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Introduction
Schrödinger semigroups on RCD spaces

Main result
Concluding remarks, open problems

Consider the Schrödinger operator HV = −∆ + V in
L2(R3m), where V : R3m → R is of the form

V =
m∑

i ,j=1
Vi ◦ πj +

∑
1≤i<j≤m

Vij ◦ (πi − πj), πj : R3m → R3,

Kato has shown (in 1957!) that for α ∈ (0, 1] the
eigenfunctions of HV are globally α-Hölder continuous, if
Vj ,Vij ∈ Lq(R3) + L∞(R3) for some q ≥ 2 with
0 < α < 2− 3/q. The proof uses the Fourier transform.

This result implies that the eigenfunctions of a molecular
Schrödinger operator are α-Hölder continuous for all
α ∈ (0, 1) (α = 1 not included!).
What is the geometry behind this result? We are going to
examine the smoothing property e−tHV : L∞(X )→ C 0,α(X )
for Schrödinger operators HV on an RCD spaces X .
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Let X = (X , d,m) be a metric measure measure (mms).
X comes equipped with a natural functional E in L2(X ),
the Cheeger energy, which is canonically induced by

f 7→
∫

X
|∇f |(x)2m(dx) :=

∫
X

(
lim sup

y→x

|f (x)− f (y)|
d(x , y)

)2

m(dx).

X is called infinitesimally Hilbertian or Riemannian, if E is a
quadratic form. Then E is a local Dirichlet form in L2(X ) and
we denote the induced self-adjoint operator with H ≥ 0
(Laplacian).

In the Hilbertian case, given K ∈ R, N ∈ N, the mms X is
called an RCD(K ,N) space, if the N-dimensional Bochner
inequality holds in an integrated form.
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One has e−tH : Lq(X )→ C(X ), and there is a unique cont.
map (t, x , y) 7→ p(t, x , y) s.t.
e−tH f (x) =

∫
X p(t, x , y)f (y)m(dy) for all x .

There is a unique (nonexplosive) diffusion P = (Px )x∈X on X
s.t. the transition density of Px is given by (t, y) 7→ p(t, x , y)
for all x

A central smoothing result (Ambrosio/Gigli/Savare,
Bakry/Émery, Sturm):∣∣∣e−tH f (x)− e−tH f (y)

∣∣∣ ≤ FK (t)d(x , y) ‖f ‖∞ ,

where

FK (t) :=


√

2
t , if K = 0

2
√

K
e2Kt−1 , if K 6= 0.
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Batu Güneysu Hölder estimates for schrödinger semigroups 4 / 11



Introduction
Schrödinger semigroups on RCD spaces

Main result
Concluding remarks, open problems

One has e−tH : Lq(X )→ C(X ), and there is a unique cont.
map (t, x , y) 7→ p(t, x , y) s.t.
e−tH f (x) =

∫
X p(t, x , y)f (y)m(dy) for all x .

There is a unique (nonexplosive) diffusion P = (Px )x∈X on X
s.t. the transition density of Px is given by (t, y) 7→ p(t, x , y)
for all x
A central smoothing result (Ambrosio/Gigli/Savare,
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Batu Güneysu Hölder estimates for schrödinger semigroups 4 / 11



Introduction
Schrödinger semigroups on RCD spaces

Main result
Concluding remarks, open problems

Picking a maximal coupling of P one finds the
self-improvement property: for all α ∈ (0, 1] one has
e−tH : L∞(X )→ C 0,α(X ).
Under which class of unbounded perturbations of H by
potentials V : X → R does the above ’smoothing property’
remain stable?

After some thinking: given α ∈ [0, 1] say that V : X → R is in
the α-Kato class Kα(X ), if

lim
t→0+

sup
x∈X

∫ t

0
s−α/2

∫
X

p(s, x , y)|V (y)|m(dy)ds = 0.
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Kα(X ) is a linear space and K(X ) := K0(X ) is the usual Kato
class.
One has Kα(X ) ⊂ Kβ(X ), if α ≥ β and L∞(X ) ⊂ Kα(X ).

For all α ∈ [0, 1], q ∈ [1,∞) with q > N/(2− α) and all
V : X → R one has∫

X

|V (x)|q
m(B(x , 1))m(dx) <∞ ⇒ V ∈ Kα(X ).

Assume X , X̃ are Riemannian manifolds (with Ric ≥ K ) and
π : X̃ → X is a ’nice’ Riemannian submersion. Then for all
α ∈ [0, 1] one has π∗Kα(X̃ ) ⊂ Kα(X ).
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Batu Güneysu Hölder estimates for schrödinger semigroups 6 / 11



Introduction
Schrödinger semigroups on RCD spaces

Main result
Concluding remarks, open problems

Kα(X ) is a linear space and K(X ) := K0(X ) is the usual Kato
class.
One has Kα(X ) ⊂ Kβ(X ), if α ≥ β and L∞(X ) ⊂ Kα(X ).
For all α ∈ [0, 1], q ∈ [1,∞) with q > N/(2− α) and all
V : X → R one has∫

X

|V (x)|q
m(B(x , 1))m(dx) <∞ ⇒ V ∈ Kα(X ).

