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M: complete Riemannian m-manifold

d : C∞(M)→ ΓC∞(T ∗M): exterior derivative on functions

d1 : ΓC∞(T ∗M)→ ΓC∞(∧2T ∗M): exterior derivative on
1-forms

T r ,sM → M: r -times contravariant, s-times covariant tensors

∆ = d†d : Laplace-Beltrami-Operator in L2(M) (e.s.a.!)

∆1 = d†1d1 + dd†: Laplace-Beltrami-Operator in ΓL2(T ∗M)
(e.s.a.!)

∇r ,s : ΓC∞(T r ,sM)→ ΓC∞(T r ,s+1M): Levi-Civita (LC)
connection

µ: Riemannian volume measure
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Let 1 < p <∞. The aim of the talk is to explain the
connection between path integrals and the Lp-boundedness of
the covariant Riesz-transform CRT (p),

∀λ > 0 :
∥∥∥∇0,1(∆1 + λ)−1/2

∥∥∥
p
<∞. (1)

The Lp-boundedness of the ’usual Riesz-transform’ RT (p),∥∥∥d1(∆1 + λ)−1/2
∥∥∥
p
<∞ (2)

only needs Ric ≥ −C for some C > 0 and is a (by now)
classical result by Bakry (1987).

Proving CRT (p) should be considerably harder than proving
RT (p), essentially because the Laplace-Beltrami operator
commutes with the exterior differential, but not with the LC
connection. In fact, CRT (p)⇒ RT (p) easily.
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CRT (p) plays a fundamental role in geometric analysis:

‖Hess(f )‖p =
∥∥∇0,1d1f

∥∥
p

=
∥∥∥∇0,1(∆1 + λ)−1/2d1(∆ + λ)−1/2(∆ + λ)f

∥∥∥
p

≤
∥∥∥∇0,1(∆1 + λ)−1/2

∥∥∥
p

∥∥∥d1(∆ + λ)−1/2
∥∥∥
p

(
‖∆f ‖p + λ ‖f ‖p

)
,

⇒ ‖Hess(f )‖p ≤ C (‖∆f ‖p + ‖f ‖p) ,

the Lp-Calderon-Zygmund inequality CZ (p).

CZ (2) is easily seen to hold under Ric ≥ −C , and is false in
general (G./Pigola, 2015).

For p 6= 2 the inequality CZ (p) is nontrivial even in Rm; the
best result so far at a full Lp-scale is under |Ric| ≤ C and
inj(M) > 0 (G./Pigola, 2015).
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Typical applications of CZ (p):

CZ (p) (& a little bit of extra work) implies the global Sobolev
inequality

‖Hess(f )‖p + ‖df ‖p ≤ C ‖∆f ‖p + C ‖f ‖p .

CZ (p) (& |Riem| ≤ C & some extra work) implies
|Hess(f )|, |df | ∈ Lp(M) for weak solutions f ∈ Lp(M) of the
Poisson equation ∆f = h, where h ∈ Lp(M).

Once one has CZ (p) with a constant depending only on
geometric quantities (Ric, inj,...), one can use it to prove
Lp-precompactness results for sequences of Riemannian
immersions Ψn : Mn → Rl , n ∈ N: then ∆Ψn is essentially the
mean curvature of ψn and Hess(Ψn) its second fundamental
form!
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Batu Güneysu Covariant Riesz-Transforms



Typical applications of CZ (p):

CZ (p) (& a little bit of extra work) implies the global Sobolev
inequality

‖Hess(f )‖p + ‖df ‖p ≤ C ‖∆f ‖p + C ‖f ‖p .

CZ (p) (& |Riem| ≤ C & some extra work) implies
|Hess(f )|, |df | ∈ Lp(M) for weak solutions f ∈ Lp(M) of the
Poisson equation ∆f = h, where h ∈ Lp(M).

