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This talk is about the paper

Batu Güneysu & Diego Pallara: Functions with bounded
variation on a class of Riemannian manifolds with Ricci curvature
unbounded from below. Preprint (2013).

For a detailed treatment of the local theory:

L. Ambrosio & N. Fusco & D. Pallara: Functions of bounded
variation and free discontinuity problems. Oxford Mathematical
Monographs. The Clarendon Press, Oxford University Press, New
York, 2000.
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Heat kernel characterization of Var(•)

Review of Euclidean R1

Recall that the variation of some f : R1 → C is defined by

Ṽar(f ) = sup


n−1∑
j=1

|f (xj+1)− f (xj )|

∣∣∣∣∣∣ n ≥ 2, x1 < x2 · · · < xn

 .

It is not clear at all how to extend this to manifolds

It is not even clear what structure of R1 we are actually using
here
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General facts about Var(•) on Riemannian manifolds

Heat kernel characterization of Var(•)

Review of Euclidean Rm

Fortunately, de Giorgi realized (1954): For equivalence class
f ∈ L1

loc(R1) set Var(f ) := inff (•)∈f Ṽar(f ). Then

Var(f ) = sup

{∣∣ ∫
R1

f (x)α′(x)dx
∣∣ ∣∣∣∣α ∈ C∞0 (R1), ‖α‖∞ ≤ 1

}
Var(•) is a Riemannian object: De Giorgi also showed that for
f ∈ L1(Rm) one has

lim
t→0+

∫
Rm

|grad(et∆f )|(x)dx (1)

= sup

{∣∣ ∫
Rm

f (x)divα(x)dx
∣∣ ∣∣∣∣α ∈ [C∞0 (Rm)]m, ‖α‖∞ ≤ 1

}
and, defining Var(f ) for f ∈ L1

loc(Rm) by rhs of (1), one has
Var(f ) <∞ if and only grad(f ) defines a finite Cm-valued
Borel measure
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Setting

M ≡ (M, g): connected possibly noncompact Riemannian
m-manifold

Br (x): open geodesic balls

Px resp. ζ: Brownian motion resp. Alexandroff explosion time

p(t, x , y): minimal positive heat kernel

∆ resp. ∆1: (negative) Laplace-Beltrami operator acting on
functions resp. 1-forms

H ≥ 0 resp. H1 ≥ 0: Friedrichs realization of −∆/2 resp.
−∆1/2 in L2(M) resp. Ω1

L2(X )

∇: Levi-Civita connection

Everything will be complexified
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Definition of Var(f ) on Riemannian manifolds

Being motivated by de Giorgi’s observations we define:

Definition

Let f ∈ L1
loc(M). Then the quantity

Var(f )

:= sup

{∣∣ ∫
M

f (x)d†α(x)vol(dx)
∣∣ ∣∣∣∣α ∈ Ω1

C∞0
(M), ‖α‖∞ ≤ 1

}
∈ [0,∞]

is called the variation of f , and f is said to have bounded variation
if Var(f ) <∞.
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Simple generally valid facts

If f ∈ C1(M), then Var(f ) = ‖df ‖1.

For any q ∈ [1,∞) the maps

Lq
loc(M) −→ [0,∞], f 7−→ Var(f )

Lq(M) −→ [0,∞], f 7−→ Var(f )

are lower semicontinuous

The space

BV(M) :=
{

f
∣∣∣ f ∈ L1(M),Var(f ) <∞

}
is a complex Banach space with respect to the norm
‖f ‖BV := ‖f ‖1 + Var(f ).

Under geodesic completeness, some more things can be said
(approximation results through C∞0 (M), stability of ‖•‖BV

under quasi-isom., enlargement of test 1-forms etc.)
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A ’global’ characterization of Var(•)

Let M (M) be the space of equivalence classes [(µ, σ)] of pairs
(µ, σ) with µ a finite positive Borel measure on M and σ a Borel
section in T∗M with |σ| = 1 µ-a.e. in M, where
(µ, σ) ∼ (µ′, σ′) :⇔ µ = µ′ as Borel measures and σ(x) = σ′(x)
for µ/µ′ a.e. x ∈ M.

Theorem (B.G. & D. Pallara: (Ω1
C∞

(M))∗ is the actual space of
vector measures)

a) The map

Ψ : M (M) −→ (Ω1
C∞(M))∗, Ψ[(µ, σ)](α) :=

∫
M

(σ, α)dµ

is a well-defined bijection with ‖Ψ[(µ, σ)]‖∞,∗ = µ(M).

b) For any f ∈ L1
loc(M) one has Var(f ) = ‖df ‖∞,∗ ∈ [0,∞].
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Application: Characterization of Sobolev space W1,1(M)

If Var(f ) <∞, we write |Df | for the finite positive Borel measure,
and σf for the |Df |-equivalence class of 1-forms given by Ψ−1(df ),
so that we have

df (α) =

∫
M

(σf (x), α(x))x |Df |(dx) for any α ∈ Ω1
C∞0

(M).

