Covariant Riesz-Transforms and the Calderon-Zygmund inequality

Batu Güneysu (Humboldt-Universität zu Berlin)

Interfaces between Geometric Analysis and Mathematical
Physics

May 8, 2018

- M: complete Riemannian m-manifold
- d: $C^{\infty}(M) \rightarrow \Gamma_{C^{\infty}}\left(T^{*} M\right)$: exterior derivative on functions
- $d_{1}: \Gamma_{C^{\infty}}\left(T^{*} M\right) \rightarrow \Gamma_{C^{\infty}}\left(\wedge^{2} T^{*} M\right)$: exterior derivative on 1-forms
- $T^{r, s} M \rightarrow M: r$-times contravariant, s-times covariant tensors
- $\Delta=d^{\dagger} d$: Laplace-Beltrami-Operator in $L^{2}(M)$ (e.s.a.!)
- $\Delta_{1}=d_{1}^{\dagger} d_{1}+d d^{\dagger}$: Laplace-Beltrami-Operator in $\Gamma_{L^{2}}\left(T^{*} M\right)$ (e.s.a.!)
- $\nabla^{r, s}: \Gamma_{C^{\infty}}\left(T^{r, s} M\right) \rightarrow \Gamma_{C^{\infty}}\left(T^{r, s+1} M\right)$: Levi-Civita (LC) connection
- μ : Riemannian volume measure
- Let $1<p<\infty$. The aim of the talk is to explain the connection between path integrals and the L^{p}-boundedness of the covariant Riesz-transform $C R T(p)$,

$$
\begin{equation*}
\forall \lambda>0: \quad\left\|\nabla^{0,1}\left(\Delta_{1}+\lambda\right)^{-1 / 2}\right\|_{p}<\infty \tag{1}
\end{equation*}
$$

- The L^{P}-boundedness of the 'usual Riesz-transform' $R T(p)$,

$$
\left\|d_{1}\left(\Delta_{1}+\lambda\right)^{-1 / 2}\right\|
$$

only needs Ric $\geq-C$ for some $C>0$ and is a (by now) classical result by Bakry (1987).

- Proving CRT(p) should be considerably harder than proving $R T(p)$, essentially because the Laplace-Beltrami operator commutes with the exterior differential, but not with the LC connection. In fact, $\operatorname{CRT}(p) \Rightarrow R T(p)$ easily.
- Let $1<p<\infty$. The aim of the talk is to explain the connection between path integrals and the L^{p}-boundedness of the covariant Riesz-transform $C R T(p)$,

$$
\begin{equation*}
\forall \lambda>0: \quad\left\|\nabla^{0,1}\left(\Delta_{1}+\lambda\right)^{-1 / 2}\right\|_{p}<\infty . \tag{1}
\end{equation*}
$$

- The L^{p}-boundedness of the 'usual Riesz-transform' $R T(p)$,

$$
\begin{equation*}
\left\|d_{1}\left(\Delta_{1}+\lambda\right)^{-1 / 2}\right\|_{p}<\infty \tag{2}
\end{equation*}
$$

only needs Ric $\geq-C$ for some $C>0$ and is a (by now) classical result by Bakry (1987).

- Let $1<p<\infty$. The aim of the talk is to explain the connection between path integrals and the L^{p}-boundedness of the covariant Riesz-transform $C R T(p)$,

$$
\begin{equation*}
\forall \lambda>0: \quad\left\|\nabla^{0,1}\left(\Delta_{1}+\lambda\right)^{-1 / 2}\right\|_{p}<\infty \tag{1}
\end{equation*}
$$

- The L^{p}-boundedness of the 'usual Riesz-transform' $R T(p)$,

$$
\begin{equation*}
\left\|d_{1}\left(\Delta_{1}+\lambda\right)^{-1 / 2}\right\|_{p}<\infty \tag{2}
\end{equation*}
$$

only needs Ric $\geq-C$ for some $C>0$ and is a (by now) classical result by Bakry (1987).