Once one has CZ (p) with a constant depending only on
geometric quantities (Ric, inj,...), one can use it to prove
Lp-precompactness results for sequences of Riemannian
immersions Ψn : Mn → Rl , n ∈ N: then ∆Ψn is essentially the
mean curvature of ψn and Hess(Ψn) its second fundamental
form!
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How can we prove CRT (p)? Approach: reduce CRT (p) to
estimates for the heat semigroup on 1-forms, so that we can use
probability theory.

Batu Güneysu Covariant Riesz-Transforms



Indeed:

In view of the Laplace-transform

∇0,1(∆1 + λ)−1/2 =

∫ ∞
0
∇0,1e−t∆1t−1/2e−tλdt

and a highly sophisticated machinery from harmonic analysis
on metric measure spaces by
Auscher/Coulhon/Doung/Hofmann (2004), the estimate
CRT (p) follows from the semigroup estimate SG (p)

∃C > 0 ∀t > 0 :
∥∥∥∇0,1e−t∆1

∥∥∥
p,p
≤ CeCtt−1/2.

Whatever it is, this machinery should be sophisticated:∥∥∥∥∫ ∞
0
∇0,1e−t∆1t−1/2e−tλdt

∥∥∥∥
p,p

≤ C

∫ ∞
0

eCtt−1dt =∞...
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Is there a probabilistic formula for ∇0,1e−t∆1 which is explicit
enough to prove SG (p)?

Some hope: there are probabilistic path integral formulae for
e−t∆1 (’covariant Feynman-Kac formula’), and for d1e

−t∆1 by
Bismut (1984), Elworthy/Li (1998), and Thalmaier (1997)
(’BELT formula’).
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(Ω,P): a probability space. Notation: E[· · · ] =
∫
· · · dP.

X (x) : [0,∞)× Ω→ M: Brownian motion (BM) starting
from x ∈ M; paths X (x)(ω) : [0,∞)→ M continuous, for all
k ∈ N, 0 < t1 < · · · < tk , A1, . . . ,Ak ⊂ M,

P{Xt1(x) ∈ A1, . . . ,Xtk (x) ∈ Ak} =∫
A1

· · ·
∫
Ak

e−t1∆(x , x1)e−(t2−t1)∆(x1, x2)

· · · e−(tk−tk−1)∆(xk−1, xk)dµ(x1) · · · dµ(xk).

//r ,s(x) : [0,∞)× Ω→ Hom(T r ,s
x M,T r ,s

X (x)M): parallel

transport along X (x) with respect to ∇r ,s

Q(x) : [0,∞)× Ω→ End(T ∗xM) is defined pathwise by

d

dt
Qt(x) = −1

2
Qt(x)//0,1

t (x)−1RicTXt(x)//
0,1
t (x), Q0(x) = idT∗x M .
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These processes are precisely the ingredients of the covariant
Feynman-Kac formula (Malliavin 1978, Driver/Thalmaier
2001, G. 2012)

e−t∆1α(x) = E
[
Qt//

0,1
t (x)−1α(Xt(x))

]
,

valid for all α ∈ ΓC∞c (T ∗M), t ≥ 0, x ∈ M, if Ric is
(sufficiently) bounded from below.

How can one prove the covariant Feynman-Kac formula?
Using some stochastic analysis (Itô’s formula) one finds that
for fixed t > 0, the process

Y := Q(x)//0,1(x)−1e−(t−•)∆1α(X (x)) : [0, t]× Ω→ T ∗xM,

is a so called ’local martingale’.
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On the other hand, being a local martingale, Ys has a constant
expectation in s ∈ [0, t], if

E

[
sup

s∈[0,t]
|Ys |

]
<∞,

which is the case, as under say Ric ≥ −C , we have |Qs(x)| ≤ eCt

P-a.s. (Gronwall), and

sup
u∈[0,t],y∈M

|e−u∆1α(y)| <∞ (Kato-Simon).

