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M: complete Riemannian m-manifold

d: C®(M) — Tce(T*M): exterior derivative on functions
di : Teoo(T*M) — T e (A2T*M): exterior derivative on
1-forms

T*M — M: r-times contravariant, s-times covariant tensors

o A = d'd: Laplace-Beltrami-Operator in L?>(M) (e.s.a.!)

o A\ = dfdl + ddt: Laplace-Beltrami-Operator in [2(T*M)
(es.a.l)

© V'S i Tcoo(TH M) — T oo (TH5HIM): Levi-Civita (LC)

connection

o u: Riemannian volume measure
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@ Let 1 < p < co. The aim of the talk is to explain the
connection between path integrals and the LP-boundedness of
the covariant Riesz-transform CRT(p),

YA>0: Hvovl(Al + )\)‘1/2Hp < . (1)
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@ Let 1 < p < co. The aim of the talk is to explain the
connection between path integrals and the LP-boundedness of
the covariant Riesz-transform CRT(p),

YA>0: Hvovl(Al + )\)‘1/2Hp < . (1)

@ The LP-boundedness of the 'usual Riesz-transform’ RT(p),
Hdl(Al + )\)*1/2H < 0 2)
P

only needs Ric > —C for some C > 0 and is a (by now)
classical result by Bakry (1987).
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@ Let 1 < p < co. The aim of the talk is to explain the
connection between path integrals and the LP-boundedness of
the covariant Riesz-transform CRT(p),

YA>0: Hvovl(Al + )\)‘1/2Hp < . (1)

@ The LP-boundedness of the 'usual Riesz-transform’ RT(p),
Hdl(Al + )\)*1/2H < 0 2)
P

only needs Ric > —C for some C > 0 and is a (by now)
classical result by Bakry (1987).

@ Proving CRT(p) should be considerably harder than proving
RT(p), essentially because the Laplace-Beltrami operator
commutes with the exterior differential, but not with the LC
connection. In fact, CRT(p) = RT(p) easily.

Batu Giineysu Covariant Riesz-Transforms



e CRT(p) plays a fundamental role in geometric analysis:
_ ||v0.l
[Hess(f)||, = |V d1pr
- Hvovl(Al +A)V2d (A + )2 (A )\)fH
P
< [voras+ 72| a2 (lafl, + AlfL,).
P p

= | [Hess(All, < CUAF], +[I7]],)

the LP-Calderon-Zygmund inequality CZ(p).
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e CRT(p) plays a fundamental role in geometric analysis:
_ ||v0.l
[Hess(f)||, = |V d1pr
- Hvovl(Al +A)V2d (A + )2 (A )\)fH
P

<[t a2 a2 s, +A09,).

= | [Hess(All, < CUAF], +[I7]],)

the LP-Calderon-Zygmund inequality CZ(p).

e CZ(2) is easily seen to hold under Ric > —C, and is false in
general (G./Pigola, 2015).

e For p # 2 the inequality CZ(p) is nontrivial even in R™; the
best result so far at a full LP-scale is under |Ric| < C and
inj(M) > 0 (G./Pigola, 2015).
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Typical applications of CZ(p):

e CZ(p) (& a little bit of extra work) implies the global Sobolev
inequality

[Hess(F), + [ldfl, < CIAF, + ClIf],.
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Typical applications of CZ(p):

e CZ(p) (& a little bit of extra work) implies the global Sobolev
inequality

[Hess(F), + [ldfl, < CIAF, + ClIf],.

o CZ(p) (& |Riem| < C & some extra work) implies
|Hess(f)|, |df| € LP(M) for weak solutions f € LP(M) of the
Poisson equation Af = h, where h € LP(M).
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Typical applications of CZ(p):
e CZ(p) (& a little bit of extra work) implies the global Sobolev
inequality

[Hess(F), + [ldfl, < CIAF, + ClIf],.

o CZ(p) (& |Riem| < C & some extra work) implies
|Hess(f)|, |df| € LP(M) for weak solutions f € LP(M) of the
Poisson equation Af = h, where h € LP(M).