- Proving $C R T(p)$ should be considerably harder than proving $R T(p)$, essentially because the Laplace-Beltrami operator commutes with the exterior differential, but not with the LC connection. In fact, $C R T(p) \Rightarrow R T(p)$ easily.
- $C R T(p)$ plays a fundamental role in geometric analysis:

$$
\begin{aligned}
& \|\operatorname{Hess}(f)\|_{p}=\left\|\nabla^{0,1} d_{1} f\right\|_{p} \\
& =\left\|\nabla^{0,1}\left(\Delta_{1}+\lambda\right)^{-1 / 2} d_{1}(\Delta+\lambda)^{-1 / 2}(\Delta+\lambda) f\right\|_{p} \\
& \leq\left\|\nabla^{0,1}\left(\Delta_{1}+\lambda\right)^{-1 / 2}\right\|_{p}\left\|d_{1}(\Delta+\lambda)^{-1 / 2}\right\|_{p}\left(\|\Delta f\|_{p}+\lambda\|f\|_{p}\right), \\
& \Rightarrow \quad\|\operatorname{Hess}(f)\|_{p} \leq C\left(\|\Delta f\|_{p}+\|f\|_{p}\right)
\end{aligned}
$$

the L^{p}-Calderon-Zygmund inequality $C Z(p)$.
general (G./Pigola, 2015)

- $C R T(p)$ plays a fundamental role in geometric analysis:

$$
\begin{aligned}
& \|\operatorname{Hess}(f)\|_{p}=\left\|\nabla^{0,1} d_{1} f\right\|_{p} \\
& =\left\|\nabla^{0,1}\left(\Delta_{1}+\lambda\right)^{-1 / 2} d_{1}(\Delta+\lambda)^{-1 / 2}(\Delta+\lambda) f\right\|_{p} \\
& \leq\left\|\nabla^{0,1}\left(\Delta_{1}+\lambda\right)^{-1 / 2}\right\|_{p}\left\|d_{1}(\Delta+\lambda)^{-1 / 2}\right\|_{p}\left(\|\Delta f\|_{p}+\lambda\|f\|_{p}\right), \\
& \Rightarrow \quad\|\operatorname{Hess}(f)\|_{p} \leq C\left(\|\Delta f\|_{p}+\|f\|_{p}\right)
\end{aligned}
$$

the L^{p}-Calderon-Zygmund inequality $C Z(p)$.

- $C Z(2)$ is easily seen to hold under Ric $\geq-C$, and is false in general (G./Pigola, 2015).
- For $p \neq 2$ the inequality $C Z(p)$ is nontrivial even in \mathbb{R}^{m}; the best result so far at a full L^{p}-scale is under \mid Ric $\mid \leq C$ and $\operatorname{inj}(M)>0$ (G./Pigola, 2015).

Typical applications of $C Z(p)$:

- $C Z(p)$ (\& a little bit of extra work) implies the global Sobolev inequality

$$
\|\operatorname{Hess}(f)\|_{p}+\|d f\|_{p} \leq C\|\Delta f\|_{p}+C\|f\|_{p} .
$$

- $C Z(p)$ (\& \mid Riem $\mid \leq C$ \& some extra work) implies $|\operatorname{Hess}(f)|,|d f| \in L^{P}(M)$ for weak solutions $f \in L^{P}(M)$ of the Poisson equation $\Delta f=h$, where $h \in L^{P}(M)$
- Once one has $C Z(p)$ with a constant depending only on geometric quantities (Ric, inj, ...), one can use it to prove L^{P}-precompactness results for sequences of Riemannian immersions $\Psi_{n}: M_{n} \rightarrow \mathbb{R}^{\prime}, n \in \mathbb{N}$: then $\Delta \Psi_{n}$ is essentially the mean curvature of ψ_{n} and $\operatorname{Hess}\left(\Psi_{n}\right)$ its second fundamental form!

Typical applications of $C Z(p)$:

- $C Z(p)$ (\& a little bit of extra work) implies the global Sobolev inequality

$$
\|\operatorname{Hess}(f)\|_{p}+\|d f\|_{p} \leq C\|\Delta f\|_{p}+C\|f\|_{p} .
$$

- $C Z(p)$ (\& \mid Riem $\mid \leq C$ \& some extra work) implies $|\operatorname{Hess}(f)|,|d f| \in L^{P}(M)$ for weak solutions $f \in L^{P}(M)$ of the Poisson equation $\Delta f=h$, where $h \in L^{P}(M)$.

Typical applications of $C Z(p)$:

- $C Z(p)$ (\& a little bit of extra work) implies the global Sobolev inequality

$$
\|\operatorname{Hess}(f)\|_{p}+\|d f\|_{p} \leq C\|\Delta f\|_{p}+C\|f\|_{p} .
$$

- $C Z(p)$ (\& \mid Riem $\mid \leq C$ \& some extra work) implies $|\operatorname{Hess}(f)|,|d f| \in L^{p}(M)$ for weak solutions $f \in L^{p}(M)$ of the Poisson equation $\Delta f=h$, where $h \in L^{p}(M)$.
- Once one has $C Z(p)$ with a constant depending only on geometric quantities (Ric, inj, ...), one can use it to prove L^{p}-precompactness results for sequences of Riemannian immersions $\Psi_{n}: M_{n} \rightarrow \mathbb{R}^{I}, n \in \mathbb{N}$: then $\Delta \Psi_{n}$ is essentially the mean curvature of ψ_{n} and $\operatorname{Hess}\left(\Psi_{n}\right)$ its second fundamental form!