Corollary

a) One has ‖f ‖BV = ‖f ‖1,1 for all f ∈W1,1(M). In particular,

W1,1(M) is a closed subspace of BV(M).

b) Some f ∈ BV(M) is in W1,1(M), if and only if one has
|Df | � vol as Borel measures.
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Kato class

Recall that a Borel function w : M → C is said to be in the Kato
class K(M) of M, if

lim
t→0+

sup
x∈M

∫ t

0
Ex
[
1{s<ζ}|w(Xs)|

]
ds = 0. (2)

For any g : L∞(M) ⊂ K(M) ⊂ L1
loc(M), and any w ∈ K(M) is

infinitesimally H-form bounded (and there is even a rich
theory of Kato type measure perturbations of H:
Stollman/Voigt; Sturm; Kuwae;...)

Many Theorems (mainly Kuwae/Takahashi; B.G.) of the form:
Some mild control on g ⇒ Lq

u,loc(M) ⊂ K(M) or at least
Lq(M) ⊂ K(M) for q = q(m)
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Batu Güneysu BV on Riemannian manifolds with Ric unbounded from below



Introduction
General facts about Var(•) on Riemannian manifolds

Heat kernel characterization of Var(•)

Kato class

Recall that a Borel function w : M → C is said to be in the Kato
class K(M) of M, if

lim
t→0+

sup
x∈M

∫ t

0
Ex
[
1{s<ζ}|w(Xs)|

]
ds = 0. (2)

For any g : L∞(M) ⊂ K(M) ⊂ L1
loc(M), and any w ∈ K(M) is

infinitesimally H-form bounded (and there is even a rich
theory of Kato type measure perturbations of H:
Stollman/Voigt; Sturm; Kuwae;...)

Many Theorems (mainly Kuwae/Takahashi; B.G.) of the form:
Some mild control on g ⇒ Lq

u,loc(M) ⊂ K(M) or at least
Lq(M) ⊂ K(M) for q = q(m)
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Main result

Kato class historically comes from dealing with Coulomb type
local singularites in R3 (techniques can be extended to
nonparabolic M’s; e.g. my paper in AHP 13)

But here we use K(M) to control smooth geometric objects
globally:

Theorem (B.G. & D. Pallara)

Let M be geodesically complete and assume that Ric admits a
decomposition Ric = R1 − R2 into self-adjoint Borel sections
R1,R2 ≥ 0 in End(T∗M) such that |R2| ∈ K(M). Then for any
f ∈ L1(M) one has

Var(f ) = lim
t→0+

∫
M

∣∣∣de−tH f (x)
∣∣∣
x
vol(dx). (3)
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Earlier results on heat kernel characterization of Var(•)

Miranda/Pallara/Paronetto/Preunkert needed Ric > −∞ and
volume nontrapping (Crelle 2006)

Carbonaro/Mauceri needed Ric > −∞ (Bull. Austr. Math.
Soc 2007)

Other settings than Riemannian manifolds have been treated.
What is the most general one?

Batu Güneysu BV on Riemannian manifolds with Ric unbounded from below



Introduction
General facts about Var(•) on Riemannian manifolds

Heat kernel characterization of Var(•)

Earlier results on heat kernel characterization of Var(•)

Miranda/Pallara/Paronetto/Preunkert needed Ric > −∞ and
volume nontrapping (Crelle 2006)

Carbonaro/Mauceri needed Ric > −∞ (Bull. Austr. Math.
Soc 2007)

Other settings than Riemannian manifolds have been treated.
What is the most general one?
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Tools for the proof

Var(f ) ≤ lim inft→0+ is trivial and in fact true for any g

Var(f ) ≥ lim supt→0+ relies on the bound∥∥∥e−tH1 |Ω1
L2∩L∞

(M)

∥∥∥
∞,∞

≤ δetC(δ), t ≥ 0, δ > 1, (4)

which follows from −∆1/2 = ∇†∇/2 + Ric/2, my results on
generalized (= covariant) Schrödinger semigroups (JFA 262),
and the following observation: For any v ∈ K(M) one has

sup
x∈M

Ex
[
e
∫ t

0 |v(Bs)|ds1{t<ζ}

]
≤ δetC(v ,δ), t ≥ 0, δ > 1.

⇒ Using an enlargement of test 1-forms (geodesic
completeness) we can take first lim supt→0+ and then
lim supδ→1 in (4)
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A stability result

We can deal with conformal changes: Let ψ ∈ C∞R (M) be
bounded, gψ := eψg , and Tψ := Ric− Ricψ.

Corollary

Let M be geodesically complete and let q ≥ 1 if m = 1, and
q > m/2 if m ≥ 2. Assume that there are C1,C2,R > 0 with the
following property: one has Ric ≥ −C1 and

vol(Br (x)) ≥ C2rm for all 0 < r ≤ R, x ∈ M. (5)

If Tψ = T1 −T2 with self-adjoint Borel sections T1,T2 ≥ 0 in
End(T∗M) such that |T2| ∈ Lq

u,loc(M; gψ) + L∞(M; gψ), then for

any f ∈ L1(M; gψ) one has the heat kernel characterization of
varψ(•).
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Thank you!
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