Assume X , X̃ are Riemannian manifolds (with Ric ≥ K ) and
π : X̃ → X is a ’nice’ Riemannian submersion. Then for all
α ∈ [0, 1] one has π∗Kα(X̃ ) ⊂ Kα(X ).
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For V ∈ K(X ) the form E (f ) +
∫

V |f |2dm induces a self-adjoint
semibounded operator HV in L2(X ) (Schrödinger operator) and its
semigroup (e−tHV )t≥0 in L2(X ) (Schrödinger semigroup), is given
by the Feynman-Kac formula

e−tHV Ψ(x) =
∫

e−
∫ t

0 V (ω(s))dsΨ(ω(t))Px (dω).

The RHS makes sense for all Ψ ∈ Lq(X ), q ∈ [1,∞].

Theorem
Let X be an RCD(K ,N) space for some K ∈ R, N ∈ N, and let
α ∈ [0, 1]. Then for all V ∈ Kα(X ) and all t > 0 one has
e−tHV : L∞(X )→ C 0,α(X ), with completely explicit constants
C = C(K , α, t,V ).
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On the geometry of Kato’s result:

Corollary

Let X , X̃ be Riemannian manifolds with Ricci curvature ≥ K and
let α ∈ [0, 1]. Let πj , πij : X̃ → X be a finite collection of nice
Riemannian submersions and let Vj ,Vij ∈ Lq

1/m(X ) + L∞(X ) for
some q > dim(X )/(2− α). Then with

V :=
∑

ij
Vi ◦ πj +

∑
ij

Vij ◦ πij : X̃ −→ R

one has e−tHV : L∞(X̃ )→ C 0,α(X̃ ).

For molecules: X = R3, X̃ = R3m, πij = πi − πj ,
Vj(x) = −Zi/|x− Ri |, Vij = e/|x|, α ∈ (0, 1).
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Sktech of proof of Theorem: By Duhamel∥∥e−tHV Φ
∥∥

C0,α
≤
∥∥e−tH Φ

∥∥
C0,α

+

∫ t

0

∥∥e−
s
2 H
∥∥

L∞→C0,α

∥∥e−
s
2 H ◦ V

∥∥
L∞→L∞

∥∥e−(t−s)HV Φ
∥∥

L∞
ds.

Recall∥∥∥e−tHΦ
∥∥∥

C0,α
≤ 21−αFK (t)α ‖Φ‖L∞ ,

∥∥∥e−
s
2 H
∥∥∥

L∞→C0,α
≤ 21−αFK (s/2)α,

and by Feynman-Kac and Khashminskii∥∥∥e−(t−s)HV Φ
∥∥∥

L∞
≤ sup

x∈X

∫
e
∫ t

0 |V (ω(s))|dsPx (dω) ‖Φ‖L∞ <∞.

Finally, since FK (s)α ∼ s−α/2 near s = 0,∫ t

0

∥∥∥e−
s
2 H
∥∥∥

L∞→C0,α

∥∥∥e−
s
2 H ◦ V

∥∥∥
L∞→L∞

ds

≤ 22−α sup
x

∫ t/2

0
FK (s)α

∫
X

p(s, x , y)|V (y)|m(dy)ds <∞.
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Do not use coupling of P and FK to estimate
e−tHV Φ(x)− e−tHV Φ(y) for unbounded V ’s!
Similar global Hölder-estimates for magnetic Schrödinger
semigroups (G.-Fürst). Feynman-Kac-Itô formula on RCD
spaces?
Analog of a ’nice’ Riemannan submersion on RCD spaces?

Is there a probabilistic proof of
e−tHV : L∞(R3m)→ C 0,1(R3m), if V is the Coulomb type
potential of a molecule? Statement is correct.
The molecular HV is equivalent to the Laplacian of the mms
MΨ0 := (R3m, deucl ,Ψ−2

0 dx), where Ψ0 > 0 is the
groundstate of HV . This MΨ0 has many interesting properties
(G.- von Rennesse): Ricci curvature unbounded but in
K(MΨ0), conservative,...Study mms’s with Ricci curvature
unbounded from below.
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Batu Güneysu Hölder estimates for schrödinger semigroups 10 / 11



Introduction
Schrödinger semigroups on RCD spaces

Main result
Concluding remarks, open problems

Do not use coupling of P and FK to estimate
e−tHV Φ(x)− e−tHV Φ(y) for unbounded V ’s!
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Thank you very much for your attention!
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