How can we prove $C R T(p)$? Approach: reduce $C R T(p)$ to estimates for the heat semigroup on 1-forms, so that we can use probability theory.

Indeed:

- In view of the Laplace-transform

$$
\nabla^{0,1}\left(\Delta_{1}+\lambda\right)^{-1 / 2}=\int_{0}^{\infty} \nabla^{0,1} e^{-t \Delta_{1}} t^{-1 / 2} e^{-t \lambda} d t
$$

and a highly sophisticated machinery from harmonic analysis on metric measure spaces by
Auscher/Coulhon/Doung/Hofmann (2004), the estimate $C R T(p)$ follows from the semigroup estimate $S G(p)$

$$
\exists C>0 \forall t>0: \quad\left\|\nabla^{0,1} e^{-t \Delta_{1}}\right\|_{p, p} \leq C e^{C t} t^{-1 / 2}
$$

- Whatever it is, this machinery should be sophisticated:

Indeed:

- In view of the Laplace-transform

$$
\nabla^{0,1}\left(\Delta_{1}+\lambda\right)^{-1 / 2}=\int_{0}^{\infty} \nabla^{0,1} e^{-t \Delta_{1}} t^{-1 / 2} e^{-t \lambda} d t
$$

and a highly sophisticated machinery from harmonic analysis on metric measure spaces by
Auscher/Coulhon/Doung/Hofmann (2004), the estimate $C R T(p)$ follows from the semigroup estimate $S G(p)$

$$
\exists C>0 \forall t>0: \quad\left\|\nabla^{0,1} e^{-t \Delta_{1}}\right\|_{p, p} \leq C e^{C t} t^{-1 / 2}
$$

- Whatever it is, this machinery should be sophisticated:

$$
\left\|\int_{0}^{\infty} \nabla^{0,1} e^{-t \Delta_{1}} t^{-1 / 2} e^{-t \lambda} d t\right\|_{p, p} \leq C \int_{0}^{\infty} e^{C t} t^{-1} d t=\infty \ldots
$$

- Is there a probabilistic formula for $\nabla^{0,1} e^{-t \Delta_{1}}$ which is explicit enough to prove $S G(p)$?
- Some hope: there are probabilistic path integral formulae for $e^{-t \Delta_{1}}$ ('covariant Feynman-Kac formula'), and for $d_{1} e^{-t \Delta_{1}}$ by Bismut (1984), Elworthy/Li (1998), and Thalmaier (1997) ('BELT formula').
- (Ω, \mathbb{P}) : a probability space. Notation: $\mathbb{E}[\cdots]=\int \cdots d \mathbb{P}$.
- $X(x):[0, \infty) \times \Omega \rightarrow M$: Brownian motion (BM) starting from $x \in M$; paths $X(x)(\omega):[0, \infty) \rightarrow M$ continuous, for all $k \in \mathbb{N}, 0<t_{1}<\cdots<t_{k}, A_{1}, \ldots, A_{k} \subset M$,

$$
\begin{aligned}
& \mathbb{P}\left\{X_{t_{1}}(x) \in A_{1}, \ldots, X_{t_{k}}(x) \in A_{k}\right\}= \\
& \int_{A_{1}} \cdots \int_{A_{k}} e^{-t_{1} \Delta}\left(x, x_{1}\right) e^{-\left(t_{2}-t_{1}\right) \Delta}\left(x_{1}, x_{2}\right) \\
& \quad \cdots e^{-\left(t_{k}-t_{k-1}\right) \Delta}\left(x_{k-1}, x_{k}\right) d \mu\left(x_{1}\right) \cdots d \mu\left(x_{k}\right) .
\end{aligned}
$$

