(x^{\prime}\right)^{i} \otimes d\left(x^{\prime}\right)^{i}-d x^{m+1} \otimes d x^{m+1}
$$

and so

$$
\sum_{i=1}^{m} d\left(x^{\prime}\right)^{i} \otimes d\left(x^{\prime}\right)^{i}-d x^{m+1} \otimes d x^{m+1}=\left(1+x^{m+1}\right)^{2} \sum_{i=1}^{m} d y^{i} \otimes d y^{i}
$$

Since by (2)

$$
1+x^{m+1}=2 /\left(1-|y|^{2}\right)
$$

we end up with the following formula in the above chart (with $g_{e}^{\mathbb{R}^{m}}$ the Euclidean metric on \mathbb{R}^{m}):

$$
\begin{equation*}
g_{\text {Mink }}=\frac{4}{1-|\cdot|^{2}} g_{e}^{\mathbb{R}^{m}} \quad \text { on } H^{m} \cong B_{e}^{\mathbb{R}^{m}} \tag{3}
\end{equation*}
$$

This formula shows that $g_{\text {Mink }}$ is positive definite on H^{m}.
To see that $\mathbb{H}^{m}:=\left(H^{m}, g_{\text {Mink }}\right)$ is complete, note that a (connected) Riemannian manifold M is complete, if and only if for every piecewise smooth curve $\gamma:[0, \infty) \rightarrow M$ which eventually leaves every compact subset of M one has

$$
\int_{0}^{\infty}|\dot{\gamma}(t)| d t=\infty
$$

The latter condition can be checked easily on \mathbb{H}^{m} using (3), noting that a continuous curve $\gamma:[0, \infty) \rightarrow H^{m}$ which eventually leaves every compact subset of H^{m}, if and only if γ eventually touches a point on $\partial B_{e}^{\mathbb{R}^{m}}$ and remains then there for all times.

