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Abstract

Given a compact manifold M and a smooth map g : M → U(l × l;C) from M to the

Lie group of unitary l × l matrices with entries in C, we construct a Chern character

Ch−(g) which lives in the odd part of the equivariant (entire) cyclic Chen-normalized

cyclic complex Nε(ΩT(M × T)) of M , and which is mapped to the odd Bismut-Chern

character under the equivariant Chen integral map. It is also shown that the assignment

g 7→ Ch−(g) induces a well-defined group homomorphism from the K−1 theory of M to

the odd homology group of Nε(ΩT(M × T)).



Let M be a closed Riemannian spin manifold with its Clifford multiplication

c : Ω(M) −→ End(S)

and its Dirac operator D acting in L2(M,S), and given g ∈ C∞(M,U(l × l;C))
let Dg denote the twisted Dirac operator

Dg := g−1Dg = D + c(g−1dg),

considered to be acting on L2(M,S ⊗ Cl). Then with

Dg,s := (1− s)D + sDg, s ∈ [0, 1],

the odd dimensional variant of Atiyah-Singer’s ’index’ theorem states that if M is
odd dimensional, then [8]

1

2π

∫ 1

0

Tr
[
Ḋg,s exp

(
−D2

g,s

)]
ds =

∫
M

Â(M) ∧ ch−(g), (1)

where ch−(g) ∈ Ω−(M) denotes the odd Chern character. The left hand side of
(1) is precisely the spectral flow sf(D,Dg) [8]. Furthermore, on the RHS of this
formula, the odd Chern character can be obtained integration along the fiber of
M × I → M of the even Chern character of an appropriately chosen connection
on M × I [8]. In fact, this formula can be proved by noting the LHS admits an
infinite dimensional version of such an even/odd periodicity [4, 5] in terms of the
eta form.
Being motivated by the considerations of Atiyah and Bismut [1, 2] for the even-
dimensional case, one finds that another very elegant and geometric, however
purely formal, way to prove (1) is to assume the existence of a Duistermaat-
Heckmann localization formula for the smooth loop space LM : indeed, the spin
structure on M induces an orientation on LM [1] and the path integral formal-
ism entails the elegant, however mathematically ill-defined, formula (the even-
dimensional variant of this formula is well-known [2] and the odd-dimensional case
can be proved similarly [14])

1

2π

∫ 1

0

Tr
[
Ḋg,s exp

(
−D2

g,s

)]
ds =

∫
LM

exp (−β) ∧ Bch−(g), (2)

where β = β0+β2 ∈ Ω+(LM) denotes the even differential form defined on smooth
vector fields X,Y on LM by

β0(X) :=

∫ 1

0

|Xs|2ds, β2(X,Y ) :=

∫ 1

0

(∇Xs/∇s, Ys) ds,

and where Bch−(g) ∈ Ω−(M) denotes the odd Bismut-Chern character [3, 18].
Now both differential forms exp(−β) and Bch−(g) are equivariantly closed (cf.
Section 4 for the definition of the degree −1 differential P ),

(d+ P ) exp(−β) = 0 = (d+ P )Bch−(g)
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and so is their product. As the fixed point set of the T-action on LM given by
rotating every loop is precisely M ⊂ LM , a hypothetical Duistermaat-Heckmann
localization formula immediately gives∫

LM

exp(−β) ∧ Bch−(g) =

∫
M

Â(M) ∧ exp(−β)|M ∧ Bch−(g)|M ,

as Â(M) is the inverse of the (appropriately renormalized) Euler class of the nor-
mal bundle of M ⊂ LM . This proves (1), as clearly exp(−β)|M = 1 and by
construction Bch−(g)|M = ch−(g).
A direct implementation of the above arguments is not possible, as the right hand
side of formula (2) is not well-defined for various reasons. For example, there ex-
ists no volume measure on LM , while smooth loops have Wiener measure zero,
and, on the other hand, it is notoriously difficult to produce a variant of the super
complex (Ω(LM), d + P ) if one replaces LM with the smooth Banach manifold
of continuous loops. Nevertheless and strikingly, the above formal manipulations
lead to the powerful machinery of hypoelliptic Dirac and Laplace operators, as is
explained in [3] and the references therein.
However, a possible way out of these problems has been proposed by Getzler,
Jones and Petrack (GJP) [11] [9]. In this approach, the idea is to take as model
for Ω(LM) the space of equivariant Chen integrals: these are given by the image
of a morphism of super complexes (cf. Section 4 below for the relevant definitions)

ρ :
(
Nε(ΩT(M × T)), b+B

)
−→

(
Ω̂(LM), d+ P

)
.

Above, Nε(ΩT(M × T)) denotes the Chen-normalized entire cyclic (or Connes)

complex of the locally convex unital DGA ΩT(M × T), and Ω̂(LM) denotes a
completed space of smooth differential forms on LM . Now the GJP-program
for infinite dimensional localization is as follows: here it is conjectured that the
composition ∫

LM

exp(−β) ∧ ρ(·) : Nε(ΩT(M × T)) −→ C,

is a mathematically well-defined continuous functional, and that

•
∫
LM

exp(−β)∧ρ(·) is odd (as LM is formally odd-dimensional if M is so [3])
and co-closed, meaning that it vanishes on the exact elements of Nε(ΩT(M×
T)) ,

• if w ∈ Nε(ΩT(M × T)) is closed, then one has the ’Duistermaat-Heckmann
localization formula’∫

LM

exp(−β) ∧ ρ(w) =

∫
M

Â(TM) ∧ ρ(w)|M .

If in addition one could canonically construct an element

Ch−(g) ∈ N −
ε (ΩT(M × T))

such that
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i) Ch−(g) is closed

ii) ρ(Ch−(g)) = Bch−(g)

iii) ρ(Ch−(g))|M = ch−(g),

then from the above observations we would immediately obtain a proof of (1)
within the GJP-program for infinite dimensional localization. Note that in the
even dimensional case such a Chern character has been constructed as an even
cycle in Nε(ΩT(M × T)) in [11].

The aim of this paper is precisely to construct a canonically given element

Ch−(g) ∈ N −
ε (ΩT(M × T))

satisfying the above properties i), ii), iii). In fact, our main results Theorem 5.1
and Theorem 5.4 below construct Ch−(g) for M a compact manifold (possibly
with boundary), which satisfies i) and iii) and in addition ii) if M is closed (so
that LM is a well-defined smooth Fréchet manifold). We also show in Theorem
5.1 that the assignment g 7→ Ch−(g) induces a well-defined group homomorphism

K−1(M) −→ N (ΩT(M × T)).

Finally, taking for granted that the even variant of Ch−(g) and BCh−(g) have
been previously defined [11, 2], we establish an even/odd periodicity, relating these
constructions to ours, showing another analogy to (1).

Acknowledgements: The authors would like to thank Jean-Michel Bismut,
Markus Pflaum and Shu Shen for their discussions. We are very grateful to
Matthias Ludewig for sharing his construction of the equivariant Chen integral
map with us.

1 Cyclic bar complex of a differential graded al-
gebra (DGA)

In the sequel, we understand all our linear spaces to be over C. Assume we are
given a unital DGA Ω, that is,

• Ω is a unital algebra

• Ω =
⊕∞

j=−∞Ωj is graded into subspaces Ωj ⊂ Ω such that ΩiΩj ⊂ Ωi+j for
all i, j ∈ Z, there is a degree +1 differential d : Ω → Ω which satisfies the
graded Leibnitz rule.