- / $\left.\right|^{r, s}(x):[0, \infty) \times \Omega \rightarrow \operatorname{Hom}\left(T_{x}^{r, s} M, T_{X(x)}^{r, s} M\right)$: parallel transport along $X(x)$ with respect to $\nabla^{r, s}$
- $Q(x):[0, \infty) \times \Omega \rightarrow \operatorname{End}\left(T_{x}^{*} M\right)$ is defined pathwise by
$\frac{d}{d t} Q_{t}(x)=-\frac{1}{2} Q_{t}(x) / /_{t}^{0,1}(x)^{-1} \operatorname{Ric}_{X_{t}(x)}^{T} / /_{t}^{0,1}(x), \quad Q_{0}(x)=\operatorname{id}_{T_{x}^{*} M}$
- (Ω, \mathbb{P}) : a probability space. Notation: $\mathbb{E}[\cdots]=\int \cdots d \mathbb{P}$.
- $X(x):[0, \infty) \times \Omega \rightarrow M$: Brownian motion (BM) starting from $x \in M$; paths $X(x)(\omega):[0, \infty) \rightarrow M$ continuous, for all $k \in \mathbb{N}, 0<t_{1}<\cdots<t_{k}, A_{1}, \ldots, A_{k} \subset M$,

$$
\begin{aligned}
& \mathbb{P}\left\{X_{t_{1}}(x) \in A_{1}, \ldots, X_{t_{k}}(x) \in A_{k}\right\}= \\
& \int_{A_{1}} \cdots \int_{A_{k}} e^{-t_{1} \Delta}\left(x, x_{1}\right) e^{-\left(t_{2}-t_{1}\right) \Delta}\left(x_{1}, x_{2}\right) \\
& \quad \cdots e^{-\left(t_{k}-t_{k-1}\right) \Delta}\left(x_{k-1}, x_{k}\right) d \mu\left(x_{1}\right) \cdots d \mu\left(x_{k}\right)
\end{aligned}
$$

- (Ω, \mathbb{P}) : a probability space. Notation: $\mathbb{E}[\cdots]=\int \cdots d \mathbb{P}$.
- $X(x):[0, \infty) \times \Omega \rightarrow M$: Brownian motion (BM) starting from $x \in M$; paths $X(x)(\omega):[0, \infty) \rightarrow M$ continuous, for all $k \in \mathbb{N}, 0<t_{1}<\cdots<t_{k}, A_{1}, \ldots, A_{k} \subset M$,

$$
\begin{aligned}
& \mathbb{P}\left\{X_{t_{1}}(x) \in A_{1}, \ldots, X_{t_{k}}(x) \in A_{k}\right\}= \\
& \int_{A_{1}} \cdots \int_{A_{k}} e^{-t_{1} \Delta}\left(x, x_{1}\right) e^{-\left(t_{2}-t_{1}\right) \Delta}\left(x_{1}, x_{2}\right) \\
& \quad \cdots e^{-\left(t_{k}-t_{k-1}\right) \Delta}\left(x_{k-1}, x_{k}\right) d \mu\left(x_{1}\right) \cdots d \mu\left(x_{k}\right) .
\end{aligned}
$$

- //r,s $(x):[0, \infty) \times \Omega \rightarrow \operatorname{Hom}\left(T_{x}^{r, s} M, T_{X(x)}^{r, s} M\right)$: parallel transport along $X(x)$ with respect to $\nabla^{r, s}$
- (Ω, \mathbb{P}) : a probability space. Notation: $\mathbb{E}[\cdots]=\int \cdots d \mathbb{P}$.
- $X(x):[0, \infty) \times \Omega \rightarrow M$: Brownian motion (BM) starting from $x \in M$; paths $X(x)(\omega):[0, \infty) \rightarrow M$ continuous, for all $k \in \mathbb{N}, 0<t_{1}<\cdots<t_{k}, A_{1}, \ldots, A_{k} \subset M$,

$$
\begin{aligned}
& \mathbb{P}\left\{X_{t_{1}}(x) \in A_{1}, \ldots, X_{t_{k}}(x) \in A_{k}\right\}= \\
& \int_{A_{1}} \cdots \int_{A_{k}} e^{-t_{1} \Delta}\left(x, x_{1}\right) e^{-\left(t_{2}-t_{1}\right) \Delta}\left(x_{1}, x_{2}\right) \\
& \quad \cdots e^{-\left(t_{k}-t_{k-1}\right) \Delta}\left(x_{k-1}, x_{k}\right) d \mu\left(x_{1}\right) \cdots d \mu\left(x_{k}\right)
\end{aligned}
$$

- //r,s $(x):[0, \infty) \times \Omega \rightarrow \operatorname{Hom}\left(T_{x}^{r, s} M, T_{X(x)}^{r, s} M\right)$: parallel transport along $X(x)$ with respect to $\nabla^{r, s}$
- $Q(x):[0, \infty) \times \Omega \rightarrow \operatorname{End}\left(T_{x}^{*} M\right)$ is defined pathwise by

$$
\frac{d}{d t} Q_{t}(x)=-\frac{1}{2} Q_{t}(x) / /_{t}^{0,1}(x)^{-1} \operatorname{Ric}_{X_{t}(x)}^{T} / /_{t}^{0,1}(x), \quad Q_{0}(x)=\operatorname{id}_{T_{x}^{*} M}
$$