@ Once one has CZ(p) with a constant depending only on
geometric quantities (Ric, inj,...), one can use it to prove
LP-precompactness results for sequences of Riemannian
immersions V,, : M, — R/, n € N: then AV, is essentially the
mean curvature of ¢, and Hess(V¥,,) its second fundamental
form!
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How can we prove CRT(p)? Approach: reduce CRT(p) to
estimates for the heat semigroup on 1-forms, so that we can use
probability theory.
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Indeed:

@ In view of the Laplace-transform

VO AL+ )2 = / T VoL thr 1 2e- 0\ gy
0

and a highly sophisticated machinery from harmonic analysis

on metric measure spaces by

Auscher/Coulhon/Doung/Hofmann (2004), the estimate

CRT (p) follows from the semigroup estimate SG(p)

S Cectt—1/2
p,p

3C>0Vt>0: Hv“e—fAl
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Indeed:

@ In view of the Laplace-transform

VO AL+ )2 = / T VoL thr 1 2e- 0\ gy
0

and a highly sophisticated machinery from harmonic analysis
on metric measure spaces by

Auscher/Coulhon/Doung/Hofmann (2004), the estimate
CRT (p) follows from the semigroup estimate SG(p)

S Cectt—1/2
p,p

3C>0Vt>0: Hv“e—fAl

@ Whatever it is, this machinery should be sophisticated:

o0
‘ < C/ eCttldt = ...
p.p 0
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0




o Is there a probabilistic formula for V%1e~tA1 which is explicit
enough to prove SG(p)?

@ Some hope: there are probabilistic path integral formulae for
e~tA1 ('covariant Feynman-Kac formula’), and for dje~*A1 by
Bismut (1984), Elworthy/Li (1998), and Thalmaier (1997)
('BELT formula’).
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o (©,P): a probability space. Notation: E[---] = [ ---dP.
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o (Q,P): a probability space. Notation: E[---] = [---dP

e X(x):[0,00) x Q — M: Brownian motion (BM) starting
from x € M; paths X(x)(w) : [0,00) — M continuous, for all
keN O<ty < <ty Ar,..., Ak C M,

]P){th E A17 .. th(X) S Ak} =

—t A t t1)A
/ / 12(x, x1) e (2—1) (x1,x2)
A Ay

—(tk—tx— 1)A(Xk 1, Xk)d,u(xl) dH(Xk)~
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o (Q,P): a probability space. Notation: E[---] = [---dP

e X(x):[0,00) x Q — M: Brownian motion (BM) starting
from x € M; paths X(x)(w) : [0,00) — M continuous, for all
keN O<ty < <ty Ar,..., Ak C M,

]P){th E A17 . th(X) (S Ak} =
/ / t]_A X X (t2 tl)A(X]_,X2)
A Ak
T DA (g, a0 dpa(xa) -+ d ().

e //"5(x):]0,00) x Q — Hom(T¢*M, Tr(s yM): parallel

transport along X(x) with respect to V"*
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o (Q,P): a probability space. Notation: E[---] = [---dP

e X(x):[0,00) x Q — M: Brownian motion (BM) starting
from x € M; paths X(x)(w) : [0,00) — M continuous, for all
keN O<ty < <ty Ar,..., Ak C M,

]P){th E A17 .. th(X) S Ak} =

—t A t t1)A
/ / 12(x, x1) e (2—1) (x1,x2)
A Ay

—(tk—tx— 1)A(Xk 1, Xk)d,u(xl) dH(Xk)~

e //"°(x):]0,00) x Q — Hom( Ty M, Tr(s yM): parallel

transport along X(x) with respect to V"*
@ Q(x):[0,00) x Q — End(T;M) is defined pathwise by

d _ 1 01/ \—1p:.T 0,1 .
aQt(X) = _iQt(X)//t (x) Rlet(X)//t (%), Qo(x) =idr;m
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@ These processes are precisely the ingredients of the covariant
Feynman-Kac formula (Malliavin 1978, Driver/Thalmaier
2001, G. 2012)

e Ma(x) = E[Q//2M () a(Xe(x))]

valid for all & € Tco(T*M), t > 0, x € M, if Ric is
(sufficiently) bounded from below.
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@ These processes are precisely the ingredients of the covariant
Feynman-Kac formula (Malliavin 1978, Driver/Thalmaier
2001, G. 2012)

e Ma(x) = E[Q//2M () a(Xe(x))]

valid for all & € Tco(T*M), t > 0, x € M, if Ric is
(sufficiently) bounded from below.