Note that the space Ω := Ω/(C · 1) is a graded linear space (but not canonically
an algebra), and the space of cyclic chains C (Ω) is defined as

C (Ω) :=

∞⊕
n=0

Ω⊗ Ω⊗n.
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We give Ω⊗ Ω⊗n the grading

Ω⊗ Ω⊗n =

∞⊕
j=0

⊕
j0+···+jn=j−n

Ωj0 ⊗ Ωj1 ⊗ · · · ⊗ Ωjn ,

which induces a linear map

Γ : C (Ω) −→ C (Ω), Γ(w0, w1, . . . ) :=
(
(−1)deg(w0)w0, (−1)deg(w1)w1, . . .

)
.

Since we have Γ2 = 1, we can define a superstructure C (Ω) = C +(Ω)⊕C−(Ω) by
setting

C±(Ω) := {w ∈ C (Ω) : Γw = ±w}.

The following notation will be useful in the sequel:

Notation 1.1. Given a ∈ Ω⊗ Ω⊗n we define

〈a〉 := (. . . , a, . . . ) ∈ C (Ω)

to be the cochain which has a in its n-th slot and 0 anywhere else.

We have the Hochschild map of the DGA-category

b : C (Ω) −→ C (Ω)

defined on Ωj0 ⊗ Ωj1 ⊗ · · · ⊗ Ωjn by

b 〈ω0 ⊗ · · · ⊗ ωn〉 = 〈dω0 ⊗ · · · ⊗ ωi ⊗ · · · ⊗ ωn〉

−
n∑
i=1

(−1)j0+...+ji−1−i+1 〈ω0 ⊗ · · · ⊗ dωi ⊗ · · · ⊗ ωn〉

−
n−1∑
i=0

(−1)j0+...+ji−i 〈ω0 ⊗ · · · ⊗ ωiωi+1 ⊗ · · · ⊗ ωn〉

+ (−1)(jn−1)(j0+...+jn−1−n+1) 〈(ωnω0)⊗ ω1 ⊗ · · · ⊗ ωn−1〉 ,

and Connes’ operator
B : C (Ω) −→ C (Ω),

which is defined on Ωj0 ⊗ Ωj1 ⊗ · · · ⊗ Ωjn by

B 〈ω0 ⊗ · · · ⊗ ωn〉 =

n∑
i=0

(−1)(ri−1+1)(rn−ri−1) 〈1⊗ ωi ⊗ · · · ⊗ ωn ⊗ ω0 ⊗ · · · ⊗ ωi−1〉 ,

with rl = j0 + · · ·+ jl − l. It is a well-known fact that one has

b2 = 0, B2 = 0, bB + bB = 0, Γb = −Γb, ΓB = −ΓB.

We get the super complex

C +(Ω)
b+B−−−→ C−(Ω)

b+B−−−→ C +(Ω). (3)
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The subspace D(Ω) ⊂ C (Ω) is defined to be the linear span of all w ∈ C (Ω) that
satisfy one of the following relations:
• for all n ∈ N there exists 1 ≤ r ≤ n, f ∈ Ω0, ω0 ∈ Ω, ωs ∈ Ω, s 6= r, with

〈wn〉 = 〈ω0 ⊗ · · · ⊗ ωr−1 ⊗ f ⊗ ωr+1 ⊗ · · · ⊗ ωn〉 . (4)

• for all n ∈ N there exists 1 ≤ r ≤ n, f ∈ Ω0, ω0 ∈ Ω, ωs ∈ Ω, s 6= r, with

〈ω0 ⊗ · · · ⊗ ωr−1f ⊗ ωr+1 ⊗ · · · ⊗ ωn〉+ 〈ω0 ⊗ · · · ⊗ ωr−1 ⊗ df ⊗ ωr+1 ⊗ · · · ⊗ ωn〉
− 〈ω0 ⊗ · · · ⊗ ωr−1 ⊗ fωr+1 ⊗ · · · ⊗ ωn〉 .

(5)

The maps Γ, b, B map D(Ω) to itself, so that with

D±(Ω) := {w ∈ D(Ω) : Γw = ±w},

there is a super complex

D+(Ω)
b+B−−−→ D−(Ω)

b+B−−−→ D+(Ω).

With N ±(Ω) := C±(Ω)/D±(Ω), the induced quotient complex

N +(Ω)
b+B−−−→ N −(Ω)

b+B−−−→ N +(Ω).

Whenever there is no danger of confusion, the equivalence class of w ∈ C (Ω) in
N (Ω) is denoted with the same symbol again.

2 Entire cyclic homology of a locally convex uni-
tal DGA

We recall that a topological vector space is called locally convex, if the topology
is induced by a family of seminorms, noting that then the topology is equivalent
to the topology induced by all continuous seminorms.

Definition 2.1. By a locally convex unital DGA we understand a unital DGA Ω
which is also a locally convex Hausdorff space, such that

• the differential is continuous, e.g., for every continuous seminorm ε on Ω
there exists a continuous seminorm ε′ on Ω such that

ε(dω) ≤ ε′(ω) for all ω ∈ Ω (6)

• the multiplication is jointly continuous, e.g., for every continuous seminorm
ε on Ω there exists a continuous seminorm ε′ on Ω such that

ε(ω1ω2) ≤ ε′(ω1)ε′(ω2) for all ω1, ω2 ∈ Ω. (7)
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The space Ω becomes a graded locally convex Hausdorff space, and we equip the
algebraic tensor product Ω⊗Ω⊗n with the induced family of π-tensor seminorms,
that is,

εn(ω) = inf

{∑
α

ε(ω
(1)
0 ) · · · ε(ω(α)

n ) : ω =
∑
α

ω
(α)
0 ⊗ · · · ⊗ ω(α)

n

}
,

where the sum runs through all representations of ω as a finite sum of elementary
tensors, and where ε is a continuous seminorm on Ω.

Definition 2.2. The space of entire cyclic chains Cε(Ω) is defined to be the closure
of C (Ω) with respect to the seminorms

κε(w) :=

∞∑
n=0

εn(wn)√
n!

,

where ε is an arbitrary continuous seminorm on Ω.

The space Cε(Ω) is a complete locally convex Hausdorff space. Note that the above
family of seminorms is equivalent to the familiy of seminorms

κε,l(w) :=

∞∑
n=0

εn(wn)ln√
n!

<∞,

where ε is an arbitrary continuous seminorm on Ω and l ∈ N, as lε is again
a continuous seminorm and the εn’s are cross semi-norms. Thus, our growth
conditions are modelled on the entire growth conditions for ungraded Banach
algebras by Getzler/Szenes from [12].
Before stating the next auxiliary result, we recall that a continous linar map from
a locally convex Hausdorff space X to a complete locally convex Hausdorff space
Y can be uniquely extended to a continuous linear map X̂ → Y , noting that
the completion X̂ is Hausdorff again. This can be proved precisely as for normed
spaces.

Lemma 2.3. The operators Γ, b, B map C (Ω) continuously to itself, in particular,
with

C±ε (Ω) := {w ∈ Cε(Ω) : Γw = ±w},
there is a well-defined super complex

C +
ε (Ω)

b+B−−−→ C−ε (Ω)
b+B−−−→ C +

ε (Ω). (8)

Proof. Let ε be an arbitrary continuous seminorm on Ω. Clearly, one has κε(Γw) ≤
κε(w) for all w ∈ C (Ω).
Pick continuous seminorms ε′, ε′′ on Ω such that for all ω ∈ Ω one has ε(dω) ≤
ε′′(ω) and such that for all ω1, ω2 ∈ Ω one has ε(ω1ω2) ≤ ε′(ω1)ε′(ω2). Using
n+ 1 ≤ 2n it is then easily checked that

κε(bw) ≤ C max(κε′ , κε′′)(w) for all w ∈ C (Ω).