- These processes are precisely the ingredients of the covariant Feynman-Kac formula (Malliavin 1978, Driver/Thalmaier 2001, G. 2012)

$$
e^{-t \Delta_{1}} \alpha(x)=\mathbb{E}\left[Q_{t} / /_{t}^{0,1}(x)^{-1} \alpha\left(X_{t}(x)\right)\right]
$$

valid for all $\alpha \in \Gamma_{C_{c}^{\infty}}\left(T^{*} M\right), t \geq 0, x \in M$, if Ric is (sufficiently) bounded from below.

- How can one prove the covariant Feynman-Kac formula? Using some stochastic analysis (Itô's formula) one finds that for fixed $t>0$, the process
is a so called 'local martingale'.
- These processes are precisely the ingredients of the covariant Feynman-Kac formula (Malliavin 1978, Driver/Thalmaier 2001, G. 2012)

$$
e^{-t \Delta_{1}} \alpha(x)=\mathbb{E}\left[Q_{t} / /_{t}^{0,1}(x)^{-1} \alpha\left(X_{t}(x)\right)\right]
$$

valid for all $\alpha \in \Gamma_{C_{c}^{\infty}}\left(T^{*} M\right), t \geq 0, x \in M$, if Ric is (sufficiently) bounded from below.

- How can one prove the covariant Feynman-Kac formula? Using some stochastic analysis (Itô's formula) one finds that for fixed $t>0$, the process

$$
Y:=Q(x) / /^{0,1}(x)^{-1} e^{-(t-\bullet) \Delta_{1}} \alpha(X(x)):[0, t] \times \Omega \rightarrow T_{x}^{*} M,
$$

is a so called 'local martingale'.

On the other hand, being a local martingale, Y_{s} has a constant expectation in $s \in[0, t]$, if

$$
\mathbb{E}\left[\sup _{s \in[0, t]}\left|Y_{s}\right|\right]<\infty
$$

which is the case, as under say $\operatorname{Ric} \geq-C$, we have $\left|Q_{s}(x)\right| \leq e^{C t}$ \mathbb{P}-a.s. (Gronwall), and

$$
\sup _{u \in[0, t], y \in M}\left|e^{-u \Delta_{1}} \alpha(y)\right|<\infty \quad \text { (Kato-Simon). }
$$

Therefore:

$$
e^{-t \Delta_{1}} \alpha(x)=\mathbb{E}\left[Y_{0}\right]=\mathbb{E}\left[Y_{t}\right]=\mathbb{E}\left[Q_{t}(x) / /_{t}^{0,1}(x)^{-1} \alpha\left(X_{t}(x)\right)\right]
$$

completing the proof of the covariant Feynman-Kac formula.

Let us now prepare our attack on the path integral for $\nabla^{0,1} e^{t \Delta} \ldots$

- Given a continuous process $A:[0, \infty) \times \Omega \rightarrow \mathbb{R}^{1}$ and a Euclidean BM $B:[0, \infty) \times \Omega \rightarrow \mathbb{R}^{1}$ we can define another continuous process

$$
\int_{0}^{\bullet} A_{s} d B_{s}:[0, \infty) \times \Omega \rightarrow \mathbb{R}^{1}
$$

the Itô integral, by approximating $\int_{0}^{t} A_{s} d B_{s}(\omega)$ with 'left-point (!) Lebesgue-Stieltjes Riemann sums' (but the convergence is not for \mathbb{P}-a.e. $\omega \in \Omega$).

- In general, $\int_{0}^{0} A_{s} d B_{s}$ will only be local martingale; however,
there is the Burkholder-Davis-Gundy inequality, which states
that for all $q \in[1, \infty)$, there exists $C_{q}<\infty$ s.t. for all $t \geq 0$,

- Given a continuous process $A:[0, \infty) \times \Omega \rightarrow \mathbb{R}^{1}$ and a Euclidean BM B: $[0, \infty) \times \Omega \rightarrow \mathbb{R}^{1}$ we can define another continuous process

$$
\int_{0}^{\bullet} A_{s} d B_{s}:[0, \infty) \times \Omega \rightarrow \mathbb{R}^{1}
$$

the Itô integral, by approximating $\int_{0}^{t} A_{s} d B_{s}(\omega)$ with 'left-point (!) Lebesgue-Stieltjes Riemann sums' (but the convergence is not for \mathbb{P}-a.e. $\omega \in \Omega$).