@ How can one prove the covariant Feynman-Kac formula?
Using some stochastic analysis (Itd's formula) one finds that
for fixed t > 0, the process

Q(x)/ /% (x) e (=21 (X(x)) : [0, £] x Q = TIM,

is a so called 'local martingale’.
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On the other hand, being a local martingale, Y5 has a constant
expectation in s € [0, t], if

< 00,

E| sup |V
s€[0,t]

which is the case, as under say Ric > —C, we have |Qs(x)| < ect
P-a.s. (Gronwall), and

sup  |e “Aa(y)| < oo (Kato-Simon).
u€l0,t],yeM

Therefore:
e Ba(x) = E[Yo] = E[Vi] = E [Qe(x)/ /() Ha(Xe(x)]

completing the proof of the covariant Feynman-Kac formula.

Batu Giineysu Covariant Riesz-Transforms



Let us now prepare our attack on the path integral for VOlet® .
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@ Given a continuous process A : [0,00) x Q — R! and a
Euclidean BM B : [0,0) x Q — R! we can define another
continuous process

/ AsdBs : [0,00) x Q — RY,
0

the Itd integral, by approximating fot AsdBs(w) with
'left-point (!) Lebesgue-Stieltjes Riemann sums’ (but the
convergence is not for P-a.e. w € Q).
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@ Given a continuous process A : [0,00) x Q — R and a
Euclidean BM B : [0,0) x Q — R! we can define another
continuous process

/ AsdBs : [0,00) x Q — RY,
0

the Itd integral, by approximating fot AsdBs(w) with
'left-point (!) Lebesgue-Stieltjes Riemann sums’ (but the
convergence is not for P-a.e. w € Q).

@ In general, fo. AsdBs will only be local martingale; however,
there is the Burkholder-Davis-Gundy inequality, which states
that for all g € [1,00), there exists Cq < 0o s.t. for all t > 0,

t q t q/2
/0 AsdBs ]g CqEK/O \As\zds) }E[O,oo].
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Define the section
Ric € Icoe (End(®2 T*M)) = I co (End (Hom(TM, T*M)))

on A€ Hom(T M, TiM), v e T,M, by

Ric(A)(v) = Ric" (Av) — 2" Riem (e;, v)(Ae) € Ti M,
j=1
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Define the section
Ric € Icoe (End(®2 T*M)) = I co (End (Hom(TM, T*M)))
on A€ Hom(T M, TiM), v e T,M, by
Ric(A)(v) = Ric" (Av) — 2" Riem (e;, v)(Ae) € Ti M,
j=1
and the section
p € T coe(Hom(T*M, @2 T*M)) = T coo (Hom (T*M, Hom(TM, T*M))

onae T;M, ve T,Mby

pla)(v) = (Vy'RicT)a = > (V2?Riem")(e;, v)o € Ty M.
j=1

Batu Giineysu Covariant Riesz-Transforms



Define
Q(x) : [0,0) x Q — End(®%T: M),

~ 1~ — ~
(d/dt)Q:(x) = —5Qt(X)(//?’z)‘lRiCXt//?’zIX, Qo(x) = idgeT: M,
B(x) : [0,00) x Q — T, X anti-dev. of X(x) w.r.t. V0 (BM!),

and for fixed t > 0, £ € ®2 T M further

¢ 1) = (t ; °)g [0, 1] x Q = @%T, M,

60 =~ / T QI BT iu(. )] [0.6] x Q 5 TeM,
0

€61 =5 [ QI (8D ox/ 2T 0T, s,
[0, t] x Q@ — TM.
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Theorem (Baumgarth/G. 2018)