Likewise, it follows immediately that κε(Bw) ≤ Cκε(w) for all w ∈ C (Ω). �
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Defining the subspace Dε(Ω) ⊂ Cε(Ω) as the closure of D(Ω), it follows auto-
matically that the maps Γ, b, B map D(Ω) continuously to itself, too, producing
with

N ±
ε (Ω) := C±ε (Ω)/D±ε (Ω)

the quotient complex

N +
ε (Ω)

b+B−−−→ N −
ε (Ω)

b+B−−−→ N +
ε (Ω). (9)

Finally we can give:

Definition 2.4. The complex (8) is called the (reduced) entire cyclic complex of
Ω and its homology groups are denoted with HC±ε (Ω). Likewise, the complex (9) is
called the (reduced) Chen-normalized entire cyclic complex of Ω and its homology
groups are denoted with HN±ε (Ω).

Above, ’reduced’ refers to the fact that we work with Ω⊗Ω⊗n rather than Ω⊗(n+1),
which leads to a simpler formula for the Connes differential B.

3 The unital locally convex DGA ΩT(N × T)

Assume N is a manifold (possibly with boundary) and denote with T the 1-sphere.
We denote by ΩT(N×T) the smooth T-invariant differential forms on N×T, where
T acts trivially on N and by rotation on itself. Every element of ΩT(N×T) can be
uniquely written in the form α+ ϑT ∧ β for some α, β ∈ Ω(N), where ϑT denotes
the canonical 1-form on T. We turn ΩT(N × T) into a unital algebra by means of
ΩT(N × T) ⊂ Ω(N × T), and give ΩT(N × T) the grading

α+ ϑT ∧ β ∈ ΩjT(N × T) ⇐⇒ α ∈ Ωj(N), β ∈ Ωj+1(N).

With ∂T the canonical vector field on T, we have the differential dT = d + ι∂T
defined by

dT(α+ ϑT ∧ β) = dα+ β − ϑT ∧ dβ, if α+ ϑT ∧ β is homogeneous,

finally turning ΩT(N × T) into a unital DGA.

Remark 3.1. Given a manifold X (possibly with boundary), the wedge product
and the de Rham differential is continuous with respect to the canonical locally
convex structure on Ω(X) [17]. In addition, if B is a vector field on X then the
contraction

ιB : Ω(X) −→ Ω(X)

is continuous, and if Y is another manifold (possibly with boundary) and if Ψ :
X → Y is a smooth map, then the pullback map

Ψ∗ : Ω(Y ) −→ Ω(X)

is continuous [17].
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For every continuous seminorm ε on Ω(N) we get a seminorm εT on ΩT(N × T)
by setting

εT(α+ ϑT ∧ β) := ε(α) + ε(β)

In view of the formula dT, the space ΩT(N × T) then becomes a locally convex
unital DGA (by remark 3.1) in terms of the εT’s. As a consequence, we get the
super complexes

C +(ΩT(N × T))
b+B−−−→ C−(ΩT(N × T))

b+B−−−→ C +(ΩT(N × T)), (10)

N +(ΩT(N × T))
b+B−−−→ N −(ΩT(N × T))

b+B−−−→ N +(ΩT(N × T)), (11)

C +
ε (ΩT(N × T))

b+B−−−→ C−ε (ΩT(N × T))
b+B−−−→ C +(ΩT(N × T)), (12)

N +
ε (ΩT(N × T))

b+B−−−→ N −
ε (ΩT(N × T))

b+B−−−→ N +
ε (ΩT(N × T)). (13)

4 Equivariant Chen integrals

Let us consider a compact manifold N without boundary, and the space LN of
smooth loops γ : T → N , where in the sequel we read T as T = [0, 1]/ ∼. This
becomes an infinite dimensional Fréchet manifold which is locally modelled on the
Fréchet space LRdimN of smooth loops T → RdimN . Then LN carries a natural
smooth T-action, given by rotating each loop, and the fixed point set of this action
is precisely N ⊂ LN , embedded as constant loops. Given γ ∈ LN the tangent
space TγLN is given by linear space of smooth vector fields on N along γ, that is,

Tγ(LN) =
{
X ∈ C∞(T, N) : X(t) ∈ Tγ(t)N for all t ∈ T

}
,

and the generator of the T-action on LN is the vector field γ 7→ γ̇ on LN . Let
ι denote the contraction with respect to the latter vector field. In the sequel, we
understand

Ω(LN) :=

∞⊕
k=0

Ωk(LM).

For fixed s ∈ T one has the diffeomorphism

φs : LN −→ LN, γ 7−→ γ(s+ ·)

induced by the T-action, and one gets an induced operator

P : Ω(LN) −→ Ω(LN), defined on Ωk(LN) by Pα :=

∫ 1

0

φ∗sια ds.

Then P becomes a degree −1 derivation. In addition, there is the usual exterior
derivative

d : Ω(LN) −→ Ω(LN),
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a degree +1 derivation. Taking only odd/even degree forms, one gets the super-
structure Ω = Ω+(LN)⊕ Ω−(LN), and we get the super complex

Ω+(LN)
d+P−−−−→ Ω−(LN)

d+P−−−−→ Ω+(LN), (14)

called the equivariant de Rham complex of LN . This complex does not carry much
information, as the differential forms of interest, like the Bismut-Chern character
below, are actually elements of

∞∏
k=0

Ωk(LN), rather than Ω(LN) =

∞⊕
k=0

Ωk(LN).

Thus we are going to ’complete’ Ω(LN) in some way. To this end, following
Chen’s approach [6] of constructing a smooth structure on LN in terms of plots,
we consider smooth maps f : X → LN , where X is a finite dimensional manifold
(without boundary). Given a continuous seminorm ε on Ω(X) we get an induced
seminorm

εf (ω) := ε(f∗ω) on Ω(LN).

The locally convex topology induced by the εf ’s is Hausdorff and we define Ω̂(LN)
to be the completion of Ω(LN) with respect to this locally convex topology. The
maps d, P and the grading operator become continuous maps Ω(LN)→ Ω(LN):
indeed, the continuity of the grading map is trivial. The continuity of d follows
from

εf (dω) = ε(d[f∗ω]) ≤ ε′(f∗ω) = ε′f (ω)

for some continuous seminorm ε′ on Ω(X), where we have used the continuity of
d : Ω(X) → Ω(X). Finally, the continuity of P follows easily from the continuity
of ι, which in turn follows from writing

εf (ιω) = ε(f∗[ιω]) = ε(r∗ι∂T f̂
∗j∗[ω]) ≤ ε′

j◦f̂ (ω)

for some continuous seminorm ε′ on Ω(X × T), where

r : X −→ X × T, j : N −→ LN

are the canonical embeddings, and

f̂ : X × T −→ N

the map induced by f : X → LN , and where we have used Remark 3.1 (the
continuity of r∗ι∂T , which implies the existence of ε′).
We end up with the super complex

Ω̂+(LN)
d+P−−−−→ Ω̂−(LN)

d+P−−−−→ Ω̂+(LN), (15)

called the completed equivariant de Rham complex of LN . The corresponding
homology groups are denoted by Ĥ±T (LN).
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Given t ∈ T and α ∈ Ωk(N) one denotes with α(t) ∈ Ωk(LN) the form obtained
by pulling α back with respect to the evaluation map γ 7→ γ(t). With this notation
at hand, one has the equivariant Chen integral map

ρ : C (ΩT(N × T)) −→ Ω(LN),

which is defined by

ρ 〈(α0 + ϑT ∧ β0)⊗ · · · ⊗ (αn + ϑT ∧ βn)〉

:=

∫ 1

0

dsφ∗s

∫
∆n

α0(0) ∧ (ια1(t1)− β1(t1)) ∧ · · · ∧ (ιαn(tn)− βn(tn)) dt1 · · · dtn,

where
∆n = {0 ≤ t1 ≤ · · · ≤ tn ≤ 1} ⊂ Rn

denotes the standard n-simplex. We will also write

ρ 〈(α0 + ϑT ∧ β0)⊗ · · · ⊗ (αn + ϑT ∧ βn)〉

=

∫ 1

0

dsφ∗s ρ̃ 〈(α0 + ϑT ∧ β0)⊗ · · · ⊗ (αn + ϑT ∧ βn)〉 .

