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Solution hints to Sheet 4:

1. We can assume WLOG that all data is real-valued.
Let h be an arbitrary smooth function M :→ R with compact support.
Then, using (Ex. sheet 3) he product rule for d,

fdh = d(fh)− hdf,

we get ∫
M
d†(fα)hdµ (1)

=

∫
M

(fα, dh)dµ (2)

=

∫
M

(α, fdh)dµ (3)

=

∫
M

(α, d(fh))dµ−
∫
M

(α, hdf)dµ (4)

=

∫
M

(d†α)fhdµ−
∫
M

(df, α)hdµ, (5)

so the product rule for follows from the fundamental theorem of distribution
theory.
The product rule for −∆ = d†d follows from the one for d and the one for
d†.
The chain rule for −∆ = d†d follows from the one for d and the product
rule for d†.

2. i) The asserted property does not depend on g: indeed, let g′ be an-
other Riemannian metric on g. For all smooth sections Ψ in F → M an
integration by parts shows the formula

P g
′,hE ,hFΨ =

dµg
dµ′g

P g,hE ,hF
(
dµ′g
dµg

Ψ

)
,

where

0 <
dµg
dµ′g

,
dµ′g
dµg
∈ C∞(M)
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denote the Radon-Nikodym densities. Thus for all smooth sections Ψ in
F →M with compact support one has∫

hE(h, P g
′,hE ,hFΨ)dµ′g

=

∫
hE

(
h,
dµg
dµ′g

P g,hE ,hF
(
dµ′g
dµg

Ψ

))
dµ′g
dµg

dµg

=

∫
hE

(
h, P g,hE ,hF

(
dµ′g
dµg

Ψ

))
dµg.

Since
dµ′g
dµg

Ψ is again smooth and compactly supported, the latter expression

is (by definition of h)

=

∫
hE

(
Ph,

(
dµ′g
dµg

Ψ

))
dµg (6)

=

∫
hE (Ph,Ψ) dµ′g. (7)

ii) The asserted property does not depend on hE , hF : let h′E and h′F be
other smooth metrics on E → X and on F → X, respectively. Define
isomorphisms of smooth vector bundles by

SE : E −→ E, h′E(SEφ1, φ2) := hE(φ1, φ2),

SF : F −→ F, h′F (SFψ1, ψ2) := hF (ψ1, ψ2).

Note that hE(S−1E φ1, φ2) = h′E(φ1, φ2), and hF (S−1F ψ1, ψ2) = h′F (ψ1, ψ2).
Integrating by parts one finds

P g,h
′
E ,h

′
F = S−1E P g,hE ,hFSF ,

which easily entails the asserted independence by the same reasoning as
above.

3. i) It suffices to show that B(x, r) ⊃ C(x, r) := B(x, r). Let y ∈ C(x, r).
The only interesting case occurs when %(x, y) = r. For any ε > 0 we find
a piecewise smooth path α : [0, 1] → M such that α(0) = x, α(1) = y,
`(α) < r+ ε. Since `(α|[t,1]) is continuous, there exists 0 < tε < 1 such that

`(α|[tε,1]) = 3ε.

Set
zε = α(tε).
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Then
%(y, zε) ≤ `(α|[tε,1]) = 3ε.

On the other hand,

%(x, zε) ≤ `(α|[0,tε]) = `(α)− `(α|[tε,1]) ≤ r + ε− 3ε < r

showing that
zε ∈ B(x, r).

We have obtained that: given y with %(x, y) = r, for any ε > 0 there
exists zε ∈ B(x, r) such that %(zε, y) = 3ε. Choosing ε = 1/n and letting
n→∞ we get that the there exists a sequence zn ∈ B(x, r) converging to
y. Therefore, y ∈ B(x, r).

ii) For an arbitrary (that is, possibly incomplete) M , all bounded closed
subsets of M are compact, if and only if all closed balls are compact (this is
true on any metric space), and by i) this is equivalent to all open balls being
relatively compact, which is equivalent to all bounded open subsets being
relatively compact. If any of these equivalent statements are satisfied, then
M is complete: indeed, any metric space whose bounded closed subsets are
compact is complete.

Lemma 0.1. For an arbitrary M given, given ε > 0, a, b ∈M there exists
c ∈M with

max(%(a, c), %(b, c)) ≤ 1

2
%(a, b) + ε.

Proof. Pick a piecewise smooth path α : [0, 1] → M from x to y with
`(γ) < %(a, b) + ε. Pick T ∈ (0, 1] with `(α|[0,T ]) = (1/2)`(α). Then
c := α(T ) does the job. �

Now assume M is complete. Fix z ∈M . We are going to show that for all
r ≥ 0 the set C(z, r) = B(z, r) is compact. Let

I := {r ≥ 0 : C(z, r) is compact}.

Then I is an interval which contains 0. We are going to show that I ⊂ [0,∞)
is open and closed.
I is open: Given r ∈ I, cover C(z, r) with finitely many relatively compact
B(xi, si) (here we use that M is locally compct). Then there exists δ > 0
such that

C(z, r + δ) ⊂
⋃
i

C(xi, si),

the latter being compact, and so r + δ ∈ I.
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I is closed: Let R > 0 with [0, R) ⊂ I. We are going to show that every
sequence yj in C(z,R) has a convergent subsequence. As a consequence
C(z,R) is compact and so [0, R] ⊂ I.
To this end, let si be a decreasing sequence in (0, R) with si → 0. By the
above Lemma, for all i, j we can pick

xij ∈ C(z,R− si/2)

such that
%(xij , yj) ≤ si.

Since C(z,R− s1/2) is compact, The sequence x1j has a convergent subse-

quence x1j(1,k). The induced sequence x2j(1,k) has a convergent subsequence

x2j(2,k), and so on. Put j(k) := j(k, k). Then (xij(k))k converges for all i,

and using this one easily proves that the subsequence (yj(k))k of (yj)j is
Cauchy and, since X is complete, converges.
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