Brownian motion and the Feynman-Kac formula on Riemannian manifolds, TU Chemnitz, WS 2021/2022,

Prof. Dr. Batu Güneysu

Solution hints to Sheet 5:

1. It suffices to prove the $k=1,2$ case, as the general k-case then follows by induction.
$k=1$: Assume f is weakly C^{1} and let $x \in \mathbb{R}$. Then the limit

$$
\lim _{t \rightarrow 0} t^{-1}(f(t+x)-f(x))
$$

exists in the weak topology, so that for some $\epsilon>0$, the famility $t^{-1}(f(t+$ $x)-f(x)), t \in(x-\epsilon, x+\epsilon)$, is weakly bounded and by uniform boundedness in fact bounded in the \mathscr{H}-topology, so there exists $C>0$, such that for all $t \in(x-\epsilon, x+\epsilon)$ one has

$$
\left\|t^{-1}(f(t+x)-f(x))\right\| \leq C
$$

and so f is continuous in the \mathscr{H}-topology.
$k=2$: Assume f is weakly C^{2}. Fix $x_{0} \in \mathbb{R}$. Define a function $g:\left[x_{0}, \infty\right) \rightarrow$ \mathscr{H} by

$$
\langle g(x), \phi\rangle:=\left\langle f^{\prime}(x), \phi\right\rangle, \quad \phi \in \mathscr{H} .
$$

Then g is weakly C^{1} and so by the $k=1$ case in fact continuous in the \mathscr{H}-topology. Integrating the latter equation we obtain

$$
f(x)=f\left(x_{0}\right)+\int_{x_{0}}^{x} g(r) d r,
$$

where the integral is defined in the \mathscr{H}-topology. As g is continuous in the \mathscr{H}-topology, its integral (and so f) is C^{1} in the \mathscr{H}-topology.
2. Assume $x_{0}=0$ is the origin of the chart V and recall that \bar{V} lies in a chart. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be smooth and set

$$
v(x, t):=e^{-\alpha t} f\left(|x-\zeta t|^{2}\right)
$$

where $\alpha>0$ will be chosen later. To guarantee that $v=0$ on the lateral surface of $\bar{\Gamma}$ and $v>0$ elswehere, note that $(t, x) \in \Gamma$ implies $x-\zeta \in U$, so that we assume

$$
\begin{equation*}
f>0 \text { on }\left[0, r^{2}\right) \text { and } f\left(r^{2}\right)=0 \tag{1}
\end{equation*}
$$

In addition,

$$
\begin{equation*}
f^{\prime} \leq 0, \quad f^{\prime \prime} \geq 0 \quad \text { in }\left[0, r^{2}\right] . \tag{2}
\end{equation*}
$$

Set

$$
w(t, x):=|x-\zeta t|^{2}
$$

so

$$
v=e^{-\alpha t} f \circ w .
$$

Then for $(t, x) \in \Gamma$ one has by a simply calculation

$$
\partial_{t} v=-e^{\alpha t}\left(\alpha f \circ w+C f^{\prime} \circ w\right),
$$

as x, t run through a compact set, where $C>0$ is a constant. Morever, since the coefficients of Δ are bounded in V (the latter sitting relatively compactly in another chart!), one gets

$$
\Delta w \leq C^{\prime}
$$

and

$$
|d w|^{2} \geq c^{\prime} \sum_{i}\left(\partial_{i} w\right)^{2}=c w
$$

where c^{\prime} is a constant that comes from $g^{i j} \geq c^{\prime} \delta^{i j}$ and $c:=c^{\prime} / 4$. Calculating Δv with the chain rule and using (2) one obtains

$$
\partial_{t} v-\Delta v \leq-e^{\alpha t}\left(\alpha f \circ w+C_{1} f^{\prime} \circ w+C_{2} w f^{\prime \prime} \circ w\right) .
$$

Finally, taking f to be of the form $f(s):=\left(r^{2}-s^{2}\right)$ we have (1), (1), and one can pick α large enough such that

$$
\alpha f \circ w+C_{1} f^{\prime} \circ w+C_{2} w f^{\prime \prime} \circ w \geq 0
$$

in $\left[0, r^{2}\right]$, which completes the proof.
3. Step 1: $f \leq 1$ implies $(H+\lambda)^{-1} f \leq 1 / \lambda$ for all $\lambda>0$.

Proof of Step 1: We are going to show that $f \leq \lambda$ implies $(H+\lambda)^{-1} f \leq 1$. Set

$$
u:=(H+\lambda)^{-1} f \in \operatorname{Dom}(H) \subset W_{0}^{1,2}(M) .
$$

We are going to show that with

$$
v:=(u-1)_{+} \in W_{0}^{1,2}(M)
$$

one has $v=0$. Multiplying

$$
-\Delta u+\lambda u=f
$$

with v and integrating by parts we get

$$
\begin{equation*}
\int(d u, d v) d \mu+\lambda \int u v d \mu=\int f v d \mu \tag{3}
\end{equation*}
$$

In view of $d v=d u$ on $\{u>1\}$ and $d v=0$ elsewhere, we have

$$
\int(d u, d v) d \mu=\int_{\{u>1\}}|d u|^{2} d \mu \geq 0
$$

while

$$
\int u v d \mu=\int_{\{v>0\}}(v+1) v d \mu=\int v^{2} d \mu+\int v d \mu
$$

Thus, using (3) and $f \leq \lambda$ we get

$$
\lambda \int v^{2} d \mu+\lambda \int v d \mu \leq \int f v d \mu \leq \lambda \int v d \mu
$$

thus

$$
\lambda \int v^{2} d \mu \leq 0
$$

and so $v=0$.
Step 2: $f \leq 1$ implies $P_{t} f \leq 1$ for all $t>0$.
Proof of Step 2: applying the formula $e^{-t r}=\lim _{k}\left(\frac{k}{t}\right)^{k}(r+k / t)^{-k}$ for $r=H$ (spectral calculus), we get the L^{2}-convergence

$$
P_{t}=e^{-t H}=\lim _{k}\left(\frac{k}{t}\right)^{k}(H+k / t)^{-k} .
$$

Since by step 1 we have

$$
(H+k / t)^{-k} f \leq\left(\frac{k}{t}\right)^{-k}
$$

we immediately get $P_{t} f \leq 1$. Note here that on any measure space, $h_{n} \rightarrow h$ in L^{q} and $h_{n} \leq c$ for all n, implies $h \leq c$.