We collect the essential properties of ρ in the following proposition:

Proposition 4.1. The map ρ is a continuous morphism of super complexes

ρ : C (ΩT(N × T)) −→ Ω(LN), (16)

which in turn descends to a continuous map of super complexes

ρ : N (ΩT(N × T)) −→ Ω(LN). (17)

In particular, by density, we obtain the continuous maps of super complexes

ρ : Cε(ΩT(N × T)) −→ Ω̂(LN), ρ : Nε(ΩT(N × T)) −→ Ω̂(LN).

Proof. i) The fact that (16) is a map of superspaces follows easily from observing
that

C +(ΩT(N × T)) =

∞⊕
j=0

C 2j(ΩT(N × T)),

C−(ΩT(N × T)) =

∞⊕
j=0

C 2j+1(ΩT(N × T)),

where

C k(ΩT(N × T))

=

∞⊕
r=0

⊕
l0+···+lr=k+r

Ωl0T (N × T))⊗ Ωl1T (N × T))⊗ · · · ⊗ ΩlrT (N × T)),
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and that ρ maps C k(ΩT(N × T))→ Ωk(LN).
ii) Next we show that ρ(b + B) = (d + P )ρ. Setting ωj = αj + ϑT ∧ βj , we first
notice

ρ̃b 〈ω0 ⊗ · · · ⊗ ωn〉 =ρ̃ 〈dTω0 ⊗ · · · ⊗ ωj−1 ⊗ ωj ⊗ ωj+1 ⊗ · · · ⊗ ωn〉

− ρ̃

〈
n∑
j=1

(−1)rj−1ω0 ⊗ · · · ⊗ ωj−1 ⊗ dTωj ⊗ ωj+1 ⊗ · · · ⊗ ωn

〉

− ρ̃

〈
n−1∑
j=0

(−1)rjω0 ⊗ · · · ⊗ ωj−1 ⊗ ωj ∧ ωj+1 ⊗ ωj+2 ⊗ · · · ⊗ ωn

〉
+ (−1)(jn−1)rn−1 ρ̃ 〈ωn ∧ ω0 ⊗ ω1 ⊗ · · · ⊗ ωn−1〉 . (18)

The first two lines give∫
∆n

(dα0(0) + β0(0)) ∧ (ια1(t1)− β1(t1)) ∧ · · · ∧ (ιαn(tn)− βn(tn))dnt

−
n∑
j=1

(−1)rj−1

∫
∆n

α0(0)(ια1(t1)− β1(t1)) ∧ · · · ∧ (ιαj−1(tj−1)− βj−1(tj−1))∧

∧ (ιdαj(tj) + ιβj(tj−1) + dβj(tj)) ∧ (ιαj+1(tj+1)− βj+1(tj+1)) ∧ · · · ∧ (ιαn(tn)− βn(tn))dnt,

where dnt = dt1 · · · dtn. Using that

∆n = {(t1, t2, . . . , tn) : 0 ≤ t1 ≤ . . . ≤ tj−1 ≤ tj ≤ tj+1 ≤ . . . ≤ tn},

and that

ιdαj(tj) =
d

dtj
αj(tj)− dιαj(tj),

it can be rewritten as∫
∆n

(dα0(0) + β0(0)) ∧ (ια1(t1)− β1(t1)) ∧ · · · ∧ (ιαn(tn)− βn(tn))dnt

+
n∑
j=1

(−1)rj−1

∫
∆n

α0(0)(ια1(t1)− β1(t1)) ∧ · · · ∧ (ιαj−1(tj−1)− βj−1(tj−1))∧

∧ d(ιαj(tj)− βj(tj)) ∧ (ιαj+1(tj+1)− βj+1(tj+1)) ∧ · · · ∧ (ιαn(tn)− βn(tn))dnt

−
n∑
j=1

(−1)rj−1

∫
∆n

α0(0)(ια1(t1)− β1(t1)) ∧ · · · ∧ (ιαj−1(tj−1)− βj−1(tj−1))∧

∧ d

dtj
αj(tj) ∧ (ιαj+1(tj+1)− βj+1(tj+1)) ∧ · · · ∧ (ιαn(tn)− βn(tn))dnt

−
n∑
j=1

(−1)rj−1

∫
∆n

α0(0)(ια1(t1)− β1(t1)) ∧ · · · ∧ (ιαj−1(tj−1)− βj−1(tj−1))∧

∧ ιβj(tj) ∧ (ιαj+1(tj+1)− βj+1(tj+1)) ∧ · · · ∧ (ιαn(tn)− βn(tn))dnt.
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The first two (three) lines give

dρ̃ 〈ω0 ⊗ · · · ⊗ ωn〉+

∫
∆n

β0(0) ∧ (ια1(t1)− β1(t1)) ∧ · · · ∧ (ιαn(tn)− βn(tn))dnt, (19)

while the third (fourth and fifth) line can be integrated in tj from tj−1 to tj+1

thus getting

dρ̃ 〈ω0 ⊗ · · · ⊗ ωn〉+

∫
∆n

β0(0) ∧ (ια1(t1)− β1(t1)) ∧ · · · ∧ (ιαn(tn)− βn(tn))dnt

−
n−1∑
j=1

(−1)rj−1

∫
∆n−1

α0(0) ∧ (ια1(t1)− β1(t1)) ∧ · · · ∧ (ιαj−1(tj−1)− βj−1(tj−1))∧

∧ αj(tj+1) ∧ (ιαj+1(tj+1)− βj+1(tj+1)) ∧ · · · ∧ (ιαn(tn)− βn(tn))dntj

− (−1)rn−1

∫
∆n−1

α0(0) ∧ (ια1(t1)− β1(t1)) ∧ · · · ∧ (ιαn−1(tn−1)− βn−1(tn−1)) ∧ αn(1)dntn

+

n∑
j=2

(−1)rj−1

∫
∆n−1

α0(0) ∧ (ια1(t1)− β1(t1)) ∧ · · · ∧ (ιαj−1(tj−1)− βj−1(tj−1))∧

∧ αj(tj−1) ∧ (ιαj+1(tj+1)− βj+1(tj+1)) ∧ · · · ∧ (ιαn(tn)− βn(tn))dntj

+ (−1)r0
∫

∆n−1

α0(0) ∧ α1(0) ∧ (ια2(t2)− β2(t2)) ∧ · · · ∧ (ιαn(tn)− βn(tn))dnt1

−
n∑
j=1

(−1)rj−1

∫
∆n

α0(0) ∧ (ια1(t1)− β1(t1)) ∧ · · · ∧ (ιαj−1(tj−1)− βj−1(tj−1))∧

∧ ιβj(tj) ∧ (ιαj+1(tj+1)− βj+1(tj+1)) ∧ · · · ∧ (ιαn(tn)− βn(tn))dnt, (20)

where dntj = dt1 · · · dtj−1dtj+1 · · · dtn. If in the fourth sum of integrals we
change the summation variable from j to j + 1, then make the change of variable
tj → tj+1, and put it together with the second sum of integrals, after noting that
(−1)rj−1(−1)jj = −(−1)rj , then summing the fourth and the second integrals we
get