- In general, $\int_{0}^{\bullet} A_{s} d B_{s}$ will only be local martingale; however, there is the Burkholder-Davis-Gundy inequality, which states that for all $q \in[1, \infty)$, there exists $C_{q}<\infty$ s.t. for all $t \geq 0$,

$$
\mathbb{E}\left[\sup _{s \in[0, t]}\left|\int_{0}^{t} A_{s} d B_{s}\right|^{q}\right] \leq C_{q} \mathbb{E}\left[\left(\int_{0}^{t}\left|A_{s}\right|^{2} d s\right)^{q / 2}\right] \in[0, \infty]
$$

Define the section

$$
\widetilde{\operatorname{Ric}} \in \Gamma_{C^{\infty}}\left(\operatorname{End}\left(\otimes^{2} T^{*} M\right)\right)=\Gamma_{C^{\infty}}\left(\operatorname{End}\left(\operatorname{Hom}\left(T M, T^{*} M\right)\right)\right)
$$

on $A \in \operatorname{Hom}\left(T_{x} M, T_{x}^{*} M\right), v \in T_{x} M$, by

$$
\widetilde{\operatorname{Ric}}(A)(v)=\operatorname{Ric}^{T}(A v)-2 \sum_{j=1}^{m} \operatorname{Riem}^{T}\left(e_{i}, v\right)\left(A e_{j}\right) \in T_{x}^{*} M
$$

and the section

Define the section

$$
\widetilde{\operatorname{Ric}} \in \Gamma_{C^{\infty}}\left(\operatorname{End}\left(\otimes^{2} T^{*} M\right)\right)=\Gamma_{C^{\infty}}\left(\operatorname{End}\left(\operatorname{Hom}\left(T M, T^{*} M\right)\right)\right)
$$

on $A \in \operatorname{Hom}\left(T_{x} M, T_{x}^{*} M\right), v \in T_{x} M$, by

$$
\widetilde{\operatorname{Ric}}(A)(v)=\operatorname{Ric}^{T}(A v)-2 \sum_{j=1}^{m} \operatorname{Riem}^{T}\left(e_{i}, v\right)\left(A e_{j}\right) \in T_{x}^{*} M
$$

and the section

$$
\begin{aligned}
& \rho \in \Gamma_{C^{\infty}}\left(\operatorname{Hom}\left(T^{*} M, \otimes^{2} T^{*} M\right)\right)=\Gamma_{C^{\infty}}\left(\operatorname{Hom}\left(T^{*} M, \operatorname{Hom}\left(T M, T^{*} M\right)\right)\right. \\
& \text { on } \alpha \in T_{x}^{*} M, v \in T_{x} M \text { by }
\end{aligned}
$$

$$
\rho(\alpha)(v)=\left(\nabla_{v}^{1,1} \operatorname{Ric}^{T}\right) \alpha-\sum_{j=1}^{m}\left(\nabla_{e_{i}}^{2,2} \operatorname{Riem}^{T}\right)\left(e_{i}, v\right) \alpha \in T_{x}^{*} M .
$$

Define
$\widetilde{Q}(x):[0, \infty) \times \Omega \rightarrow \operatorname{End}\left(\otimes^{2} T_{x}^{*} M\right)$,
$(d / d t) \widetilde{Q}_{t}(x)=-\frac{1}{2} \widetilde{Q}_{t}(x)\left(/ /_{t}^{0,2}\right)^{-1} \widetilde{\operatorname{Ric}} X_{t} / /\left._{t}^{0,2}\right|_{x}, \quad \widetilde{Q}_{0}(x)=\operatorname{id}_{\otimes^{2} T_{x}^{*} M,}$
$B(x):[0, \infty) \times \Omega \longrightarrow T_{x} X \quad$ anti-dev. of $X(x)$ w.r.t. $\nabla^{1,0}(\mathrm{BM}!)$, and for fixed $t>0, \xi \in \otimes^{2} T_{x} M$ further

$$
\begin{aligned}
\ell(\zeta, t) & :=\frac{(t-\bullet)}{t} \zeta:[0, t] \times \Omega \rightarrow \otimes^{2} T_{x} M, \\
\ell^{(1)}(\xi, t) & :=-\left.\int_{0}^{\bullet} Q_{s}^{T,-1} d B_{s} \widetilde{Q}_{s}^{T} \dot{\ell}_{s}(\xi, t)\right|_{x}:[0, t] \times \Omega \rightarrow T_{x} M, \\
\ell^{(2)}(\xi, t) & :=\left.\frac{1}{2} \int_{0}^{\bullet} Q_{s}^{T,-1}\left(\left(/ /_{s}^{0,2}\right)^{-1} \rho\left(X_{s}\right) / /_{s}^{0,2}\right)^{T} \widetilde{Q}_{s}^{T} \ell_{s}(\zeta, t) d s\right|_{x} \\
& :[0, t] \times \Omega \rightarrow T_{x} M .
\end{aligned}
$$