Therefore:

e−t∆1α(x) = E [Y0] = E [Yt ] = E
[
Qt(x)//0,1

t (x)−1α(Xt(x))
]
,

completing the proof of the covariant Feynman-Kac formula.
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Let us now prepare our attack on the path integral for ∇0,1et∆...
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Given a continuous process A : [0,∞)× Ω→ R1 and a
Euclidean BM B : [0,∞)× Ω→ R1 we can define another
continuous process∫ •

0
AsdBs : [0,∞)× Ω→ R1,

the Itô integral, by approximating
∫ t

0 AsdBs(ω) with
’left-point (!) Lebesgue-Stieltjes Riemann sums’ (but the
convergence is not for P-a.e. ω ∈ Ω).

In general,
∫ •

0 AsdBs will only be local martingale; however,
there is the Burkholder-Davis-Gundy inequality, which states
that for all q ∈ [1,∞), there exists Cq <∞ s.t. for all t ≥ 0,

E
[

sup
s∈[0,t]

∣∣∣ ∫ t

0
AsdBs

∣∣∣q] ≤ CqE
[( ∫ t

0
|As |2ds

)q/2]
∈ [0,∞].
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the Itô integral, by approximating
∫ t

0 AsdBs(ω) with
’left-point (!) Lebesgue-Stieltjes Riemann sums’ (but the
convergence is not for P-a.e. ω ∈ Ω).

In general,
∫ •

0 AsdBs will only be local martingale; however,
there is the Burkholder-Davis-Gundy inequality, which states
that for all q ∈ [1,∞), there exists Cq <∞ s.t. for all t ≥ 0,

E
[

sup
s∈[0,t]

∣∣∣ ∫ t

0
AsdBs

∣∣∣q] ≤ CqE
[( ∫ t

0
|As |2ds

)q/2]
∈ [0,∞].
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Define the section

R̃ic ∈ ΓC∞(End(⊗2T ∗M)) = ΓC∞
(
End

(
Hom(TM,T ∗M)

))
on A ∈ Hom(TxM,T ∗xM), v ∈ TxM, by

R̃ic(A)(v) = RicT (Av)− 2
m∑
j=1

RiemT (ei , v)(Aej) ∈ T ∗xM,

and the section

ρ ∈ ΓC∞(Hom(T ∗M,⊗2T ∗M)) = ΓC∞
(
Hom

(
T ∗M,Hom(TM,T ∗M

))
on α ∈ T ∗xM, v ∈ TxM by

ρ(α)(v) = (∇1,1
v RicT )α−

m∑
j=1

(∇2,2
ei

RiemT )(ei , v)α ∈ T ∗xM.
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Batu Güneysu Covariant Riesz-Transforms



Define

Q̃(x) : [0,∞)× Ω→ End(⊗2T ∗xM),

(d/dt)Q̃t(x) = −1

2
Q̃t(x)(//0,2

t )−1R̃icXt//
0,2
t |x , Q̃0(x) = id⊗2T∗x M

,

B(x) : [0,∞)× Ω −→ TxX anti-dev. of X (x) w.r.t. ∇1,0 (BM!),

and for fixed t > 0, ξ ∈ ⊗2TxM further

`(ζ, t) :=
(t − •)

t
ζ : [0, t]× Ω→ ⊗2TxM,

`(1)(ξ, t) := −
∫ •

0
QT ,−1

s dBsQ̃
T
s

˙̀
s(ξ, t)|x : [0, t]× Ω→ TxM,

`(2)(ξ, t) :=
1

2

∫ •
0

QT ,−1
s

(
(//0,2

s )−1ρ(Xs)//0,2
s

)T
Q̃T

s `s(ζ, t)ds|x

: [0, t]× Ω→ TxM.
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Theorem (Baumgarth/G. 2018)

Assume |Riem|, |∇1,3Riem| ≤ A für some A <∞. Then for all
α ∈ ΓC∞c (T ∗M), t > 0, x ∈ M, ξ ∈ ⊗2TxM one has

(∇e−t∆1α(x), ξ)

= −E
[(

Qt(x)//0,1
t (x)−1α(Xt(x)), `

(1)
t (ξ, t) + `

(2)
t (ξ, t)

)]
.