−
n−1∑
j=1

(−1)rj−1

∫
∆n−1

α0(0) ∧ (ια1(t1)− β1(t1)) ∧ · · · ∧ (ιαj−1(tj−1)− βj−1(tj−1))∧

∧ [αj(tj+1) ∧ (ιαj+1(tj+1)− βj+1(tj+1))] ∧ · · · ∧ (ιαn(tn)− βn(tn))dntj

+

n−1∑
j=1

(−1)rj
∫

∆n−1

α0(0) ∧ (ια1(t1)− β1(t1)) ∧ · · · ∧ (ιαj−1(tj−1)− βj−1(tj−1))∧

∧ [(ιαj(tj+1)− βj(tj+1)) ∧ αj+1(tj+1)] ∧ · · · ∧ (ιαn(tn)− βn(tn))dntj

=

n−1∑
j=1

(−1)rj
∫

∆n−1

α0(0) ∧ (ια1(t1)− β1(t1)) ∧ · · · ∧ (ιαj−1(tj−1)− βj−1(tj−1))∧

∧
[
(ιαj(tj+1)− βj(tj+1)) ∧ αj+1(tj+1) + (−1)jj−1αj(tj+1) ∧ (ιαj+1(tj+1)− βj+1(tj+1))

]
∧

∧ · · · ∧ (ιαn(tn)− βn(tn))dntj

=

n−1∑
j=1

(−1)rj ρ̃〈ω0 ⊗ · · · ⊗ ωj−1 ⊗ ωj ∧ ωj+1 ⊗ ωj+2 ⊗ · · · ⊗ ωn〉,

12



which including the fifth integral in (4) becomes

ρ̃

〈
n−1∑
j=0

(−1)rjω0 ⊗ · · · ⊗ ωj−1 ⊗ ωj ∧ ωj+1 ⊗ ωj+2 ⊗ · · · ⊗ ωn

〉
.

This cancels the second line of (18). After noting that αn(1) = αn(0), we see that
the third integral in (4) is just

−(−1)(jn−1)rn−1 ρ̃ 〈ωn ∧ ω0 ⊗ ω1 ⊗ · · · ⊗ ωn−1〉 ,

which cancels the third line of (18). Thus, we get

ρ̃b 〈ω0 ⊗ · · · ⊗ ωn〉 = dρ̃ 〈ω0 ⊗ · · · ⊗ ωn〉

+

∫
∆n

β0(0) ∧ (ια1(t1)− β1(t1)) ∧ · · · ∧ (ιαn(tn)− βn(tn))dnt

−
n∑
j=1

(−1)rj−1

∫
∆n

α0(0) ∧ (ια1(t1)− β1(t1)) ∧ · · · ∧ (ιαj−1(tj−1)− βj−1(tj−1))∧

∧ ιβj(tj) ∧ (ιαj+1(tj+1)− βj+1(tj+1)) ∧ · · · ∧ (ιαn(tn)− βn(tn))dnt. (21)

Now, let us consider

P ρ̃ 〈ω0 ⊗ · · · ⊗ ωn〉 =

∫
I

dsφ∗sι

∫
∆n

α0(0) ∧ (ια1(t1)− β1(t1)) ∧ · · · ∧ (ιαn(tn)− βn(tn))dnt

=

∫
I×∆n

ια0(s)∧(ια1(t1 + s)− β1(t1 + s)) ∧ · · · ∧ (ιαn(tn + s)− βn(tn + s))dntds

−
n∑
j=1

(−1)rj−1

∫
I

dsφ∗s

∫
∆n

α0(0) ∧ (ια1(t1)− β1(t1)) ∧ · · · ∧ (ιαj−1(tj−1)− βj−1(tj−1))∧

∧ ιβj(tj) ∧ (ιαj+1(tj+1)− βj+1(tj+1)) ∧ · · · ∧ (ιαn(tn)− βn(tn))dnt,

(22)

where now I must be identified with the circle T, and where we used that

ι(ιαk(tk)− βk(tk)) = −ιβk(tk).

Now, for any given choice of t̄ = (t1, . . . , tn) such that 0 ≤ t1 ≤ · · · ≤ tn ≤ 1,
we can understand T as the union of almost everywhere n + 1 disjoint intervals
defined by

Ij(t̄) = {s ∈ T|tj−1 + s ≤ 1, tj + s− 1 ≥ 0}, j = 1, . . . , n+ 1.

We see that

Dj = {Ij(t̄)× t̄ | t̄ ∈ ∆n}

is a (n+ 1)-simplex for any given j, and

n+1⋃
j=1

Dj = I ×∆n
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while Dj ∩Dk has zero measure if j 6= k. Therefore,∫
I×∆n

ια0(s) ∧ (ια1(t1 + s)− β1(t1 + s)) ∧ · · · ∧ (ιαn(tn + s)− βn(tn + s))dntds

=

∫
I×∆n

β0(s) ∧ (ια1(t1 + s)− β1(t1 + s)) ∧ · · · ∧ (ιαn(tn + s)− βn(tn + s))dntds

+

∫
I×∆n

(ια0(s)− β0) ∧ (ια1(t1 + s)− β1(t1 + s)) ∧ · · · ∧ (ιαn(tn + s)− βn(tn + s))dntds

=

∫
I

dsφ∗s

∫
∆n

β0(0) ∧ (ια1(t1)− β1(t1)) ∧ · · · ∧ (ιαn(tn)− βn(tn))dntds

+

n+1∑
j=1

∫
Dj

(ια0(s)− β0(s)) ∧ (ια1(t1 + s)− β1(t1 + s)) ∧ · · · ∧ (ιαn(tn + s)− βn(tn + s))dntds.

Now, for any given j we introduce the variables

τk = tj+k−1 + s− 1, k = 1, . . . , n+ 1− j,
τn+2−j = s,

τk = tk+j−n−2 + s, k = n+ 3− j, . . . , n+ 1 (if j ≥ 2).

In this coordinates we have

Dj = {(τ1, . . . , τn+1)|0 ≤ τ1 ≤ · · · ≤ τn+1 ≤ 1} ≡ ∆n+1, dntds = dn+1τ,

and

(ια0(s)− β0(s)) ∧ (ια1(t1 + s)− β1(t1 + s)) ∧ · · · ∧ (ιαn(tn + s)− βn(tn + s))

= (−1)rj−1(rn−rj)1 ∧ (ιαj(τ1)− βj(τ1)) ∧ · · · ∧ (ιαn(τn−j+1)− βn(τn−j+1))∧
∧ (ια0(τn−j+2)− β0(τn−j+2)) ∧ · · · ∧ (ιαj−1(τn+1)− βj−1(τn+1)).

Integrating over Dj = ∆n+1 it becomes∫
Dj

(ια0(s)− β0(s)) ∧ (ια1(t1 + s)− β1(t1 + s)) ∧ · · · ∧ (ιαn(tn + s)− βn(tn + s))

= ρ
〈

(−1)rj−1(rn−rj)1⊗ ωj ⊗ · · · ⊗ ωn ⊗ ω0 ⊗ · · · ⊗ ωj−1

〉
,

and after summation over j we finally get

P ρ̃ 〈ω0 ⊗ · · · ⊗ ωn〉 = ρ̃B 〈ω0 ⊗ · · · ⊗ ωn〉

+

∫
I

dsφ∗s

∫
∆n

β0(0) ∧ (ια1(t1)− β1(t1)) ∧ · · · ∧ (ιαn(tn)− βn(tn))dntds

−
n∑
j=1

(−1)rj−1

∫
I

dsφ∗s

∫
∆n

α0(0) ∧ (ια1(t1)− β1(t1)) ∧ · · · ∧ (ιαj−1(tj−1)− βj−1(tj−1))∧

∧ ιβj(tj) ∧ (ιαj+1(tj+1)− βj+1(tj+1)) ∧ · · · ∧ (ιαn(tn)− βn(tn))dnt.