Theorem (Baumgarth/G. 2018)

Assume \mid Riem $|,| \nabla^{1,3}$ Riem $\mid \leq A$ für some $A<\infty$. Then for all $\alpha \in \Gamma_{C_{c}^{\infty}}\left(T^{*} M\right), t>0, x \in M, \xi \in \otimes^{2} T_{x} M$ one has

$$
\begin{aligned}
& \left(\nabla e^{-t \Delta_{1}} \alpha(x), \xi\right) \\
& =-\mathbb{E}\left[\left(Q_{t}(x) / /_{t}^{0,1}(x)^{-1} \alpha\left(X_{t}(x)\right), \ell_{t}^{(1)}(\xi, t)+\ell_{t}^{(2)}(\xi, t)\right)\right] .
\end{aligned}
$$

Proof: Using the Itô formula one finds (a long calculation) that the process

is a local martingale (without any restriction on the geometry of M)

Theorem (Baumgarth/G. 2018)

Assume \mid Riem $|,| \nabla^{1,3}$ Riem $\mid \leq A$ für some $A<\infty$. Then for all $\alpha \in \Gamma_{C_{c}^{\infty}}\left(T^{*} M\right), t>0, x \in M, \xi \in \otimes^{2} T_{x} M$ one has

$$
\begin{aligned}
& \left(\nabla e^{-t \Delta_{1}} \alpha(x), \xi\right) \\
& =-\mathbb{E}\left[\left(Q_{t}(x) / /_{t}^{0,1}(x)^{-1} \alpha\left(X_{t}(x)\right), \ell_{t}^{(1)}(\xi, t)+\ell_{t}^{(2)}(\xi, t)\right)\right] .
\end{aligned}
$$

Proof: Using the Itô formula one finds (a long calculation) that the process

$$
\begin{aligned}
Y:= & \left(\tilde{Q}(x) / /^{0,2}(x)^{-1} \nabla e^{-(t-\bullet) \Delta_{1}} \alpha(X(x)), \ell(\xi, t)\right) \\
& -\left(Q(x) / /^{0,1}(x)^{-1} e^{-(t-\bullet) \Delta_{1}} \alpha(X(x)), \ell^{(1)}(\xi, t)+\ell^{(2)}(\xi, t)\right) \\
& :[0, t] \times \Omega \longrightarrow \mathbb{R}
\end{aligned}
$$

is a local martingale (without any restriction on the geometry of $M)$.

The following estimates will entail that under our assumptions on the geometry of M, the process Y is even a martingale:

Lemma ($\ell^{(j)}$-estimates)

Assume \mid Riem $|,| \nabla^{1,3}$ Riem $\mid \leq A$ for some $A<\infty$, and let $q \in[1, \infty), t>0, x \in M, \xi \in T_{x} M$.
a) One has:

$$
\mathbb{E}\left[\sup _{s \in[0, t]}\left|\ell_{s}^{(1)}(\xi, t)\right|^{q}\right]^{1 / q} \leq C_{q, m} t^{-1 / 2} e^{t C_{A, q, m}}|\xi|
$$

b) One has:

$$
\mathbb{E}\left[\sup _{s \in[0, t]}\left|\ell_{s}^{(2)}(\xi, t)\right|^{q}\right]^{1 / q} \leq C e^{C_{A, m} t}|\xi|
$$

Proof: By Gronwall

$$
\left|Q_{s}(x)\right|,\left|Q_{s}(x)^{-1}\right|,\left|\widetilde{Q}_{s}(x)\right|, \widetilde{Q}_{s}(x)^{-1} \leq e^{C_{m, A} s} \mathbb{P} \text {-f.s. for all } s \in[0, t]
$$

so that

$$
\mathbb{E}\left[\sup _{s \in[0, t]}\left|\ell_{s}^{(2)}(\xi, t)\right|^{q}\right] \leq e^{q C_{m, A} t}|\xi|^{q},
$$

and using the Burkholder-Davis-Gundy inequality, we find

$$
\begin{aligned}
\mathbb{E}\left[\sup _{s \in[0, t]}\left|\ell_{s}^{(1)}(\xi, t)\right|^{q}\right] & \leq C_{q, m} \mathbb{E}\left[\left(\left.\int_{0}^{t}\left|Q_{s}^{T,-1}\right|^{2}\left|\widetilde{Q}_{s}^{T}\right|^{2}\left|\dot{Q}_{s}(\xi, t)\right|^{2}\right|_{x} d s\right)^{q / 2}\right] \\
& \leq C_{q, m} t^{-q / 2} e^{t C_{A, q, m}}|\xi|^{q}
\end{aligned}
$$

completing the proof of the Lemma.