Proof: Using the Itô formula one finds (a long calculation) that the
process

Y :=
(
Q̃(x)//0,2(x)−1∇e−(t−•)∆1α(X (x)), `(ξ, t)

)
−
(
Q(x)//0,1(x)−1e−(t−•)∆1α(X (x)), `(1)(ξ, t) + `(2)(ξ, t)

)
: [0, t]× Ω −→ R

is a local martingale (without any restriction on the geometry of
M).
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The following estimates will entail that under our assumptions on
the geometry of M, the process Y is even a martingale:

Lemma (`(j)-estimates)

Assume |Riem|, |∇1,3Riem| ≤ A for some A <∞, and let
q ∈ [1,∞), t > 0, x ∈ M, ξ ∈ TxM.
a) One has:

E

[
sup

s∈[0,t]
|`(1)
s (ξ, t)|q

]1/q

≤ Cq,mt
−1/2etCA,q,m |ξ|,

b) One has:

E

[
sup

s∈[0,t]
|`(2)
s (ξ, t)|q

]1/q

≤ CeCA,mt |ξ|.
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Proof: By Gronwall

|Qs(x)|, |Qs(x)−1|, |Q̃s(x)|, Q̃s(x)−1 ≤ eCm,As P-f.s. for all s ∈ [0, t],

so that
E
[

sup
s∈[0,t]

|`(2)
s (ξ, t)|q

]
≤ eqCm,At |ξ|q,

and using the Burkholder-Davis-Gundy inequality, we find

E
[

sup
s∈[0,t]

|`(1)
s (ξ, t)|q

]
≤ Cq,mE

[( ∫ t

0
|QT ,−1

s |2|Q̃T
s |2| ˙̀s(ξ, t)|2|xds

)q/2]
≤ Cq,mt

−q/2etCA,q,m |ξ|q,

completing the proof of the Lemma.
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Using these results for q = 1 and

sup
u∈[0,t],y∈M

|e−u∆1α(y)| <∞, sup
u∈[0,t],y∈M

|∇e−u∆1α(y)| <∞ w.l.o.g.,

we have
E
[

sup
s∈[0,t]

|Ys |
]
<∞,

so Y is a martingale and

(∇e−t∆1α(x), ξ) = E[Y0] = E[Yt ]

= −E
[(

Qt(x)//0,1
t (x)−1α(Xt(x)), `

(1)
t (ξ, t) + `

(2)
t (ξ, t)

)]
,

completing the proof of the path integral formula.
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Theorem (Baumgarth/G. 2018)

Assume |Riem|, |∇1,3Riem| ≤ A for some A <∞. Then for all
p ∈ (1,∞) there is constant C = CA,p,m > 0, so that for all t > 0
one has ∥∥∥∇0,1e−t∆1

∥∥∥
p,p
≤ CeCtt−1/2.

In particular, one has CRT (p) and CZ (p), with constants
depending only on A, p,m.
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Proof: The formula for ∇0,1e−t∆1α(x) together with

|Qt(x)|, |Qt(x)−1|, |Q̃t(x)|, Q̃t(x)−1 ≤ eC
′′′t P-f.s.,

Hölder for E, and the `(j)-estimates for q = p∗ shows

|∇0,1e−t∆1α(x)| ≤ C ′′eC
′′tE [|α(Xt(x))|p]1/p

= C ′′eC
′′t
(
e−t∆|α|p(x)

)1/p
,

so ∫
M
|∇0,1e−t∆1α(x)|pdµ(x) ≤ C ′eC

′t

∫
M
e−t∆|α|p(x)dµ(x)

≤ C ′eC
′t

∫
M
|α|p(x)dµ(x),

as e−t∆ is a contraction in Lr (M) for all r ∈ [1,∞] (without any
assumptions on the geometry of M). Done!
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Thank you for listening!
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