Notice that the second and third lines here are the means over T of the corre-
sponding terms in (21). After taking the mean of both expressions and subtracting
each other, we finally get ρ(b+B) = (d+ P )ρ as desired.
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iii) We now prove that ρ̃ vanishes on D(ΩT(N ×T)). This implies that ρ vanishes
on D(ΩT(N × T)), too. For elements of the form (4) the assertion immediately
follows from the fact that ιf(t) = 0, as f(t) is a zero form. So, let us consider an
element of the form (5). Since (recall that f is constant over T)

ιdf(t) =
d

dt
f(t),

and df = dTf , we can write

ρ̃( 〈ω0 ⊗ · · · ⊗ ωr−1f ⊗ ωr+1 ⊗ · · · ⊗ ωn〉+ 〈ω0 ⊗ · · · ⊗ ωr−1 ⊗ df ⊗ ωr+1 ⊗ · · · ⊗ ωn〉
− 〈ω0 ⊗ · · · ⊗ ωr−1 ⊗ fωr+1 ⊗ · · · ⊗ ωn〉)

=

∫
∆n−1

α0(0) ∧ · · · ∧ (ιαr−1(tr−1)f(tr−1)− βr−1(tr−1)f(tr−1)) ∧ (ιαr+1(tr+1)− βr+1(tr+1))∧

∧ · · · ∧ (ιαn(tn)− βn(tn))dntr

−
∫

∆n−1

α0(0) ∧ · · · ∧ (ιαr−1(tr−1)− βr−1(tr−1)) ∧ (f(tr+1)ιαr+1(tr+1)− f(tr+1)βr+1(tr+1))∧

∧ · · · ∧ (ιαn(tn)− βn(tn))dntr

+

∫
∆n

α0(0) ∧ · · · ∧ (ιαr−1(tr−1)− βr−1(tr−1)) ∧ d

dtr
f(tr) ∧ (ιαr(tr)− βr(tr))∧

∧ · · · ∧ (ιαn(tn)− βn(tn))dnt.

After integrating tr from tr−1 to tr+1 in the last term, we get exactly zero.

v) It remains to check the continuity of (16), which easily follow from the continuity
of ρ̃. To see the latter, let X be a smooth manifold (without boundary), let ε be
a continuous seminorm on Ω(X), and let f : X → LN be smooth. For s ∈ T let
rs denote the embedding

X −→ X × T, x 7−→ (x, s).

Then we have

εf (ρ̃ 〈(α0 + ϑT ∧ β0)⊗ · · · ⊗ (αn + ϑT ∧ βn)〉)

≤
∫

∆n

ε(f∗[α0(0)])

n∏
i=1

ε
(
f∗[ιαi(ti)− βi(ti)]

)
dt1 · · · dtn

=

∫
∆n

ε(r∗0 f̂
∗α0)

n∏
i=1

ε
(
r∗tiι∂T f̂

∗αi − r∗ti f̂
∗βi
)
dt1 · · · dtn

≤
∫

∆n

ε(r∗0 f̂
∗α0)

n∏
i=1

(
ε
(
r∗tiι∂T f̂

∗αi
)

+ ε
(
r∗ti f̂

∗βi
))

dt1 · · · dtn

≤
∫

∆n

ε̃(α0)

n∏
i=1

(
ε̃(αi) + ε̃(βi)

)
dt1 · · · dtn

≤ 1

n!

n∏
i=0

(
ε̃(αi) + ε̃(βi)

)
=

1

n!
ε̃Tn

(
(α0 + ϑT ∧ β0)⊗ · · · ⊗ (αn + ϑT ∧ βn)

)
,
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for some continuous seminorm ε̃ on Ω(N). This estimate shows the continuity of
ρ̃ and completes the proof.

�

5 Construction of cycles in N −
ε (ΩT(M × T)) and

the induced cycles in Ω̂−(LM)

Let nowM be a compact manifold (possibly with boundary). Given g ∈ C∞(M,U(l×
l;C)) our aim is to construct a canonically given element

Ch−(g) ∈ C−ε (ΩT(M × T))

with (b+B)Ch−(g) = 0 in the Chen normalized complex. To this end, let I := [0, 1]
and denote the canonical vector field on I with ∂I . We denote the canonical
Maurer-Cartan form on U(l × l;C) by

ω ∈ Ω1
(
U(l × l;C),Mat(l × l;C)

)
.

Then for all s ∈ I we can form the covariant derivative d+sω on the trivial vector
bundle U(l × l;C)× Cl → U(l × l;C). Let

As ∈ Ω1
(
U(l × l;C),Mat(l × l;C)

)
, Rs ∈ Ω2

(
U(l × l;C),Mat(l × l;C)

)
denote the connection 1-form of d+ sω and the curvature of d+ sω, respectively,
and

As := As − ϑT ∧Rs ∈ ΩT
(
U(l × l;C)× T,Mat(l × l;C)

)
.

We set
As(g) := g∗As, Rsg := g∗Rs, ωg := g∗ω,

so that As(g) = sωg and by the Maurer-Cartan equation Rsg = (s/2)ω2
g . Then we

can define
As(g) := Asg − ϑT ∧Rsg ∈ ΩT(M × T,Mat(l × l;C)).

By varying s, the forms As(g) induce a form

A(g) ∈ ΩT(M × I × T,Mat(l × l;C))

and we set
B(g) := ι∂IA(g) ∈ ΩT(M × I × T,Mat(l × l;C)).

Then we can define

Bs(g) ∈ ΩT(M × T,Mat(l × l;C)),

to be the pullback of B(g) with respect to the embedding

M × T −→M × I × T, (x, t) 7−→ (x, s, t).
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In fact, by a simple calculation one finds

As(g) = sωg + s(1− s)ϑT ∧ ω2
g , Bs(g) = −ϑT ∧ ωg, (23)

so that Bs(g) actually does not depend on s. With these preparations, we can
define an element

Ch−(g) = (Ch−0 (g),Ch−1 (g), . . . ) ∈ C (ΩT(M × T))

by setting

Ch−n (g) := Trn

[∫ 1

0

1⊗
n∑
k=1

As(g)⊗(k−1) ⊗ Bs(g)⊗As(g)⊗(n−k)ds

]
,

where given linear spaces V0, . . . , Vn, and v(j) ∈ Mat(l × l;Vi), j = 0, . . . , n, the
generalized trace is defined by

Trn[v(0) ⊗ · · · ⊗ v(n)] :=
∑

i0,...,in=1,...l

v
(0)
i0,i1
⊗ v(1)

i1,i2
⊗ · · · ⊗ v(n)

in,i0
.

We refer the reader to the paper [15] by Simons and Sullivan, where a construction
of the usual odd Chern character ch−(g) ∈ Ω−(M) (cf. formula (24) below) has
been given that influenced our definition of Ch−(g).