Using these results for $q=1$ and
$\sup _{u \in[0, t], y \in M}\left|e^{-u \Delta_{1}} \alpha(y)\right|<\infty, \sup _{u \in[0, t], y \in M}\left|\nabla e^{-u \Delta_{1}} \alpha(y)\right|<\infty$ w.l.o.g.,
we have

$$
\mathbb{E}\left[\sup _{s \in[0, t]}\left|Y_{s}\right|\right]<\infty
$$

so Y is a martingale and

$$
\begin{aligned}
& \left(\nabla e^{-t \Delta_{1}} \alpha(x), \xi\right)=\mathbb{E}\left[Y_{0}\right]=\mathbb{E}\left[Y_{t}\right] \\
& =-\mathbb{E}\left[\left(Q_{t}(x) / /_{t}^{0,1}(x)^{-1} \alpha\left(X_{t}(x)\right), \ell_{t}^{(1)}(\xi, t)+\ell_{t}^{(2)}(\xi, t)\right)\right]
\end{aligned}
$$

completing the proof of the path integral formula.

Theorem (Baumgarth/G. 2018)

Assume \mid Riem $\left|,\left|\nabla^{1,3} \mathrm{Riem}\right| \leq A\right.$ for some $A<\infty$. Then for all $p \in(1, \infty)$ there is constant $C=C_{A, p, m}>0$, so that for all $t>0$ one has

$$
\left\|\nabla^{0,1} e^{-t \Delta_{1}}\right\|_{p, p} \leq C e^{C t} t^{-1 / 2}
$$

In particular, one has $C R T(p)$ and $C Z(p)$, with constants depending only on A, p, m.

Theorem (Baumgarth/G. 2018)

Assume \mid Riem $\left|,\left|\nabla^{1,3} \mathrm{Riem}\right| \leq A\right.$ for some $A<\infty$. Then for all $p \in(1, \infty)$ there is constant $C=C_{A, p, m}>0$, so that for all $t>0$ one has

$$
\left\|\nabla^{0,1} e^{-t \Delta_{1}}\right\|_{p, p} \leq C e^{C t} t^{-1 / 2}
$$

In particular, one has $C R T(p)$ and $C Z(p)$, with constants depending only on A, p, m.

Proof: The formula for $\nabla^{0,1} e^{-t \Delta_{1}} \alpha(x)$ together with

$$
\left|Q_{t}(x)\right|,\left|Q_{t}(x)^{-1}\right|,\left|\widetilde{Q}_{t}(x)\right|, \widetilde{Q}_{t}(x)^{-1} \leq e^{C^{\prime \prime \prime} t} \quad \mathbb{P} \text {-f.s. }
$$

Hölder for \mathbb{E}, and the $\ell^{(j)}$-estimates for $q=p^{*}$ shows

$$
\begin{aligned}
& \left|\nabla^{0,1} e^{-t \Delta_{1}} \alpha(x)\right| \leq C^{\prime \prime} e^{C^{\prime \prime}} t \mathbb{E}\left[\left|\alpha\left(X_{t}(x)\right)\right|^{p}\right]^{1 / p} \\
& =C^{\prime \prime} e^{C^{\prime \prime} t}\left(e^{-t \Delta}|\alpha|^{p}(x)\right)^{1 / p}
\end{aligned}
$$

so

$$
\begin{aligned}
& \int_{M}\left|\nabla^{0,1} e^{-t \Delta_{1}} \alpha(x)\right|^{p} d \mu(x) \leq C^{\prime} e^{C^{\prime} t} \int_{M} e^{-t \Delta}|\alpha|^{p}(x) d \mu(x) \\
& \leq C^{\prime} e^{C^{\prime} t} \int_{M}|\alpha|^{p}(x) d \mu(x)
\end{aligned}
$$

as $e^{-t \Delta}$ is a contraction in $L^{r}(M)$ for all $r \in[1, \infty]$ (without any assumptions on the geometry of M). Done!

Thank you for listening!