Assume |Riem|, |V13Riem| < A fiir some A < co. Then for all
a€lce(T*M), t>0,xeM, € ®2T, M one has

(Ve ™a(x),€)
= —E | (@(0)// () alXe(0), 676, £) + 47, 1) | -
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Theorem (Baumgarth/G. 2018)

Assume ,|V13Riem| < A fiir some A < oo. Then for all
a€lce(T*M), t>0,xeM, € ®2T, M one has

(Ve ™a(x),€)
= —E | (@(0)// () alXe(0), 676, £) + 47, 1) | -

v

Proof: Using the Ité formula one finds (a long calculation) that the
process

Y =(G(x)//°2(x) Ve 90 (X (x & )

— (QE)//¥ ()Tt 9 Ba(X (X)), €D (¢, 1) + £ (€, 1))
[0, x 2 — R

is a local martingale (without any restriction on the geometry of
M).

Batu Giineysu Covariant Riesz-Transforms



The following estimates will entail that under our assumptions on
the geometry of M, the process Y is even a martingale:

Lemma (¢U)-estimates)

Assume |Riem|, |V13Riem| < A for some A < oo, and let
g€e[l,x), t>0,xeM, &€ T M.
a) One has:

1/q
- [ sup [V (e, r)\"] < Comt™Y2e ham|e],
s€[0,t]

b) One has:

1/q
E [ sup (¢, r)|q] < CeCamti].

s€[0,t]
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Proof: By Gronwall
|Qs(x)], |Qs(x)*1|, ]@s(x)\, 6s(x)*1 < eCmas Pfs forall s e [0, t],
so that

E| sup [67(¢, 6)|7] < e9matiele,
s€[0,t]

and using the Burkholder-Davis-Gundy inequality, we find

t
1 _ ~ . q/2
[ sup (€6, 0)1%] < CamB[( [ 107 1G] Plic(e. ) cs)” |
s€[0,t] 0
< Comt™ 2t Aam|g]d,

completing the proof of the Lemma.

Batu Giineysu Covariant Riesz-Transforms



Using these results for g = 1 and

sup  |e “Pla(y)| < oo, sup Ve “Bia(y)| < oo w.log.,
u€el0,t],yeM uel0,t],yeM

we have

= g, ] <

so Y is a martingale and
(Ve a(x), €) = E[Yo] = E[Y:]
= —E [ (@:(0)//2 () alXe()), 696 6 + 476, 9) ]

completing the proof of the path integral formula.
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Theorem (Baumgarth/G. 2018)

Assume |Riem|, |V 3Riem| < A for some A < co. Then for all
p € (1,00) there is constant C = Cap m > 0, so that for all t > 0
one has

Hvo,le—ml < CeCty1/2,

p:p
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Theorem (Baumgarth/G. 2018)

Assume |Riem|, |V 3Riem| < A for some A < co. Then for all
p € (1,00) there is constant C = Cap m > 0, so that for all t > 0
one has

Hvo,le—ml
p,P

In particular, one has CRT(p) and CZ(p), with constants
depending only on A, p, m.
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Proof: The formula for V%le~tA1a(x) together with
Q)] Q) 1Qe(x)], Qe(x)F < e Pfis,
Holder for E, and the ¢U)-estimates for ¢ = p* shows
VOteBa(x)] < C"e R [lo(Xe(x)) |17

1" 1/
e t(e—tA‘a‘P(X)> p’

so
/ [V@te™ ™ 1a(x)Pdu(x) < C/eC/t/ ™ %alP(x)dp(x)
M M
< et [ jaP)du(x)
M
as e~ 2 is a contraction in L"(M) for all r € [1, 00] (without any

assumptions on the geometry of M). Donel!
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Thank you for listening!

Batu Giineysu Covariant Riesz-Transforms