Theorem 5.1. Let M be a compact manifold, possibly with boundary.
a) One has

Ch−(g) ∈ C−ε (ΩT(M × T)), and (b+B)Ch−(g) = 0 in Nε(ΩT(M × T)),

in particular, Ch−(g) induces a homology class[
Ch−(g)

]
∈ HN−ε (ΩT(M × T)).

b) The map

K−1(M) −→ HN−ε (ΩT(M × T)), [g] 7−→
[
Ch−(g)

]
is a well-defined group homomorphism.

Proof. a) It is easily seen that ΓCh−(g) = −Ch−(g). To show that

Ch−(g) ∈ C−ε (ΩT(M × T)),

given a continuous seminorm ε on ΩT(M × T) set

Cε := sup
s∈[0,1]

max
(
ε(1), max

i,j=1,...,l
ε(As(g)ij), max

i,j=1,...,l
ε(Bs(g)ij)

)
.

It is then easily checked that

κε(Ch−(g)) ≤
∞∑
n=0

n
(l2Cε)

n

√
n!

<∞.
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It remains to prove

(b+B)Ch−(g) ∈ Dε(ΩT(M × T)).

In fact,
BCh−(g) ∈ Dε(ΩT(M × T)),

as every
〈
Ch−n (g)

〉
contains the 0-form 1 and so is of the form (4) with f = 1. It

remains to show that
bCh−(g) ∈ Dε(ΩT(M × T)).

In order to see the latter, let us first notice that(
bCh−(g)

)
n

=
(
b
〈
Ch−n (g)

〉)
n

+
(
b
〈
Ch−n+1(g)

〉)
n
.

Using (23) and the explicit definition of b, we get(
b
〈
Ch−n (g)

〉)
n

= −Trn

[∫ 1

0

1⊗
n∑
k=1

k−2∑
l=0

As(g)⊗l ⊗ (−s2ω2
g)⊗As(g)⊗(k−l−2)

⊗ (−ϑT ∧ ωg)⊗As(g)⊗(n−k) ds
]

+ Trn

[∫ 1

0

1⊗
n∑
k=1

n−k−1∑
l=0

As(g)⊗(k−1) ⊗ (−ϑT ∧ ωg)

⊗As(g)⊗l ⊗ (−s2ω2
g)⊗As(g)⊗(n−k−l−1) ds

]
− Trn

[∫ 1

0

1⊗
n∑
k=1

As(g)⊗(k−1) ⊗ (ϑT ∧ ω2
g + ωg)⊗As(g)⊗(n−k) ds

]
,

and (
b
〈
Ch−n+1(g)

〉)
n

= −Trn

[∫ 1

0

1⊗
n∑
k=1

k−2∑
l=0

As(g)⊗l ⊗ (+s2ω2
g)⊗As(g)⊗(k−l−2)

⊗ (−ϑT ∧ ωg)⊗As(g)⊗(n−k) ds
]

+ Trn

[∫ 1

0

1⊗
n∑
k=1

n−k−1∑
l=0

As(g)⊗(k−1) ⊗ (−ϑT ∧ ωg)⊗As(g)⊗l

⊗ (+s2ω2
g)⊗As(g)⊗(n−k−l−1) ds

]
− Trn

[∫ 1

0

1⊗
n∑
k=1

As(g)⊗(k−1) ⊗ (−2sϑT ∧ ω2
g)⊗As(g)⊗(n−k) ds

]
,
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whose sum is

Trn

[∫ 1

0

1⊗
n∑
k=1

As(g)⊗(k−1) ⊗
(
d

ds
As(g)

)
⊗As(g)⊗(n−k) ds

]

= Trn

[∫ 1

0

d

ds

(
1⊗As(g)⊗n

)
ds

]
= Trn

[
1⊗A1(g)⊗n

]
− Trn

[
1⊗A0(g)⊗n

]
.

Thus, we finally have

(bCh−(g))n = Trn
[
1⊗ ω⊗ng

]
, n = 1, 2, . . . .

We now prove that(
. . . ,Trn

[
1⊗ ω⊗ng

]
, . . .

)
∈ Dε(ΩT(M × T)).

To this end we have simply to employ the properties of the generalized trace.
Indeed, for n ≥ 2 we can write〈

Trn
[
1⊗ ω⊗ng

]〉
=
〈

Trn

[
1⊗ ωg ⊗ ωg ⊗ ω⊗(n−2)

g

]〉
=−

〈
Trn

[
1⊗ dg−1 ⊗ dg ⊗ ω⊗(n−2)

g

]〉
=−

〈
Trn

[
1⊗ dg−1 ⊗ dg ⊗ ω⊗(n−2)

g

]〉
−
〈

Trn−1

[
g−1 ⊗ dg ⊗ ω⊗(n−2)

g

]〉
+
〈

Trn−1

[
1⊗ g−1dg ⊗ ω⊗(n−2)

g

]〉
,

where the last two terms cancel each other because of the trace property, which is
precisely of the form (5) for f = g−1. Similarly, for n = 1 it is sufficient to notice
that

〈Tr1 [1⊗ ωg]〉 =
〈
Tr1

[
g−1 ⊗ dg

]〉
,

which is of the form (4) with f = g−1, completing the proof of bCh−(g) ∈
Dε(ΩT(M × T)).
b) It suffices to prove the following two facts:
i) If g, h ∈ C∞(M,U(l × l;C)), then one has Ch−(g ⊕ h) = Ch−(g) + Ch−(h).
ii) If g0, g1 ∈ C∞(M,U(l × l;C)) are connected by a smooth homotopy

g· ∈ C∞(M × I, U(l × l;C)),

then one has

Ch−(g1)− Ch−(g0) = (b+B)w in Nε(ΩT(M × T))

for some w ∈ Cε(ΩT(M × T)).
Here, property i) is an immediate consequence of the properties of the generalized
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trace Trn using the block diagonal form of g ⊕ h.
To see ii), for any t ∈ I, we define the embedding

jt : M ↪→M × I, x 7−→ (x, t),

and w = (w0, w1, . . . ) ∈ Cε(ΩT(M × T)) by setting

wn :=− Trn

[∫ 1

0

∫ 1

0
1⊗

n∑
k=1

k−2∑
l=0

j∗t

(
As(g·)⊗l ⊗ ι∂IA

s(g·)⊗As(g·)⊗(k−l−2)

⊗ Bs(g·)⊗As(g·)⊗(n−k)

)
ds dt

]

+Trn

[∫ 1

0

∫ 1

0
1⊗

n∑
k=1

n−k−1∑
l=0

j∗t

(
As(g·)⊗(k−1) ⊗ Bs(g·)⊗As(g·)⊗l ⊗ ι∂IA

s(g·)

⊗As(g·)⊗(n−k−l−1)

)
ds dt

]
− Trn

[∫ 1

0

∫ 1

0
1⊗

n∑
k=1

j∗t

(
As(g·)⊗(k−1) ⊗ ι∂IB

s(g·)⊗As(g·)⊗(n−k)
)
ds dt

]
.

The Cε growth conditions are easily checked for w. Then again it is clear that
Bw ∈ Dε(ΩT(M × T)). On the other hand, by using the identity

dj∗t ι∂IAs(g·) = −j∗t ι∂IdAs(g·) +
∂

∂t
j∗tAs(g·),

and similarly for Bs, and the same computations as in part a) we get, as elements
in the Chen normalized complex,

(bw +Bw)n = (bw)n = (b 〈wn〉)n + (b 〈wn+1〉)n =

(
〈
∫ 1

0

d

dt
j∗t Ch−(g.)

)
n

= Ch−n (g1)− Ch−n (g0).

This completes the proof. �

If M has no boundary (so that LM is a well-defined Fréchet manifold), in view of
(d+ P )ρ = ρ(b+B), we immediately get:

Corollary 5.2. Assume M is a compact manifold without boundary. Then for
all g ∈ C∞(M,U(l × l;C)) one has (d+ P )ρ(Ch−(g)) = 0 in Nε(ΩT(M × T)), in

particular, ρ(Ch−(g)) induces a homology class in Ĥ−T (LM).

Remark 5.3. There is an even version of Ch−(g) given as follows: If N is a
manifold and d + C is a connection on a trivial vector bundle over N , then with
RC the curvature of the connection 1-form C one defines

Ch+(C) = (Ch+
0 (C),Ch+

1 (C), . . . ) ∈ C +
ε (ΩT(N × T))

by
Ch+

n (C) := Trn
[
1⊗ (C − ϑT ∧RC)⊗n

]
,
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which by an analogous calculation as in the proof of Theorem 5.1 is seen to satisfy

(b+B)Ch+(C) = 0 in Nε(ΩT(N × T))..

Then, there holds an even/odd periodicity, that is, one can obtain Ch−(g) from
its even variant by a fiber integration: indeed, by varying s ∈ I in

As(g) ∈ ΩT(M,Mat(l × l;C))

we get a form
A(g) ∈ ΩT(M × I,Mat(l × l;C))

and can consider the fibration

π : M × I −→M.

Then, for the connection d + Ãg on the trivial vector bundle over M × I, where

Ãg := π∗Ag, one has, using the definitions of As(g) and Bs(g) that

Ch−(g) =

∫
I

ι∂I Ch+(Ãg) = π∗Ch+(Ãg),

the integration along the fibers of π.

The odd Chern character ch−(g) ∈ Ω−(M) is the closed odd differential form
defined by

ch−(g) := Tr

 ∞∑
j=0

(−1)jj!

(2j + 1)!
(g−1dg)∧(2j+1)

 , (24)

and the odd Bismut-Chern character is the differential form

Bch−(g) = (Bch−1 (g),Bch−3 (g), . . . ) ∈ Ω̂−(LM)

defined by

Bch−2n−1(g) =Tr

∫ 1

0

∫
{0≤t1≤...tn≤1}

n∑
j=1

j−1∧
i=1

//sti (g)R
s
g(ti)

∧
//stj (g)Ȧ

s
g(tj)

n∧
l=j+1

//stl (g)R
s
g(tl)//

s
1(g)dt1 · · · dtnds

 ,
where

Ȧsg =
d

ds
Asg = ωg ∈ Ω1(M,Mat(l × l;C)),

and where //s· (g) denotes the parallel transport with respect to the connection
d+ sωg on the trivial vector buncle over M .

Theorem 5.4. Assume M is a compact Riemannian manifold, possibly with
boundary, and let g ∈ C∞(M,U(l × l;C)). Then one has ρ(Ch−(g))|M = ch−(g),
and if M has no boundary then Bch−(g) = ρ(Ch−(g)).
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Note that in view of Corollary 5.2, Theorem 5.4 provides a new proof of

(d+ P )Bch−(g) = 0

We refer the reader to [18] for a variant of this result.

Proof of Theorem 5.4. The formula ρ(Ch−(g))|M = ch−(g) is a simple conse-
quence of the definitions, once one has noticed the formula

ρ 〈(α0 + ϑT ∧ β0)⊗ · · · ⊗ (αn + ϑT ∧ βn)〉 |M = α0 ∧ · · · ∧ αn.

In order to see Bch−(g) = ρ(g), given t, s ∈ I define

V s(g, t) ∈ Ω̂−(LM,Mat(l × l;C))

by

V s2n+1(g, t) =

∫
{0≤t1≤...tn+1≤t}

n+1∑
j=1

j−1∧
i=1

//sti(g)Rsg(ti)
∧
//stj (g)Ȧsg(tj)

×
n+1∧
l=j+1

//stl(g)Rsg(tl)//
s
1(g)dt1 · · · dtn+1,

and the differential form

W s(g, t) ∈ Ω̂−(LM,Mat(l × l;C))

by

W s
2n+1(g, t) =

∞∑
k=n+1

k∑
r,j1,··· ,jn=1,pairwise distinct

×
∫
{0≤t1≤...tk≤t}

ιAsg(t1) · · ·Rsg(tj1) · · · Ȧsg(tr) · · ·Rsg(tjn) · · · ιAsg(tk)dt1 · · · dtk.

Then obviously one has

Bch−(g) = Tr

[∫ 1

0

V s(g, t)|t=1ds

]
and it is easily checked from the definitions that

ρ(Ch−(g)) = Tr

[∫ 1

0

W s(g, t)|t=1ds

]
.

Thus it suffices to show that W s(g, t) = V s(g, t) for all t, s ∈ I. To see this, the
essential idea is to consider for every t, s ∈ I the even form

Xs(g, t) = (Xs
0(g, t), Xs

2(g, t), . . . ) ∈ Ω̂+(LM,Mat(l × l;C))
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which is defined by

Xs
0(g, t) = //st (g),

d

dt
Xs

2n(g, t) = Xs
2n(g, t)ιAsg(t) +Xs

2n−2(g, t)Rsg(t),

Xs
2n(g, t)|t=0 = 0 for all n ≥ 1,

and the odd form

Y s(g, t) = (Y s1 (g, t), Y s3 (g, t), . . . ) ∈ Ω−(LM,Mat(l × l;C))

which is defined by

d

dt
Y s1 (g, t) = Y s1 (g, t)ιAsg(t) +Xs

0(g, t)Ȧsg(t),

d

dt
Y s2n+1(g, t) = Y s2n+1(g, t)ιAsg(t) + Y s2n−1(g, t)Rsg(t) +Xs

2n(g, t)Ȧsg(t) ∀n ≥ 1,

Y s2n+1(g, t)|t=0 = 0 for all n.

Noting that the sum that defines W s
2n+1(g, t) converges uniformly in t so that one

can interchange d/dt with
∑∞
k=n+1, it is now easily checked that both t 7→W s(g, t)

and t 7→ V s(g, t) solve the IVP’s which define Y s(g, t), so that

V s(g, t) = W s(g, t) = Y s(g, t) for all t, s ∈ I,

as was claimed.
�

Remark 5.5. If N is a compact manifold without boundary and given a connec-
tion d+ C over a trivial vector bundle over N , the even Bismut-Chern character
is the differential form

Bch+(C) = (Bch+
0 (C),Bch+

2 (C), . . . ) ∈ Ω̂+(LN)

defined by

Bch+
2n(C) =Tr

[∫
{0≤t1≤...tn≤1}

n∧
i=1

//CtiRC(ti)//
C
1 dt1 · · · dtn

]
,

where RC is again the curvature of d + C and //C· is the parallel transport with
respect to d + C. Then one has another even/odd periodicity as in Remark 5.3:
we can consider Asg as defining a connection 1-form Ãg over a trivial vector bundle
over M × I. However, since M × I is a manifold with boundary, it is convenient
to embed it in a larger manifold, say

χ : M × I ↪→M × J
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where J = (−1, 2). Therefore, we extend Asg to s ∈ J , consider it as defining a

connection 1-form Ãg over a trivial vector bundle over M × J .
The corresponding curvature

RÃg
∈ Ω2(M × J,Mat(l × l;C))

is given by varying s ∈ J in

Rsg + ds ∧ Ȧsg ∈ Ω2(M,Mat(l × l;C)).

Since ι∂JRÃg
= Ȧsg, after restricting to loops fibering over J , we immediately get

that under integration along the fibers of

π : M × I −→M,

one has

Bch−2n−1(g) =

∫
I

χ∗ι∂J Bch+
2n(Ãg) = π∗χ

∗Bch+
2n(Ãg).
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